The Transient and Asymptotic Moments for the Random Mission Time of a System / Los momentos transitorios y estables para el tiempo de misión de un sistema

Alvaro Calvache Archila

Resumen


Abstract

In this paper, we study fault tolerant systems having one or more components and its system availability
over the random mission time. The mission time is the time that elapses since the initial operation of
the system until its cumulative working time achieves a predetermined fixed time. The main objective of
this paper is to obtain the transient and asymptotic moments for the random mission time of the system
availability subject to failures, as well as its distribution function, by using the theory of link travel time
distributions. A numerical example is presented to show usefulness of the proposed model.

 

Resumen

En este artículo se estudian sistemas tolerantes a fallas con uno o más componentes, y su disponibilidad durante el tiempo aleatorio de misión. El tiempo de misión es aquél que transcurre desde la operación inicial del sistema hasta que su tiempo acumulado de trabajo alcanza un tiempo fijo predeterminado. El objetivo principal del artículo es la obtención de los momentos transitorios y estables del tiempo de misión de la disponibilidad del sistema sujeto a fallas, así como el análisis de su función de distribución, mediante el uso de la teoría de las distribuciones de tiempo de viaje de un móvil, que transita por un número finito de caminos, en los que la velocidad promedio del móvil varía de camino a camino. Un ejemplo numérico se presenta para mostrar la utilidad del modelo propuesto.



Palabras clave


Mission time; cumulative up-time; transients moments; asymptotic moments

Texto completo:

PDF (English)

Referencias


V. Arunachalam, A. Calvache, and A. Tansu, “Some Useful Approximations for the Availability Function”, International Journal of Reliability, Quality and Safety Engineering, vol. 22, pp. 155008 1 155008 15, 2015.

V. Arunachalam, S. Dharmaraja, “Fluid Queue Driven by Finite State Markov Processes”, Ciencia en Desarrollo, vol. 5, no. 2, pp. 79- 86, 2014.

D.S. Berry, and D.M. Belmont, “Distribution of Vehicle Speeds and Travel Times”, Proceedings of the Second Berkeley Symposium on

Mathematical Statistics and Probability, pp. 589-602, 1951.

L. Blanco, V. Arunachalam, and S. Dharmaraja, “Introduction to Probability and Stochastic Processes with Applications”, Wiley, New Jersey, 2012.

M. Chen, and S. Chien, “Dynamic freeway travel time prediction using probe vehicle data: Link-based vs. Path-based”, Transportation Research Record, vol. 1768, pp. 157-161, 2001.

M. D’Angelo, H.M. Haitham, and M.C. Wang, “Travel-time prediction for freeway corridors”, Transportation Research Board, vol. 1676, pp. 184-191, 1999.

E. De Souza e Silva, and H. R. Gail, “Calculating Cumulative Operational Time Distributions of Repairable Computer Systems”, IEEE, Transactions on Computers vol. 35, pp. 322- 332, 1986.

L. Donatiello, and B. Iyer, “Closed-Form solution for system availability distribution”, IEEE, Transactions on reliability, vol. 36, pp. 45-47, 1987.

A. Goyal, and A.N. Tanwani, “A measure of guaranteed availability and its numerical evaluation”, IEEE Transactions on Computers vol.

, pp. 25-32, 1988.

J. Kharoufeh, and N. Gautam, “A fluid queueing model for link travel time moments”, Naval Research Logistics Quarterly, vol. 51, pp. 242- 257, 2004.

J. Kharoufeh, and N. Gautam, “Deriving Link Travel-Time Distributions via Stochastic Speed Processes”, Transportation Science, vol. 38, pp. 97-106, 2004.

L. A. Molano, “Interpolación polinomial, algunas técnicas y su programación”, Ciencia en Desarrollo, vol. 4, no. 1, pp. 43-69, 2012.

D. Roden, “Forecasting Travel Time”, Transportation Research Record, vol. 1518, pp. 7-12, 1996.

G. Rubino, and B. Sericola, “Interval availability analysis using operational periods”, Perfomance Evaluation, vol. 14, pp. 257-272, 1992.

B. Sericola, “Closed-Form solution for the distribution of the total time spent in a subset of states of a homogeneous Markov Process during a finite observation period”, Journal of Applied Probability, vol. 27, pp. 713-719, 1990.

L. Vanajakshi, S.C. Subramanian, and R. Sivanandan, “Travel time prediction under heterogeneous trafic conditions using global positioningsystem data from buses”, Intelligent Transport Systems, vol. 3, pp. 1-9, 2009.




DOI: https://doi.org/10.19053/01217488.v7.n2.2016.4917

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2016 CIENCIA EN DESARROLLO

                                                                              

Ciencia en Desarrollo esta licenciada bajo la Creative Commons Attribution 4.0 International License / Ciencia en Desarrollo is licensed with the Creative Commons Attribution 4.0 International License

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
Sede Central Tunja–Boyacá–Colombia
Avenida Central del Norte 39-115
PBX: (57+8) 7405626
portalweb@uptc.edu.co Comentarios de este sitio
Horario de atención y servicio telefónico
8:00 a.m. a 12:00 m y 2:00 p.m a 6:00 p.m.

Atención al Ciudadano
Línea Gratuita: 01 8000 942024
Tel: (57+8) 7428263
quejas.reclamos@uptc.edu.co
Notificaciones Judiciales
Notificaciones de aviso

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional
Sistema OJS - Metabiblioteca |