Flujo de savia y potencial hídrico en plantas de tomate (<i>Solanum lycopersicum</i> L.) bajo condiciones de invernadero

Contenido principal del artículo

Autores

Cristian Alejandro Cuellar-Murcia http://orcid.org/0000-0001-8982-8629
Juan Carlos Suárez-Salazar http://orcid.org/0000-0001-5928-1837

Resumen

El tomate es una de las hortalizas más importantes en el mundo, constituye un gran escalafón en la producción hortícola, en Colombia se reportó un área cultivada de 8.992 ha con una producción de 345.291 t. Este cultivo se desarrolla en su mayoría bajo condiciones controladas (invernaderos) requiriendo ciertos volúmenes de agua que puede ser limitantes al no realizar un monitoreo del estatus hídrico, siendo este último, información para la programación del riego. Por ello con el objeto de predecir el comportamiento el potencial hídrico del xilema (ᴪ) y flujo de savia (FH2O) en relación a las variables ambiéntales (RAFA, HRa, Ta, DPV) se utilizó un modelo mecánico de flujo de agua en plantas de tomate (Solanum lycopersicum L.) bajo condiciones de invernadero en el piedemonte amazónico colombiano (Florencia, Caquetá). Las tendencias diarias monitoreadas se mantuvieron entre los 64,7 a 225,4 g h-1 y -1,2 a -0,34 MPa para FH2O y ᴪ respectivamente, al modelar el comportamiento de las variables estas fueron entre rangos de -0.38 a -1.30 MPa para ᴪ y 58,46 a 208,55 g h-1 para FH2O, siendo estos altamente correlacionados (P<0,0001). El uso del modelo mecánico de flujo de agua en plantas de tomate bajo condiciones de invernadero demostró ser estadística y fisiológicamente viable para para entender la demanda hídrica diaria el cual dependió de las variables ambientales.

Palabras clave:

Detalles del artículo

Licencia

Derechos de autor 2018 Revista Colombiana de Ciencias Hortícolas

1. Política propuesta para revistas que ofrecen acceso abierto

Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
  1. Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
  2. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
  3. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).

2. Política propuesta para revistas que ofrecen acceso abierto diferido

Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
  1. Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra [ESPECIFICAR PERIODO DE TIEMPO], el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
  2. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
  3. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto)

 

 

 

 

Citas

Allen, R., S. Pereira, D. Raes y M. Smith. 2006. Evapotranspiración del cultivo: Guías para determinación los requerimientos de agua de los cultivos. Estudio Riego e Drenaje 56. FAO, Roma, Italia.

Ballester, C., J. Castel, L. Testi, D. Intrigliolo y J.R. Castel. 2013. Can heatpulse sap flow measurements be used as continuous water stress indicators of citrus trees?. J. Irrig Sci. 31, 1053-1063. Doi: 10.1007/s00271-012-0386-5

Bobich, E., G. Barron, K. Rascher y R. Murthy. 2010. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO. Tree Physiol. 30, 866-875. Doi: 10.1093/treephys/tpq036

Both, A., L. Benjamin, J. Franklin, G. Holroyd, L. Incoll, M. Lefsrud y G. Pitkin. 2015. Guidelines for measuring and reporting environmental parameters for experiments in greenhouses. Plant Methods 11, 43-68. Doi: 10.1186/s13007-015-0083-5

Burgess, S., M. Adams, N. Turner. C, Beverly. C. Ong, A. Khan y T. Bleby. 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree physiology. 21(9): 589-598. Doi: 10.1093/treephys/21.9.589

Caird, M., J. Richards y T. Hsiao. 2007. Significant transpirational water loss occurs throughout the night in field-grown tomato. Funct. Plant Biol. 34, 172-177. Doi: 10.1071/FP06264

DANE (Departamento Administrativo Nacional de Estadística) 2016. Encuesta nacional agropecuaria ENA 2015. Cód.: DIE-020-PD-01-r5_v7. Bogotá, Colombia.

De Swaef, T., V. De Schepper, M. Vandegehuchte y K. Steppe. 2015. Stem diameter variations as a versatile research tool in ecophysiology. Tree Physiol. 35(10), 1047-1061. Doi: 10.1093/treephys/tpv080

De Swaef, T., J. Hanssens, A. Cornelis y K. Steppe. 2013. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling. Ann. Bot. 111, 271-282. Doi: 10.1093/aob/mcs249

De Swaef, T., C. Mellisho, A. Baert, V. De Schepper. A. Torrecillas, W. Conejero y K. Steppe. 2014. Model-assisted evaluation of crop load effects on stem diameter variations and fruit growth in peach. Trees 28(6), 1607-1622. Doi: 10.1007/s00468-014-1069-z

De Swaef, T. y K. Steppe. 2010. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Funct. Plant Biol. 37, 429-438. Doi: 10.1071/FP09233

De Swaef, T., K. Verbist, W. Cornelis y K. Steppe. 2012. Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium. Plant Soil 350(1-2), 237-252. Doi: 10.1007/s11104-011-0898-4

Di Rienzo, J., F. Casanoves, M. Balzarini, L. Gonzalez, M. Tablada y C. Robledo. 2017. Infostat versión 2017. Grupo Infostat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina.

Easlon, H. y J. Richards. 2009. Drought response in self-compatible species of tomato (Solanaceae). Amer. J. Bot. 96, 605-611. Doi: 10.3732/ajb.0800189

FAOSTAT. 2015. Production/yield quantities of tomatoes in world. En: FAOSTAT. http://www.fao.org/faostat/en/#data/QC; consulta: agosto de 2017.

Fricke, W. 2016. Water transport and energy. Plant Cell Environ. 40, 977-994. Doi: 10.1111/pce.12848

García, A., R. Cun y L. Montero. 2010. Efecto de la hora del día en el potencial hídrico foliar del sorgo y su relación con la humedad en el suelo. Rev. Cienc. Téc. Agropecu. 19(3), 7-11.

Gong, D., J. Wang y S. Kang. 2001. Variations of stem and root sap flow of peach tree under different water status. Transactions of the CSAE 17(4), 33-37.

Guangcheng, S., H. Doudou, C. Xi, C. Jingtao y Z. Zhenhua. 2016. Path analysis of sap flow of tomato under rain shelters in response to drought stress. Int. J. Agric. Biol. Eng. 9(2), 54-62.

Ismail, S. 2010. Influence of deficit irrigation on water use efficiency and bird pepper production (Capsicum annum L.). Meteor. Environ. Arid Land Agric. Sci. 21, 29- 43. Doi: 10.4197/met.21-2.3

Liu, H., M. Genard, S. Guichard y N. Bertin. 2007. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. J. Exp. Bot. 58, 3567-3580. Doi: 10.1093/jxb/erm202

Martínez, J., R. Poyatos, D. Aguadé, J. Retana y M. Mencuccini. 2014. A new look at water transport regulation in plants. New Phytologist 204(1), 105-115. Doi: 10.1111/nph.12912

Meng, Z., A. Duan, D. Chen, B. Dassanayake, X. Wang, Z. Liu y S. Gao. 2017. Suitable indicators using stem diameter variation-derived indices to monitor the water status of greenhouse tomato plants. PloS one 12(2), e0171423. Doi: 10.1371/journal.pone.0171423

Miner, G., J. Ham y G. Kluitenberg. 2017. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agric. For. Meteor. 246, 86-97. Doi: 10.1016/j.agrformet.2017.06.012

Patankar, R., W. Quinton y J. Baltzer. 2013. Permafrost-driven differences in habitat quality determine plant response to gall-inducing mite herbivory. J. Ecol. 101, 1042-1052. Doi: 10.1111/1365-2745.12101

Qiu, R., T. Du, K. Shaozhong, R. Chen y L. Wu. 2015. Influence of water and nitrogen stress on stem sap flow of tomato grown in a solar greenhouse. J. Amer. Soc. Hort. Sci. 140(2), 111-119.

Quintal, W., A. Pérez, L. Latournerie, C. May, E. Ruiz y A. Martínez. 2012. Uso de agua, potencial hídrico y rendimiento de chile habanero (Capsicum chinense Jacq.). Rev. Fitotec. Mex. 35(2), 155-160.

Silva, C., G. Sellés, R. Ferreyra y H. Silva, 2012. Variation of water potential and trunk diameter answer as sensitivity to the water availability in table grapes. Chil. J. Agric. Res. 72(4), 459-469. Doi: 10.4067/S0718-58392012000400001

Steppe, K., D. De Pauw, T. Doody y R. Teskey. 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteor. 150(7), 1046-1056. Doi: 10.1016/j.agrformet.2010.04.004

Steppe, K., D. De Pauw, R. Lemeur y P. Vanrolleghem. 2005. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol. 26, 257-273. Doi: 10.1093/treephys/26.3.257

Vandegehuchte, M., A. Guyot, M. Hubeau, T. De Swaef, D. Lockington y K. Steppe. 2014. Modelling reveals endogenous osmotic adaptation of storage tissuewater potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa. Ann. Bot. 114, 667-676. Doi: 10.1093/aob/mct311

Verbeeck, H., K. Steppe, N. Nadezhdina, M. De Beeck, G. Deckmyn, L. Meiresonne y I. Janssens. 2007. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine. Biogeosci. 4(4), 657-671. 10.5194/bg-4-657-2007

Zegbe, J., M. Behboudian y B. Clothier. 2006. Responses of ‘Petopride’processing tomato to partial rootzone drying at different phenological stages. Irrig. Sci. 24(3), 203-210. Doi: 10.1007/s00271-005-0018-4

Zhang, D., Q. Du, Z. Zhang, X. Jiao, X. Song y J. Li. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Scient. Rep. 7, srep43461.

Zhu, X., S. Long y D. Ort. 2010. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261. Doi: 10.1146/annurev-arplant-042809-112206

Descargas

La descarga de datos todavía no está disponible.