Effect of foliar applications of boron on the phenological development and fruit set of purple passion fruits (<i>Passiflora edulis</i> f. <i>edulis</i> Sims)

Authors

DOI:

https://doi.org/10.17584/rcch.2018v12i1.7457

Keywords:

Growth, internodes, purple passion fruit, fruit diameter, Passifloraceae.

Abstract

Gulupa or purple passion fruit is a native fruit produced in Colombia and exported to different international markets. Some problems affecting crop production are related to flowering and fruiting, mainly because of nutrient limitations, such as boron (B) deficiency. The objective of this research was to evaluate the effect of foliar boron spraying on the phenological development and fruit set of gulupa plants grown under field conditions. This study was carried out in an experimental plantation in the municipality of Pasca (Cundinamarca, Colombia), located at 2,006 m a.s.l. The treatments consisted of three doses of boric acid: T50, T100, T150, and a control, T0, with foliar spray applications in the floral bud and fruit set stages, during two consecutive productive cycles. The length of the productive branches, number of internodes, percentage of fruit set, fruit diameter, and emission of flower buds and fruits were evaluated. The foliar applications of B at the evaluated rates increased the length of the secondary branches, emission of flower buds and fruits, and percentage of fruit set. The best growth results in the first and second cycles were achieved with the T50 treatment although, in terms of fruit set percentage, the T100 treatment was optimal for the first production cycle (85.19%), followed by the T50 treatment for the second production cycle (90%). The fruits of the treatment 0.3 kg ha-1 developed a larger equatorial diameter from 21 days after planting (dap), reaching the maximum diameter (55.68 mm) at 136 dap.

JEL Classification

Array

Downloads

Download data is not yet available.

References

Añez, M. y R. España. 2011. Efecto de prohexadiona de calcio y boro sobre las variables vegetativas y reproductivas en parchita (Passiflora edulis f. flavicarpa Degener). Rev. Unellez Cienc. Tecnol. 29, 54-58.

Boldingh, H., M. Alcaraz, T. Thorp, P. Minchin, N. Gould y J. Hormanza. 2016. Carbohydrate and boron content of styles of “Hass” avocado (Persea americana Mill.) flowers at anthesis can affect final fruit set. Sci. Hortic. 198, 125-131. Doi: 10.1016/j.scienta.2015.11.011

Chmielewski, F. 2013. Phenology in agriculture and horticulture. pp. 539-561. En: Schwartz, M. (ed.). Phenology: an integrative environmental science. Springer Science Business Media, Dordrecht, The Netherlands. Doi: 10.1007/978-94-007-6925-0_29

Cong, X., H. Jing, N. Lin, Z. Xia, M. Huang y X, Jiang. 2015. Boron deficiency affects cell morphology and structure of young leaves of radish. Acta Physiol. Plant. 37, 247-259. Doi: 10.1007/s11738-015-2004-7

Davarpanah, S., A. Tehranifar, G. Davarynejad, J. Abadia y R. Khorasani. 2016. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 210, 57-64. Doi: 10.1016/j.scienta.2016.07.003

Demiray, H. y A. Dereboylu. 2013. Effects of excess and deficient boron and niacin on the ultrastructure of root cells in Daucus carota cv. Nantes. Turk. J. Bot. 37, 160- 166. Doi: 10.3906/bot-1202-22

El-Gawad, A. y H. Osman. 2014. Effect of exogenous application of boric acid and seaweed extract on growth, biochemical content and yield of eggplant. J. Hort. Sci. Ornam. Plants 6(3), 133-143. Doi: 10.5829/idosi. jhsop.2014.6.3.1147

Flórez, L., L. Pérez-Martínez y L. Melgarejo. 2012. Manual calendario fenológico y fisiología del crecimiento y desarrollo del fruto de gulupa (Passiflora edulis Sims) de tres localidades del departamento de Cundinamarca. pp. 33-51. En: Melgarejo, L. (ed). Ecofisiología del cultivo de la gulupa Passiflora edulis Sims. Universidad Nacional de Colombia, Bogotá, Colombia.

Freitas, M., P. Monnerat, A. Cordeiro y M. Vasconcellos. 2011. Sintomas visuais de deficiência de macronutrientes e boro em maracujazeiro-doce. Rev. Bras. Frutic. 33(4), 1329-1341. Doi: 10.1590/S0100-29452011000400034

Freitas, M., P. Monnerat, L. Pinho y A. Carvalho. 2006. Deficiência de macronutrientes e boro em maracujazeiro doce: qualidade dos frutos. Rev. Bras. Frutic. 28(3), 492-496. Doi: 10.1590/S0100-29452006000300033

Haag, H., G. Oliveira, A. Borducchi y J. Sarruge. 1973. Absorção de nutrientes por duas variedades de maracujá. An. Esc. Súper. Agric. Luiz de Queiroz 30, 267-279. Doi: 10.1590/S0071-12761973000100020

Halder, N., A. Farid y M. Siddiky. 2008. Effect of Boron for correcting the deformed shape and size of jackfruit. J. Agric. Rural Dev. 6(1-2), 37-42. Doi: 10.3329/jard. v6i1.1655

Iwai, H., A. Hokura, M. Oishi, T. Ishii, S. Sakai y S. Satoh. 2006. The gene responsible for borate crosslinking of pectin rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proc. Natl. Acad. Sci. USA 103, 16592-16597. Doi: 10.1073/ pnas.0605141103

Jiménez, A., C. Sierra, F. Rodríguez, M. González, F. Heredia y C. Osorio. 2011. Physicochemical characterization of gulupa (Passiflora edulis Sims. f edulis) fruit from Colombia during the ripening. Food Res. Int. 44, 1912- 1918. Doi: 10.1016/j.foodres.2010.11.007

Kobayashi, M., N. Kouzu, A. Inami, K. Toyooka, Y. Konishi, K. Matsuoka y T. Matoh. 2011. Characterization of Arabidopsis CTP:3-Deoxy-D-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis. Plant Cell Physiol. 52(10), 1832- 1843. Doi: 10.1093/pcp/pcr120

Kocábek, T., Z. Svoboda, A. Zwi, S. Rolfe y M. Fellner. 2009. Boron-regulated hypocotyl elongation is affected in Arabidopsis mutants with defects in light signaling pathways. Environ. Exp. Bot. 67, 101-111. Doi: 10.1016/j.envexpbot.2009.06.005

Lahav, E. y A. Whiley. 2012. Irrigation and mineral nutrition. pp. 301-340. En: Schaffer, B., B.N. Wolstenholme y A.W. Whiley (eds.). The avocado: botany, production and uses. CABI Publishing, Wallingford, UK. Doi: 10.1079/9781845937010.0000

Marschner, P. 2012. Marschner’s mineral nutrition of higher plants. 3a ed. Academic Press, Londres, UK.

Mei, L., Q. Li, H. Wang, O. Sheng y S. Peng. 2016. Boron deficiency affects root vessel anatomy and mineral nutrient allocation of Poncirus trifoliata (L.). Acta Physiol. Plant. 38, 86. Doi: 10.1007/s11738-016-2099-5

Meléndez, G. y E. Molina. 2001. Fertilidad de los suelos y manejo de la nutrición de cultivos en Costa rica. En: Memorias, laboratorio de suelos y foliares CIA/UCR. Centro de Investigaciones Agronómicas. San José, Costa Rica.

Mengel, K., E. Kirkby, H. Kosegarten y T. Appel. 2001. Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht, Holanda. Doi: 10.1007/978-94-010-1009-2

Muhammad, S., B. Sanden, B. Lampinen, S. Saa, S. Sidiqui, A. Olivos, K. Shackel, T. Dejong y P. Brawn. 2015. Seasonal changes in nutrient content and concentrations in a mature. Eur. J. Agron. 65, 52-68. Doi: 10.1016/j. eja.2015.01.004

Nymora, A. y P. Brown. 1997. Fall foliar-applied boron increases tissue boron concentration and nut set of almond. J. Am. Soc. Hortic. Sci. 122(3), 405-410.

Ocampo, J., G. D’eeckenbrugge, M. Restrepo, A. Jarvis, M. Salazar y C. Caetano. 2007. Diversity of Colombian Passifloraceae: biogeography and an updated list for conservation. Biota Colomb. 8(1), 1-45.

Perica, S., P. Brown, J. Connell, A. Nymora, C. Dordas y H. Hu. 2001. Foliar boron application improves flower fertility and fruit set of olive. HortSci. 36(4), 714-716.

Prado, R., W. Natale y D. Rozane. 2006. Níveis críticos de boro no solo e na planta para cultivo de mudas de maracujazeiro- amarelo. Rev. Bras. Frutic. 28(2), 305-309. Doi: 10.1590/S0100-29452006000200034

Reid, R., J. Hayes, A. Post, J. Stangoulis y R. Graham. 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 25, 1405-1414. Doi: 10.1111/j.1365-3040.2004.01243.x

Rodrigo, J., J. Hormanza y M. Herrero. 2000. Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiol. Plant. 108(1), 35-41. Doi: 10.1034/j.1399-3054.2000.108001035.x

Rodríguez-León, A.K., A. Rodríguez-Carlosama, L.M. Melgarejo, D. Miranda-Lasprilla y O. Martínez-Wilches 2015. Caracterización fenológica de granadilla (Passiflora ligularis Juss) crecida a diferentes altitudes en el departamento del Huila. pp. 53-90. En: Melgarejo, L.M. (ed.). Granadilla (Passiflora ligularis Juss): caracterización ecofisiológica del cultivo. Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.

Sarkar, D., B. Mandal y M. Kundu. 2007. Increasing use efficiency of boron fertilizers by rescheduling the time and methods of application for crops in India. Plant and Soil 301(1-2), 77-85. Doi: 10.1007/s11104-007-9423-1

Sarrwy, S., E. Mostafa y H. Hassan. 2012. Growth, yield and fruit quality of Williams banana as affected by different planting distances. Int. J. Agric. Res. 7, 266- 275. Doi: 10.1007/s11104-007-9423-1

Shalan, A. 2013. Impact of boric acid spraying date with different concentrations on yield and fruit quality of Pyrus communis cv. ‘le-conte’ pear trees. J. Plant Production 4(10), 1479-1491.

Sotomayor, C., P. Norambuena y R. Ruiz. 2010. Boron dynamics related to fruit growth and seed production in kiwifruit (Actinidia deliciosa cv. Hayward). Cienc. Investig. Agrar. 37(1), 133-141. Doi: 10.7764/rcia. v37i1.192

Tang, N., H. Jiang, L. Yang, Q. Li, G. Yang y L. Chen. 2011. Boron-aluminum interactions affect organic acid metabolism more in leaves than in roots of Citrus grandis seedlings. Biol. Plant. 55(4), 681-688. Doi: 10.1007/ s10535-011-0168-6

Winsor, C. 1932. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. USA 18(1), 1-8. Doi: 10.1073/ pnas.18.1.1

Wojcik, P. y J. Filipczak. 2015. Response of ‘White Smith’ gooseberry to boron fertilization under conditions of low soil boron availability. Sci. Hortic. 197, 366-372. Doi: 10.1016/j.scienta.2015.09.063

Wojcik, P., M. Wojcik y K. Klamkowski. 2008. Response of apple trees to boron fertilization under conditions of low soil boron availability. Sci. Hortic. 116, 58-64. Doi: 10.1016/j.scienta.2007.10.032

Yaacoubi, A., G. Malagi, A. Oukabli, M. Hafidi y J. Legeve. 2014. Global warming impact on floral phenology of fruit trees species in Mediterranean region. Sci. Hortic. 180, 243-253. Doi: 10.1016/j.scienta.2014.10.041

Yadav, V., P. Singh y P. Yadav. 2013. Effect of foliar fertilization of boron, zinc and iron on fruit growth and yield of low-chill peach cv. Sharbati. Int. J. Sci. Res. 3(8), 223-232.

Published

2018-05-02

How to Cite

Quiroga-Ramos, I. A., Fischer, G., & Melgarejo, L. M. (2018). Effect of foliar applications of boron on the phenological development and fruit set of purple passion fruits (<i>Passiflora edulis</i> f. <i>edulis</i> Sims). Revista Colombiana De Ciencias Hortícolas, 12(1), 20–30. https://doi.org/10.17584/rcch.2018v12i1.7457

Issue

Section

Fruits section

Metrics

Most read articles by the same author(s)

1 2 3 4 5 6 > >>