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Abstract

We propose extending the use of desirability functions in Bayesian optimal designs for regression models. This technique
generates experimental designs with good statistical inference properties according to Bayesian optimal design theory and
practical features, as defined by an investigator. These practical features are defined by a penalty function, using an overall
desirability function, which is added to a Bayesian D-optimal design criterion to penalize impractical experimental designs.
This methodology is illustrated by two examples of regression models: quadratic and exponential. Then, we compare designs
obtained for different prior distributions of unknown parameters by efficiency calculations and simulation study. Results show
that the D-efficiencies of the penalized designs relative to the non-penalized Bayesian D-optimal designs are competitive.

Keywords: Bayesian Optimal Designs; Desirability Functions; Exponential Growth Model; Penalized Designs; Quadratic Regression Model.

Resumen

Se propone extender el uso de funciones de deseabilidad en diseños óptimos bayesianos para modelos de regresión. Esta técnica
genera diseños experimentales con buenas propiedades de inferencia estadística de acuerdo con la teoría del diseño óptimo
bayesiano y características prácticas, según lo definido por un investigador. Estas características prácticas se definen mediante
una función de penalización, utilizando una función de deseabilidad general, que se agrega a un criterio de diseño bayesiano
D-óptimo para penalizar los diseños experimentales poco prácticos. Esta metodología se ilustra con dos ejemplos de modelos
de regresión: cuadrático y exponencial. Luego, comparamos los diseños obtenidos para diferentes distribuciones previas de
parámetros desconocidos mediante cálculos de eficiencia y estudios de simulación. Los resultados muestran que las D-eficiencias
de los diseños penalizados en relación con los diseños D-óptimos bayesianos no penalizados son competitivas.
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1 Introduction
Experimental design plays a vital role in theoretical and applied sci-
entific research. A well-designed experiment is an efficient method
for learning about some phenomena, while a poorly designed ex-
periment directly affects the quality of the conclusions derived from
the experimental data. Statisticians have developed optimal design
theory to generate efficiently designed experiments that satisfy the
mentioned requirements.

For nonlinear models, optimal designs generally depend on the
true values of the model parameters. Since the parameter vector
is not known, the researcher must postulate a “best guess” of the
unknown parameter vector resulting in locally optimal designs [1].
The problem may arise when that guess is not close enough to the
true parameter vector, and therefore, the design obtained may not be
optimal. In the Bayesian optimal design approach, the assumptions
do not concentrate on single values. Instead, a prior distribution
is assigned to each unknown parameter. These distributions can
be centered around the assumed parameter values. The Bayesian
optimality criterion is to minimize the Bayes risk by integrating the
risk function over the prior distribution [2].

Furthermore, the optimal design theory can generate inadequate
designs from a practical perspective. These designs can conflict
with common practice in laboratories or other guidelines established.
Many authors proposed several alternatives to generate optimal
designs with the desired experimental properties, e.g. combination
of several criteria [3]) and inclusion of restrictions or penalties in
optimal design criteria [4], [5], [6].

A technique was proposed by [7] based on the desirability functions,
as an alternative penalty approach. This technique helps to obtain
optimal designs that fulfill practical design preferences.

Desirability functions have primarily been implemented in the
manufacturing and industrial sectors. They are used by engineers to
optimize product quality as the most popular and strongly suggested
method to analyze several results simultaneously [8]. However, the
desirability functions usually are not used in statistical procedures,
particularly in the construction of optimal designs.

In this research, we suggest extending the use of desirability func-
tions in Bayesian optimal designs for linear and nonlinear regression
models. This procedure allows incorporating prior information of
the unknown parameters by using a Bayesian approach and also sat-
isfy practical preferences. A summary of the Bayesian D-optimality
criterion for linear and nonlinear models is provided in Section 2.
This summary is based on the work of [2]. A proposed penalized
Bayesian D-optimal criterion for linear regression models is intro-
duced in Section 3.1. Later this penalized Bayesian optimal design
methodology is illustrated by an example of the quadratic regression
model in Section 3.2. Furthermore, a proposed penalized Bayesian
D-optimal criterion for nonlinear regression models is introduced in
Section 3.3. Later this penalized design methodology for nonlinear
models is illustrated by an example of the exponential growth model
in Section 3.4. Discussion and conclusions are presented in Section 4.

2 Bayesian Optimal Designs
The idea of the Bayesian optimal design is to use any available
prior information on the unknown parameters in the optimal design
process. A Bayesian design problem is a problem of statistical
decision [2], involving defining a design criterion, or a utility function
U(ξ,θ,y), which describes the worth (based on the experimental
goals) of choosing the design ξ from the design space Ξ yielding
data y from a sample space Y, with model parameter values θ ∈ Θ,
where Θ is the parameter space. An (approximate) design ξ is a
probability measure on the design space.

The expected gain in Shannon information is extensively used as an
utility function ([2]). The Bayesian optimal design ξ∗ maximizing
the expected gain in Shannon information over the design space Ξ

with respect to the future data y and model parameters θ is the one
that maximizes:

U1 (ξ) =
∫

logπ1 (θ | Y, ξ)π2 (Y,θ | ξ) dθ dY, (1)

where π1 (θ | Y, ξ) and π2 (Y,θ | ξ) are posterior and join probabil-
ity density functions, respectively. U1 (ξ) represents the expected
Shannon information of the posterior distribution.

2.1 Bayesian Optimality Criteria for Linear Models
Consider the problem of choosing a design ξ for a normal linear
regression model

Y = Xθ + ε, (2)

where Y = (y1, y2, . . . , yN)T is the vector of observations, ε is the N×1
vector of the errors and X =

(
f (x1) , f (x2) , . . . , f (xN)

)T is the N × p
extended design matrix. θ is a p × 1 vector of unknown parameters,
where θ ∈ Θ, here Θ is an open convex set in Rp. Under the model
assumptions E(Y) = Xθ and Cov(Y) = σ2IN , where IN is the N ×N
identity matrix.

An approximate design ξ for this model is a probability measure
on the design space X with finite support x1, . . . , xn and weights
w1, . . . ,wn, representing the relative proportion of total observations
taken at the corresponding design points.

Suppose that a prior distribution π(θ, σ2) on θ, σ2 is given such that
the conditional prior distributionπ(θ|σ2) ofθ given σ2 is N(µ, σ2R−1),
where R is a given positive definite p × p “precision” matrix. Under
the mentioned assumptions the posterior conditional distribution
π(θ | Y, σ2, ξ) of θ given Y, σ2 is normal with mean vector

θ̂B = E(θ | Y, σ2, ξ) = (NM(ξ) + R)−1(X TY + Rµ) (3)

and covariance matrix σ2(NM(ξ) + R)−1, where M(ξ) = 1
N XTX is the

Fisher information matrix for linear models (see details in [2] p. 277).

When Shannon information is considered as a utility function in
the normal linear regression model, the design ξ∗ maximizing the
expected gain in Shannon information is the one that maximizes:

U1 (ξ) = −
p
2

log(2π) −
p
2

+
1
2

log det{σ−2 (NM(ξ) + R)}.
(4)

After dropping the constant and multiplier terms in Equation (4),
we can obtain the design optimality criterion

Ψ1 (ξ) = det
{
M(ξ) +

1
N

R
}
= det MB(ξ), (5)

and it is known as Bayesian D-optimality for linear models, where
non-Bayesian D-optimality maximizes the determinant of MB(ξ).
When the sample size N is large or the matrix R corresponds to
imprecise information, the difference between a Bayesian design and
its corresponding non-Bayesian one can be small; and the importance
of the prior distribution disappears.

2.2 Bayesian Optimality Criteria for Nonlinear Models
Consider the nonlinear regression model

yi = η(xi,θ) + εi, (6)

where x is a k × 1 vector of explanatory variables, θ is a p × 1 vector
of unknown parameters, when θ ∈ Ω, here Ω is an open convex set
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inRp, η(xi;θ) is nonlinear in the model parameters, Var(yi) = σ2 and
observations, yi, are assumed to be independent.

Experimental design is usually more difficult to find in nonlinear
models than in linear models. The reason is that their Fisher infor-
mation matrix, I (ξ,θ), usually depends on the unknown parameters,
which can not be separated as a simple multiplier.

I (ξ,θ) =
∫

X

[
∂
∂θ
η(x;θ)

] [
∂
∂θ
η(x;θ)

]T
dξ (x) . (7)

In non-Bayesian designs, the parameters in the Fisher information
matrix are usually replaced by supposed values of the parameters,
called “guesses” [1]. In the Bayesian optimal design approach,
the assumptions do not concentrate on single values. Instead, a
prior distribution is assigned to each unknown parameter. These
distributions can be centered around the assumed parameter values.
The Bayesian optimality criterion is to minimize the Bayes risk by
integrating the risk function over the prior distribution [2].

The asymptotic approximations can be used for the nonlinear models
since their exact posterior distributions are often intractable. Using
the normal approximation in Equation (1), U1(ξ) can be written as

U1 (ξ) = −
p
2

log (2π) −
p
2

+
1
2

∫
log det {NI (ξ,θ)}π (θ) dθ,

(8)

where I (ξ,θ) is the expected Fisher information matrix for a nonlinear
model with unknown parameters θ and N is a sample size.

The Bayesian optimality criterion can be obtained dropping the
constant and multiplier terms in Equation (8)

ΨBD (ξ) =
∫

log det {NI (ξ,θ)}π (θ) dθ. (9)

It is known as Bayesian D-optimality criterion for nonlinear models,
where Bayesian D-optimality maximizes the criterionΨBD (ξ).

3 Penalized Bayesian Optimal Designs
Experimental designs generated using optimal design theory may
be inappropriate from a practical perspective. Those may conflict
with common laboratory practice or other conventional guidelines.
[7] proposed to combine an optimal design theory with desirabil-
ity functions integrating desired experimental characteristics into
optimal design.

[9] developed the concept of a desirability function to solve a multi-
variate optimization problem. This concept combines the responses
of several factors into a single function in order to optimize the final
outcome of a process.

Responses of each factor Xi, i = 1, 2, . . . , k are transformed to a
dimensionless, ordinal measure di, 0 ≤ di ≤ 1, where a value of 0
designates the response as undesirable and a value of 1 indicates
a desirable response. The intermediate values of the desirability
scale can be consulted in [9]. The shape of the desirability function
is determined by whether one is trying to maximize or minimize
the response, or target a range of values, as shown in Figure 1. Each
single desirability function can then be combined into composite
desirability, which allows the simultaneous consideration of multiple
constraints. The choice of appropriate desirability functions involved
in obtaining penalized optimal designs with desirable characteristics
is discussed in detail in papers [10] and [11].

The reasons for incorporating constraints (costs, or penalties) in
optimal design may be different, depending on the purpose of
the experiment. Also, the methods to incorporate the constraints

may be different. The desirability functions transform desirable
experimental properties to a dimensionless function with an ordinal
scale. The use of desirability functions allows the user to obtain the
experimental optimal design with important particular features. The
advantage that these constraints may be described as continuous
functions instead of fixed constraints [7].

In this work, we suggest extending the use of desirability functions
in Bayesian optimal designs for linear and nonlinear models. Thus,
the investigator can incorporate prior information of the unknown
parameters by using a Bayesian approach and also satisfy practical
preferences. This section presents our proposal to use them to obtain
penalized Bayesian optimal designs.

3.1 Penalized Bayesian Optimality Criteria for Linear
Models

We propose that a penalized Bayesian D-optimal design for linear
models may be found by minimizing a new proposed criterion in:

ΨPL (ξ) = − log {det MB (ξ)} + Λ (1 −D (ξ)) (10)

with respect to ξ ∈ Ξ for a given value of Λ, where Λ > 0 is a user-
specified scale constant. The first term of the penalized Bayesian
optimal criterion in (10) represents a Bayesian D-optimality criterion
for linear models (5), that is a monotone and convex function ([12]).
The function (1 −D (ξ)) in (10) is a bounded function between 0
and 1 ([9]), which is a penalty function representing constraints
applied to the Bayesian D-optimal designs. The minimization of
the criterion (10) is considered as the maximization of the expected
utility (4), restricted by this penalty function. The penalized criterion
(10) includes a user-defined parameter, Λ, that is required to control
the balance between the overall desirability D (ξ) (or penalty) and
Bayesian optimality (5).

The Nelder-Mead direct search algorithm [13] is used to determine
the penalized Bayesian optimal design ξ∗ that minimizes the new
criterion (10), given a value of Λ. The initial value of Λ is chosen
by Λ0 =

∣∣∣minξ
{
− log {det MB(ξ)}

}∣∣∣, i.e., an absolute value of the
minimum of the Bayesian D-optimality criterion (5). Penalized
Bayesian optimal designs are generated by minimizing the penalized
Bayesian optimal criterion (10) for values of Λ in submultiples of
Λ0. The final value of Λ is selected in the range where stability is
exhibited in the responses of the overall desirability function D (ξ).
These responses can be plotted to better observe their behavior. The
resulting optimal design is determined by the design support points
and their corresponding weights of the penalized optimal design
ξ∗P associated with the minimum value of the penalized Bayesian
optimal criterion for linear models (10) for a value of Λ in this range.
The resulting penalized Bayesian optimal design is optimal according
to the Bayesian D-optimal design criterion for linear models and the
practical design preferences.

The methodology of the construction of the penalized Bayesian
D-optimal design for linear models is illustrated with an example of
the quadratic regression model.

3.2 Example 1: Quadratic Model
Consider the quadratic regression model ([12])

E
(
y
)
= θ0 + θ1x + θ2x2 (11)

and suppose −1 ≤ x ≤ 1.

If the prior variances ofθ0,θ1,θ2 are 3, 5 and 1 with absent correlation,
and if sample size N = 9, then the Bayesian D-optimal design is

ξ∗B =

{
−1 0 1

0.369 0.261 0.369

}
. (12)
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Figure 1: Bigger-is-better, smaller-is-better and target desirability functions.

Figure 2: Example: quadratic model (11). Bayesian D-optimality
verification for the three-point Bayesian optimal design (12).

Figure 2 shows that the function d (x, ξ) = f (x)TMB(ξ)−1f (x) achieves
its maximum value tr M(ξ∗)MB(ξ∗) = 2.5335 at the design points
x = −1, 0 and 1, demonstrating the D-optimality of the design ξ∗B
according to the equivalence theorem for Bayesian D-optimal designs
for linear models ([14]).

The Bayesian design (12) contains three design support points. We
want to have the four-point distinct D-optimal design with the
minimum two observations in a new point placed between 0 and
1. In addition, the minimum difference between adjacent support
points should be 0.3 units apart.

Initially, the fourth point is added to the initial design (12). A
penalized-optimal design strategy was developed using three desir-
ability functions to characterize the minimum number of observa-
tions in a new point x3 (d1) and the minimum difference between
adjacent points (d2 and d3). A logistic cumulative distribution func-
tion, of the type described by [15], is used to create the desirability
functions, though other functions can be used to achieve the appro-
priate shape. The logistic function, the form of the “bigger-is-better”
or maximizing desirability function given in Figure 1(a), captures
the experimental design preferences. The procedure of choosing the

Figure 3: Plots of desirability functions for the three-point design
(12).

appropriate desirability functions with desirable characteristics can
be consult in papers [10] and [11].

The desirability function d1 to characterize the minimum number of
observations n3 in a new point x3 is obtained as:

d1 (n3) =
1

1 + exp (− (n3 − 1.5) /0.17)
. (13)

A plot of this desirability function, given in Figure 3(a), shows that
it is not acceptable to allocate less than one observation to the new
support point x3.

The desirability functions d2 and d3 to characterize the minimum
difference (diff) between adjacent points x2, x3 and x4 are obtained
as:

d2(diff23) = d3(diff34) =

=
1

1 + exp (− (diff − 0.2) /0.034)
.

(14)

A plot of the other desirability functions, given in Figure 3(b),
shows that the spacing between support points of less than 0.1 units
apart is unacceptable. Replacing the values of the design desired
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Figure 4: Tradeoff between overall desirability D and the general-
ized variance GV(θ̂) from the lth submultiple using the criterion
given in (10).

characteristics in the formulas described by [15], the constants that
appear in formulas (13) and (14) are obtained by [10] and [11].

The overall desirability function is

D = (d1 × d2 × d3)1/3 . (15)

The Nelder-Mead direct search algorithm ([13]) is used in R-project
([16]) to minimize the penalized Bayesian optimal criterion in (10) us-
ing D and the quadratic model given in (11). The minimum Bayesian
D-optimal criterion defined Λ0 =

∣∣∣minξ
{
− log {det MB (ξ)}

}∣∣∣ = 1.365.
Penalized Bayesian D-optimal designs were generated by minimiz-
ing the penalized Bayesian D-optimal criterion (10) for values of Λ
in submultiples l of Λ0 using the values l = 0.01, 0.02, . . . , 1.

Initially penalized Bayesian D-optimal design is supported by only
three design points. The fourth distinct design point appears when
l = 0.25. Figure 4 graphically displays the responses of the gener-
alized variance (GV) of θ̂ and D of the penalized Bayesian optimal
designs from the lth submultiple. It exhibits the balance between the
imposed penalty for Bayesian designs without the desired charac-
teristics and the generalized variance. Figure 4 indicates stability in
the responses of the overall desirability function around l = 0.4. A
penalized Bayesian D-optimal design from this range is

ξ∗BP =


−1 0 0.295 1

0.367 0.115 0.167 0.351
3 1 2 3

 , (16)

where the last row represents the number of observations at each
design point for the sample size N = 9. The resulting design contains
four distinct design points at least 0.3 units apart, and the new point
placed between 0 and 1 has two observations.

Although this design has a small increase in the variance of the
estimated parameters (4.232) as compared to Bayesian D-optimal
design (4.008), this penalized optimal design has the practical char-
acteristics desired by the researcher: four distinct support points
with an acceptable number of observations assigned to each support
point.

3.3 Penalized Bayesian Optimality Criteria for Nonlinear
Models

The methodology proposed in Section 3.1, that combines the use of
desirability functions and the Bayesian approach, can also be used in
the construction of penalized Bayesian optimal designs for nonlinear
regression models.

We suggest extending the use of desirability functions described in
Bayesian optimal designs for nonlinear models. Thus, the researcher
can incorporate prior information of the unknown parameters by
using a Bayesian approach and also satisfy practical preferences.
We propose that a penalized Bayesian D-optimal design (PBD) for
nonlinear models may be found by minimizing with respect to ξ ∈ Ξ
for a given value of Λ the new criterion:

ΨPBD (ξ) =
∫
Θ
− log det {I (θ, ξ)}π (θ) dθ

+ Λ(1 −D(ξ)),
(17)

where Λ > 0 is a user-specified scale constant.

The first term of the new criterion in (17) represents the Bayesian D-
optimality criterion for nonlinear models, whereΨ (θ, ξ) = − log det {I (θ, ξ)}
is the D-optimality criterion for each θ ∈ Θ. It follows from Jensen’s
inequality that if the functionalΨ (θ, ξ) is convex then the Bayesian
D-optimality criterionΨBD (ξ) (9) is also convex ([17]). The function
(1 −D(ξ)) in (17) is a bounded function between 0 and 1 ([9]), which
is a penalty function representing constraints applied to the Bayesian
D-optimal designs. The minimization of the criterion (17) is con-
sidered as the maximization of the expected utility (8), restricted
by the penalty function. This criterion is quasiconvex function by
similar reasoning presented in [18, (p.113)], which determines the
possibility of finding its global minimum. The penalized criterion
(17) includes a user-deffined parameter, Λ, that is required to control
the balance between the overall desirability D(ξ) (or penalty) and
Bayesian optimality (9).

The Nelder-Mead direct search algorithm ([13]) is used to determine
the penalized Bayesian optimal design ξ∗P that minimizes the new
criterion (17), given a value of Λ. The methodology for the construc-
tion of penalized Bayesian D-optimal designs for nonlinear models
is similar to that for linear models described in Section 3.1. The
difference consists in the evaluation of the first term of the penalized
Bayesian D-optimality criterion. To evaluate the integral in (17),
the random variables θ are generated according to respective prior
distribution, and then the Monte Carlo method is used to calculate
this integral. The resulting penalized Bayesian D-optimal design for
a nonlinear model is optimal according to the Bayesian D-optimal
design criterion (17) and also fulfills the practical design preferences.

The methodology for the construction of penalized Bayesian D-
optimal designs for nonlinear models is illustrated with an example
of the exponential growth regression model.

Table 1: Bayesian D-optimal designs for different values for α and
β.

Values for α and β α = β = 4 α = β = 2.5 α = β = 1.5
Support points 0.0000; 0.9925 0.000; 0.937; 1.351 0.000; 0.675; 1.726; 6.431

Weights 0.5000; 0.5000 0.497; 0.373; 0.130 0.463; 0.307; 0.177; 0.052
Efficiency 0.99998 0.99964 0.96706

3.4 Example 2: Exponential Growth Model
Consider the exponential regression model with two parameters

η(x;θ) = θ1 exp (−θ2x) , x ≥ 0, θ1 > 0, θ2 > 0, (18)

where θ = (θ1, θ2)T denotes the unknown vector of parameters.
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The non-Bayesian D-optimal designs for the exponential model (18)
are balanced on exactly two support points for all values of the
parameters θ and do not depend on the parameter θ1, i.e.,

ξ∗ =

{
0 1/θ2

0.5 0.5

}
. (19)

The Bayesian D-optimal design for the model (18) depends on the
prior distribution π (θ1, θ2) only through the marginal distribution
π2 of θ2. This design among all designs with two support points
puts equal masses at the points

x1 = 0, x2 =
[
Eπ2 (θ2)

]−1
, (20)

where Eπ2 [·] denotes the expectation with respect to the marginal
distribution π2 of the prior π ([19]).

However, the Bayesian D-optimal designs for the exponential model
(18) are not necessarily based on exactly two support points. The
number of support points of Bayesian designs increases as the prior
distribution for θ becomes more dispersed ([20, 21]).

Since θ2 is a scale parameter for the exponential model (18), it is
admissible to adopt a gamma distribution for its prior ([19, 22]), i.e.

π2 (θ2) =
βαθα−1

2 exp
(
−βθ2

)
Γ (α)

, θ2 > 0, (21)

where the hyperparameters α and β are positive and known. The
hyperparameters α and β in the gamma prior distribution (21) are
chosen such that Eπ2 (θ2) = 1, that is, α = β in all cases. Some of
Bayesian D-optimal designs for different hyperparameters α and β
are listed in Table 1.

The second row of this table shows the support points of the Bayesian
D-optimal design, while the third row contains the corresponding
weights. Figure 5 shows that the function d

(
x, ξ∗B
)

achieves its maxi-
mum value 2 at the support points, demonstrating the D-optimality
of the resulting Bayesian designs according to the Equivalence Theo-
rem for Bayesian D-optimal designs for nonlinear models [20].

The fourth row of this table presents the efficiencies of the non-
Bayesian D-optimal design ξ∗ given in (19) with respect to the
Bayesian D-optimal designs given in Table 1. Here the efficiency is
defined as the ratio of the Bayesian D-optimality criterion (9) evalu-
ated for the non-Bayesian D-optimal design (19) and the Bayesian
D-optimal designs. The efficiency values show that the Bayesian
designs are competitive with respect to the non-Bayesian D-optimal
design (19). A small improvement in the efficiency is observed when
the Bayesian four-point design is used instead of the D-optimal
two-point design.

This example shows that the number of support points of Bayesian
design for the exponential model (18) is not fixed. When the prior
distribution of θ2 has support only over a small region, the Bayesian
D-optimal designs have the same number of support points as
non-Bayesian D-optimal design, and that the number of support
points increases as the prior becomes more dispersed. A prior
distribution with significant variance requires more support points
for the Bayesian D-optimal design than a distribution with smaller
variance. The same result is also obtained for the lognormal and
uniform prior distributions ([23]).

It is noted that the Bayesian design for prior distribution of θ2
with small variance contains two design support points. We want
to have the three-point distinct Bayesian D-optimal design with
the minimum two observations in new point and the minimum
difference 0.3 units between adjacent design points for three prior
distributions of θ2: gamma, lognormal, and uniform.

Initially, the third point is added to the Bayesian D-optimal two-point
design. A penalized-optimal design strategy is developed using two
desirability functions d1 (n3) and d2(diff23). A logistic cumulative
distribution function, of the type described by [15], is used to generate
the required desirability functions, but other functions can be used
to obtain the appropriate shape. The desirability function d1(n3)
delimits the minimum number of observations in the new point x3:

d1(n3) =
1

1 + exp (− (n3 − 1.5) /0.17)
(22)

and the desirability function d2(diff23) defines the minimum differ-
ence between the design points x2 and x3:

d2(diff23) =
1

1 + exp (− (diff23 − 0.2) /0.034)
. (23)

Replacing the values of the design desired characteristics in the
formulas described by [15], the constants that appear in formulas (22)
and (23) are obtained by [10]. Plots of these desirability functions
can be found in Figure 6. The plot of d1(n3), given in Figure 6(a),
shows that the allocation of less than one observation to the new
design point x3 is unacceptable, and the plot of d2(diff23), given in
Figure 6(b), shows that the spacing between design points x2 and x3
of less than 0.1 units apart is unacceptable.

The overall desirability function is

D(ξ) = (d1 × d2)1/2 . (24)

The Nelder-Mead direct search algorithm ([13]) is employed in
R-project ([16]) to minimize the penalized criterion (17) for the
exponential model given in (18). Penalized Bayesian D-optimal
designs were generated by minimizing this criterion for values of Λ
in submultiples l of Λ0 using the values l = 0.01, 0.02, . . . , 1, where
Λ0 is an absolute value of the minimum of the Bayesian D-optimality
criterion (9). The overall desirability function D responses become
stable from approximately l = 0.10. A resulting penalized Bayesian
D-optimal design is obtained as

ξ∗BP =

{
0.00 0.87 1.22
0.5 0.3 0.2

}
. (25)

The same penalized-optimal design procedure is performed for
lognormal and uniform prior distributions of θ2, using the same two
desirability functions d1 (n3) and d2 (diff23) defined in (22) and (23),
respectively. The resulting penalized Bayesian D-optimal designs
for these prior distributions coincide with the design (25) obtained
for the gamma prior ([23]).

The efficiency of the design (25) with respect to the non-penalized
Bayesian D-optimal two-point design is defined as the ratio of the
Bayesian D-optimality criterion (9) evaluated for the non-penalized
Bayesian design and corresponding penalized Bayesian design. It is
observed that the D-efficiency of the penalized Bayesian design (25)
relative to the non-penalized Bayesian D-optimal two-point designs
is greater than of 99%, indicating the irrelevance of the loss in this
efficiency. In summary, the penalized Bayesian D-optimal design
(25) is as efficient as respective non-penalized design but it also has
experimental characteristics desired by a researcher.

4 Discussion and Conclusions
We have proposed extending the use of desirability functions in
Bayesian optimal designs to reduce issues related to experimental
designs for linear and nonlinear models. A new optimality criterion
was constructed with two simultaneous objectives: to incorporate the
prior information of the unknown parameters and to satisfy practical
design preferences imposed by a researcher. The proposed criterion
combines the use of desirability functions and the Bayesian approach
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Figure 5: Expected variance d
(
x, ξ∗B
)

for the Bayesian D-optimal designs given in Table 1 for different values α and β.

Figure 6: Plots of desirability functions for the exponential model
(18).

in the construction of penalized Bayesian D-optimal designs, which
have good statistical inference properties and desirable practical
characteristics.

The proposed penalized optimal design criterion includes two terms,
where the first term represents an “alphabetical” optimality crite-
rion, and the second term is a penalty function that represents the
constraints applied to impractical optimal designs. A parameter,
Λ, specified by the researcher, manages the penalty and optimality
contributions in the penalized optimal criterion. The initial value
of Λ is suggested as an absolute value of the minimum of the corre-
sponding non-penalized optimality criterion. It is recommended to
choose the final value ofΛ in the range corresponding to the stability
exposed in the overall desirability function responses, which can
be plotted to observe their behavior better. It is emphasized that
because resulting penalized optimal designs are similar in the range
of Λ that produces stable responses of the overall desirability, it is
not important to know the exact final value of Λ.

The proposed penalized design procedure permits the researcher to
define practical characteristics of the experimental design through
individual desirability functions. The methodology of choosing
the appropriate desirability functions according to the practical
design preferences can be consulted in papers [10] and [11]. After
defining the analytical expressions of these desirability functions, it
is recommended to plot them to verify desirability levels of design
characteristic subject to restriction; and then, it is suggested to use
them in the proposed strategy. This allows for avoiding unpleasant

errors when applying them in the penalty procedure.

This technique generates experimental designs with good statistical
inference properties according to Bayesian optimal design theory
and practical features, as defined by a researcher. These practical
features are defined by a penalty function, using an overall desirabil-
ity function, which is added to a Bayesian optimal design criterion
to penalize impractical experimental designs. The resulting penal-
ized Bayesian optimal design uses all available information of the
unknown parameters and is statistically optimal in accordance with
the Bayesian design criterion and the practical design preferences.

The proposed penalized Bayesian optimal design methodology was
illustrated by two examples of regression models: quadratic and
exponential. It was shown that the D-efficiencies of the penalized
Bayesian D-optimal designs relative to the Bayesian D-optimal
designs for different prior distributions were competitive, indicating
the irrelevance of the loss in this efficiency.

Finally, the proposed methodologies allowed the construction of
penalized Bayesian D-optimal designs that provide a suitable bal-
ance between Bayesian D-optimality and overall desirability. In all
examples, this proposed penalized methodology has provided an
experimental design that was optimal according to the Bayesian
criteria and with the design preferences established by the researcher.
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