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Abstract

In this work, the effect of the addition of iridium on TiO2 and Nb2O5 supports obtained by wet impregnation method was evaluated
in the photocatalytic degradation of 2,4-dichlorophenoxiacetic acid under UV irradiation. The synthetized materials were analyzed
by different techniques in order to determinate their physicochemical properties. In general, it was observed that the addition of
iridium modifies the surface area, band gap energy and it enhances the crystallinity of the materials. Besides, an increase in the
photoactivity in the degradation of the herbicide was evidenced using the materials modified. However, the Ir/TiO2 photocatalyst
possess the best photocatalytic behavior toward the degradation and possible mineralization of the herbicide. The improved
performance of the photocatalyst could be argued by the role of the iridium particles as electron collectors favoring the effective
separation of the charge carriers and, as consequence, increasing the degradation of the molecule.
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Resumen

En este trabajo se evaluó el efecto de la adición de iridio sobre soportes de TiO2 y Nb2O5 obtenidos por el método de impregnación
húmeda en la degradación fotocatalítica del ácido 2,4-diclorofenoxiacético bajo irradiación UV. Los materiales sintetizados fueron
analizados mediante diferentes técnicas para determinar sus propiedades fisicoquímicas. En general, se observó que la adición
de iridio modifica el área superficial, la energía de banda prohibida y mejora la cristalinidad de los materiales. Además, se
evidenció un aumento de la fotoactividad en la degradación del herbicida utilizando los materiales modificados. Sin embargo,
el fotocatalizador Ir/TiO2 presentó el mejor comportamiento fotocatalítico hacia la degradación y posible mineralización del
herbicida. El rendimiento mejorado del fotocatalizador podría argumentarse por el papel de las partículas de iridio como colectores
de electrones que favorecen la separación efectiva de los portadores de carga y, como consecuencia, aumenta la degradación de la
molécula.
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1 Introducción

Nowadays, one of the main challenges facing the
scientific community is oriented to offer solutions
to environmental problems by the applications of
strategies based in the fulfilment of the green chem-
istry principles. In this sense, the heterogeneous
photocatalysis is considered as a friendly and viable
methodology to degradation of different pollutants
soluble in water such as phenol compounds [1-3],
dyes [4-6] and pesticides [7, 8]. In relation to the
latter, the pesticides such as fungicides, insecticides
and herbicides are recognized by their frequent use
in the agriculture activities for the control and elim-
ination of pests, however, the problem lies in the
improper process for the disposal of the wastewaters,
which constitutes an important concern considering
their toxic nature and the resistance of the biodegra-
dation processes.

In this context, 2,4-dicholorophenoxiacetic acid
(2,4-D) is the herbicide most used among chlorophe-
noxiacetic compounds and it is used mainly to elim-
ination of weeds in grain, corn and grassland [9];
however, the prolonged exposition to this compound
could generate important effects in human health
and in aquatic life [10]. It is important to mention
that the World Health Organization established a
maximum concentration of 2,4-D in drinking water
equal to 70 ppb [11]. In order to achieve its effective
treatment, several strategies have been tested includ-
ing: electrocoagulation [12], biological degradation
[13], catalytic ozonation [14], adsorption [15] and
photocatalysis [16].

Generally, the application of the heterogeneous
photocatalysis considers the use of a semiconductor
material that includes characteristic such as: chemi-
cal and biological inertia, nontoxicity, stability to the
photocorrosion processes and photoactivity under
UV or visible irradiation [17]. Among the semi-
conductors more used in photocatalysis, titanium
dioxide (TiO2) occupies the first places, due to its ad-
equate physicochemical properties for the pollutants
degradation [18-20]. However, the photoactivity of
the material is affected due to the fast recombina-
tion frequency of the charge carriers (e−/h+ pairs).
One strategy to reverse this disadvantage consists
in the surface addition of noble metals on the semi-

conductor. Thus, for example, Adbennouri et al. [7]
studied the effect of the content of platinum on TiO2

in the photocatalytic degradation of 2,4-D. The au-
thors evidenced an enhancement in the photoactivity
with the increase of metal percentage. This results
was explained considering the role of the platinum
as electron trap, which a decrease in the recombina-
tion process was achieved. Yu et al. [21] fabricated
Au-Pd/TiO2 nanotubes by photo-deposition method.
The photocatalytic properties of the materials were
evaluated in the degradation of Malathion under UV
irradiation. The authors evidenced a degradation of
the pesticide of 98.2% using bimetallic material and
73.8% conducing the reaction in presence of unmod-
ified TiO2. Maddila et al. [22] evaluated the degra-
dation and mineralization of the Triclopyr pesticide
applying the method of photocatalyzed ozonation in
presence of a series of photocatalysts of Au/TiO2.
The results revealed an enhancement in the activity
with the increase of the gold load. Thus, in presence
of the 2% Au/TiO2 material a degradation of the
pesticide equal to 100% was achieved.

Other interesting semiconductor is the niobium
pentoxide (Nb2O5), due to its unique physical
properties such as chemical stability, high refractive
index and high photocatalytic performance [23]. As
in the case of the TiO2 semiconductor, the efficiency
of the Nb2O5 material in photocatalytic applications
can reduce due to the fast recombination of the
charge carriers [24]. This drawback can be solved
modifying the material by the doping with non-
metals or metals. These dopants should act as traps
of the photogenerated e−/h+ pairs to improve the
photoactivity [25,26].

With this in mind, in this work, Ir/TiO2 and
Ir/Nb2O5 materials obtained by wet impregnation
method were studied. The textural, structural and
optical properties of the materials were analyzed and
their photocatalytic properties were evaluated in the
photodegradation of 2,4-dichlorophenoxiacetic acid
under UV irradiation. For comparison, the photocat-
alytic behavior of the TiO2 and Nb2O5 supports also
was tested.
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2 Experimental

2.1 Synthesis of the photocatalysts

TiO2 photocatalytic support was synthesized by
sol-gel method. In a glass flask were added the
precursors: titanium butoxide (Aldrich 98%), butyl
alcohol (Aldrich 99.4%) and the hydrolysis catalyst
HNO3. The suspension was maintained at 40 ◦C
for 2h in constant stirring. After that, the hydrolysis
process was promoted by the slow addition of the
calculated amount of distilled water dissolved in
50 mL of ethanol. The molar ratio of titanium
butoxide:water:butyl alcohol used in the material
preparation was 1:8:35, respectively. Subsequently,
the system was refluxed in stirring at 75 ◦C for 24h.
The resulting xerogel was rinsed and dried at 90
◦C. The material obtained was pulverized and it was
calcined at 400 ◦C for 6 h. In this study, commercial
Nb2O5 was also used as other photocatalytic support.

The Ir/TiO2 and Ir/Nb2O5 photocatalytic materials
were achieved by wet impregnation method from
hexachloroiridic acid hexahydrate (H2IrCl6·6H2O,
Sigma Aldrich 99.98%) as Ir precursor. The
nominal load of iridium was equal to 1.0 wt%.
The impregnation of the metal started by the
addition of an aqueous suspension of the support
(TiO2 or Nb2O5) with the calculated amount of
iridium precursor into beaker. The system was
maintained in vigorous stirring for 4 h. Then, the
material was dried at 90◦C, ground and calcined
at 400 ◦C for 2 h. The materials were labeled
as Ir/TiO2 and Ir/Nb2O5. Finally, the solids
were reduced in hydrogen atmosphere at 300◦C
by 2 h.

2.2 Characterization of the photocatalysts

The physicochemical properties of the materials
were evaluated by the following techniques:

The iridium content was determined by X-ray
fluorescence spectroscopy employed a JSX-1000S
spectrophotometer equipped with rhodium anode.

Surface area (SBET ) was estimated by N2 ph-
ysisorption analysis using a Micromeritics ASAP
2020 instrument. Prior of the analysis, the samples
were degassed at 200 ◦C for 4 h.

Crystalline phase and crystallite size were determi-
nate by the XRD analysis. The studies were realized
using a Bruker D2 Phaser diffractometer with copper
kα radiation and a scanning range of 2θ = 10-80◦

and passing of 0.05◦.

UV-Vis DRS analysis were realized in order to
estimate the band gap energy values. For this
purpose, a Varian Cary 100 spectrophotometer
equipped with an integration sphere was used. The
studies were realized in the region between 200-800
nm. Ba2SO4 was used as a reference material.

Finally, FTIR studies were carried out using a
Thermo Scientific Nicolet iS50 FTIR spectrometer
equipped with an ATR accessory. The samples were
analyzed en range between 4000 to 400 cm−1, with
8 cm−1 of resolution and 250 scans per sample at
room temperature.

2.3 Photocatalytic degradation of
2,4-diclorophenoxyacetic acid

The photocatalytic reactions were realized using a
homemade pyrex reactor, 200 mL of a solution of
2,4-D of a concentration of 40 ppm and 100 mg
of the photocatalytic material. Initially, the solution
and the photocatalyst were added into the reactor and
the suspension was maintained in vigorous stirring
in absence of irradiation for 30 min, in order to
assure the adsorption-desorption equilibrium. Then,
the system was irradiated for 210 min with UV
light using a Pen-ray lamp with an intensity of 4.4
mW/cm2 and main wavelength emission of 254 nm,
which is protected by a quartz tube and immersed in
the solution. The reaction progress was monitored
take out an aliquot each 30 min, which were filtered
and analyzed using a Cary 100 equip considering
the characteristic absorption band of 2,4-D located
at 282 nm. Besides, the samples were studied in a
TOC-VCSN analyzer, in order to quantify the content
of residual total organic carbon.

3 Results and discussion

3.1 Characterization of the photocatalysts

The characterization results are summarized in Table
1. The iridium percentage in the materials is slightly
higher that the nominal content, which indicates
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the effectiveness of the impregnation process. On
the other hand, as can be seen, the sol-gel method
used in this work favors the obtaining the materials
of TiO2 with a high surface area. However, the
impregnation of iridium both in TiO2 and in the
commercial support Nb2O5, causes a decrease in
this textural property, which could be a consequence
of a possible obstruction of the pores by the metal
particles and additional thermal treatments.

Table 1. Characterization results of the tested materials

Photocatalyst Ir loading,
wt.%

SBET (m2/g) Crystallite
Size (nm)

Eg (eV)

TiO2 − 126 10 3.01

Ir/TiO2 1.06 57 13 2.71

Nb2O5 − 8 34 3.41

Ir/Nb2O5 1.09 6.5 36 3.37

The X-ray diffraction patterns are presented in
Figure 1. As can be observed, the main signals of
the anatase phase of the titanium dioxide located
at 2θ = 25.3◦, 37.9◦, 48.1◦, 53.9◦, 55.1◦, 62.8◦,
68.8◦, 70.3◦ and 75.1◦ (JCPDS-00-001-0562) are
identified in the TiO2 support and in the Ir/TiO2

sample as the anatase phase (Figure 1a). However,
the characteristic reflection peaks of iridium is do
not evidenced in the diffraction pattern of Ir/TiO2

sample, which is due to the low content and the
probably high dispersion of the metal. Besides, the
anatase peaks more intense and sharp observed in
Ir/TiO2 reveal an improvement in the crystallinity
and hence the diminution of the specific surface area
when compared with the TiO2 support.

On the other hand, Figure 1b presents the XRD
patterns of the Nb2O5 support and the Ir/Nb2O5

sample. These results evidence the characteristic
reflection signals of the hexagonal phase of niobium
oxide located at 2θ = 22.7◦, 28.6◦, 36.9◦, 46.4◦,
50.9◦, 55.5◦, 56.3◦, 58.9◦, 64.1◦, 71.1◦ (JCPDS 00-
007-0061). As in the case of the iridium material
supported on TiO2, the diffraction peaks of the metal
were not observed in the Ir/Nb2O5 sample due to the
low percentage of impregnated metal.

Crystallite size of the materials was calculated
using the Debye-Scherrer equation. As can be seen
in Table 1, the impregnation of the metal on the

TiO2 and Nb2O5 supports promotes materials with a
higher crystallinity degree and larger crystallite size,
which could be associated to the additional thermal
treatment.

Figure 1. X-ray diffraction patterns of the tested
photocatalysts.

Figure 2. UV-Vis DRS spectra of the tested photocata-
lysts.

UV-Vis DRS spectra of the tested materials are
shown in Figure 2. All the samples present strong
absorption in the UV region of the electromagnetic
spectrum, which is associated to the intrinsic band
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gap absorption of the semiconductors [27,28]. For
TiO2 and Ir/TiO2 the absorption between 200 and
400 nm corresponding to the charge transfer from the
O2p orbitals of the valence band to the Ti3d orbitals
of the conduction band in the tetrahedral symmetry
[29, 30]. Besides, it was evidenced that the iridium
impregnation produces a change in the absorption
spectrum of the semiconductor and a weak shoulder
is formed near 481 nm, which is due to the presence
of an Ir Plasmon band [31].

For the Nb2O5 and Ir/Nb2O5 materials the
band in the region of 200-400 nm is due to the
charge transition from oxygen and niobium sites
in tetrahedral coordination [32, 33]. The presence
of the metal is manifested by the absorption band in
the visible region.

The Eg values of the materials were calculated
using Kubelka-Munk equation and these are listed
in Table 1. As can be seen, the materials of
supported iridium present the lower band gap energy
values. According the reports of the literature,
the displacement toward visible region favors an
increase in the rate of the generation of the electron-
hole pairs on semiconductor surface, which results
in an enhanced photoactivity [34].

FTIR spectra of the tested materials are shown
in Figure 3. For the TiO2 support and the Ir/TiO2

sample an intense band below of the 1100 cm−1 is
evidenced, which is associated to Ti–O–Ti bridging
stretching mode in the crystal [35]. On the
other hand, the broad band centered around 3410
cm−1 corresponds to stretching vibration mode of
O-H bonds of free water molecules and the band
centered at 1636 cm−1 is associated to the bending
vibration mode of O–H bond of chemisorbed water
molecules [36].

For the Nb2O5 support and the Ir/Nb2O5 sample
the bands located at 627 cm−1 and 841 cm−1

correspond to the stretching vibration of Nb-O-Nb
bridging [37] and the Nb-O bond, respectively [38].
The band at 1638 cm−1 is associated to bending
vibrations of the O-H groups [39] and the broad band
centered at 3392 cm−1 is related with the stretching
vibration of adsorbed water molecules on the surface
of the material [40].

In addition, the increased intensity of the bands
associated to hydroxyl groups evidenced in the
two supported iridium materials indicates highly
hydroxylated surfaces [36, 41].

Figure 3. FTIR spectra of the tested photocatalysts.

3.2 Photocatalytic degradation of
2,4-diclorophenoxyacetic acid

The effectiveness of the materials was evaluated in
the photocatalytic degradation of 2,4-D herbicide
under UV radiation. Figure 4 illustrates the UV-Vis
absorption spectra obtained using the photocatalytic
materials. The bands centered at 203 and 227 nm
correspond to the π→ π∗ transitions of the aromatic
ring and the signal at 282 nm is associated to n→ π∗

transitions [42]. With the evolution of the reaction
a decrease of the intensity of the absorption bands
is observed, which suggests the degradation of the
herbicide.

In absence of photocatalyst, process known as
photolysis, an increase in the absorbance in the
range from 240 nm to 270 nm of the UV spectrum
(Figure 4a) is evidenced, which is associated to the
preferential formation of intermediates of reaction
[11].

Variation of the relative concentration of herbicide
as a time function is presented in Figure 5. In
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Figure 4. UV–Vis absorption spectra of the photodegradation of 2,4-D: a. Photolysis, b. Nb2O5, c. Ir/Nb2O5, d. TiO2 and e.
Ir/TiO2.

absence of photocatalytic material, the degradation
of 2,4-D was of 38%, however, the addition of the
photocatalytic supports promoted an improvement
in the process and a degradation equal to 48 and 72%
were reached using Nb2O5 and TiO2, respectively.
The better photoactivity of the TiO2 support could
be result of the higher surface area of this material,
which favors the adsorption of more molecules of
2,4-D on the surface.

Figure 5. Variation of relative concentration of 2,4-D
as a function of reaction time.

In the case of the Ir/Nb2O5 and Ir/TiO2 materials,
it is verified that iridium addition lead to reach
higher 2,4-D photodegradation that the obtained
conducing the reaction in presence of the unmodified
semiconductors. Thus, a degradation equal to 57
and 86% was obtained using Ir/Nb2O5 and Ir/TiO2,

respectively. This behavior can be ascribed to
the metal acts as an electron collector facilitating
the adequate separation of the photogenerated
charge carriers and as consequence an enhanced
photoactivity is obtained in comparison with the
respective supports.

In order to analyze the performance of the tested
materials in the mineralization process, total organic
carbon studies were realized at 210 min of reaction
and the residual TOC percentages are listed in
Table 2. As can be seen, the use of the Ir/TiO2

photocatalyst favors a higher mineralization of
2,4-D, which confirms the effectiveness of this
material for the possible treatment of this type of
herbicides.

Table 2. Residual TOC and kinetic parameters for the
2,4-D photocatalytic degradation

Photocatalyst % Residual
TOC

k(x10−3

min−1)
t1/2

(min−1)
R2

TiO2 35 3.84 180 0.954

Ir/TiO2 25 7.00 99 0.978

Nb2O5 60 2.46 282 0.967

Ir/Nb2O5 52 2.62 265 0.982

In addition, from the results of photoactivity, it
was determined that de photocatalytic degradation
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of 2,4-D follows a first order kinetics behavior
(Figure 6). The values of the rate constant (k), half-
life time (t1/2) and correlation coefficient R2 are
shown in Table 2.

Figure 6. First-order kinetics plots for photocatalytic
degradation of 2,4-D.

It is noted that, the highest k and t1/2 values were
reached conducing the reaction with the Ir/TiO2

photocatalyst, confirming that the material presented
a higher photocatalytic activity than the others
studied solids. The surface area, the lower band
gap energy estimated for Ir/TiO2 and the role of the
metal as electron collector could be the responsible
parameters of the best performance of material in
the degradation of the herbicide.

Thus, once the Ir/TiO2 material is irradiated
by UV light, the photogenerated electrons on
the semiconductor surface migrate from valence
band toward conduction band and the frequency
of recombination probably is decreased by fast
movement of these charge carriers to iridium
particles, which act as e− collectors. In this
conditions, the adequate separation of the e−/h+

pairs is achieved and the photogerated holes are
available for the effective oxidation of the adsorbed
water molecules to produce OH radicals, main
responsible of the degradation of the organic
compounds.

4 Conclusion

Iridium materials supported on TiO2 and Nb2O5 sup-
ports were obtained using wet impregnation method.
The materials were studied in the photocatalytic
degradation of 2,4-dichlorophenoxiacetic acid under
UV irradiation. The physicochemical characteriza-
tion evidenced that the addition of the iridium on the

evaluated supports cause a decrease of the surface
area and energy gap. Besides, it was evidenced that
the modification promoted the obtaining of materials
with a higher crystallinity degree and with highly hy-
droxylated surface areas. The photocatalytic activity
of the degradation of the herbicide follows the order
Ir/TiO2 >TiO2 > Ir/Nb2O5 > Nb2O5. Thus, it was
evidenced that the modification of the supports result
in an improvement in the photocatalytic properties of
the semiconductors. However, the kinetic constant
obtained using the Ir/TiO2 material was 1.8, 2.8 and
2.7 times greater than the obtained using the TiO2

,

Nb2O5 and Ir/Nb2O5 materials, respectively. The en-
hancement in the photocatalytic behavior observed
in presence of the Ir/TiO2 material is assigned to
the role of the iridium particles as electron collector,
which produces a decrease in the recombination fre-
quency of the charge carriers resulting in an increase
in the photoactivity.
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