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Abstract

Bootstrap and Jackknife methods are compared in various statistical contexts. Initially, these are evaluated using estimates
of coefficients of variation obtained from samples of different probability models (Normal, Gamma, Binomial, and Poisson)
generated by Monte Carlo simulation. With the results, the bias and variance of the estimators are evaluated. The performance of
the two inferential procedures considered in one-sample problems, density estimation, and kernel regression, is also studied. The
results show that in the case of the Jackknife coefficient of variation, it has a lower bias but a higher standard error. Bootstrap is a
more powerful estimator in this context. Both methodologies produce similar results regarding density estimation (histogram
and kernel). In regression Kernel, it is observed that Jackknife allows obtaining estimates of the regression bandwidth closer to
the classical ones than those found with Bootstrap. The corresponding confidence intervals with Jackknife are shorter than those
established with Bootstrap.

Keywords: Bootstrap, confidence intervals, Jackknife, kernel regression, local regression, power of the test.

Resumen

Se comparan los métodos Bootstrap y Jackknife en varios contextos estadísticos. Inicialmente usando estimaciones de coeficientes
de variación obtenidos a partir de muestras de varios modelos de probabilidad (Normal, Gama, Binomial y Poisson) generadas
por simulación de Monte Carlo. Con los resultados se evalúa sesgo y varianza los estimadores. También se estudia el desempeño
de los dos procedimientos inferenciales considerados en problemas de una muestra, estimación de la densidad y regresión kernel.
Los resultados muestran que en el caso del coeficiente de variación Jackknife tiene menor sesgo pero mayor error estándar.
Bootstrap es más potente en este contexto. En lo referente a la estimación de la densidad (histograma y Kernel) y la estimación
del ancho de banda en la estimación de la función de regresión Jackknife produce estimaciones más cercanas a las clásicas que
las halladas con Bootstrap. Los correspondientes intervalos de confianza con Jackknife son más cortos que los establecidos con
Bootstrap.

Palabras Clave: Bootstrap, estimación kernel de la densidad, intervalos de confianza, Jackknife, potencia de la prueba, regresión
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1 Introduction
Two popular resampling methods widely used in real data analysis
are Bootstrap [6, 10] and Jackknife [24, 25, 31]. Both are nonparametric
statistical methods. These computer-intensive techniques can be used
to estimate bias and standard errors of non-traditional estimators,
especially useful when the sampling distribution of an estimator
is unknown or cannot be defined mathematically so that classical
statistical analysis methods are not available. Samples from the
observed data allow us to draw conclusions about the population
of interest. Nowadays, these approaches are feasible because of the
availability of high-speed computing. Confidence intervals based
on Bootstrap and other resampling methods (for example, Jackknife)
should be used whenever there is cause to doubt the assumptions of
parametric confidence intervals. When the underlying distribution
of some statistic of interest is unknown, these strategies can be
beneficial.

Bootstrap and Jackknife methods are powerful techniques used in
statistics to estimate the variability of a statistic or to assess the
goodness of fit of a statistical model. While the Bootstrap resamples
with replacement, the Jackknife method systematically leaves out one
observation at a time. The choice of method depends on the problem,
and both methods can be useful in different scenarios. Bootstrap
and Jackknife have been used and compared in several statistical
scenarios. Among others in linear regression [11, 33], quantile
regression [15, 19], analysis of variance [7, 8], and generalized
linear models [21]. Bootstrap and Jackknife can be used in kernel
density estimation and kernel regression to estimate the variability
of the density and regression functions and, consequently, define
confidence intervals. In this work, we explore the applicability of
these methods in the estimation of the bandwidth in both scenarios,
kernel density, and kernel regression estimation. The analysis is
carried out using simulated data in R [26].

The article is organized as follows: Initially, we show in Section 2
a review of the bias, standard error, and confidence intervals using
Bootstrap and Jackknife. An illustration based on the coefficient
of variation is also shown. In Sections 3 and 3.2, Bootstrap and
Jackknife are compared in the context of hypothesis testing for one
sample problems. Notably, using Monte Carlo simulations, the
power of the tests based on these two strategies is estimated when
testing hypotheses about the coefficient of variation are carried out.
In Sections 4 and 5, we show a comparison of these methodologies
in the context of kernel density estimation [5] and kernel regression
[3].

2 Background: Bootstrap and Jackknife
Here we give an overview of Bootstrap and Jackknife methods. The
estimations on bias and standard errors (consequently the respective
confidence intervals) by both approaches are presented. Assume
Y1, . . . ,Yn a random sample of Y ∼ f (y,Θ) with Θ a parameters
vector that defines the probability model of interest (for example
Θ = (µ, σ) in the case of a normal distribution or Θ = (α, β) for a
Gamma distribution). Suppose we want to estimate θ a particular
parameter (or a function of parameters) of the distribution. If the
distribution of the estimator θ̂ is unknown, Bootstrap and Jackknife
procedures (sections 2.1 and 2.2) can be used for obtaining a CI for θ.

2.1 Bias, standard error, and confidence intervals using
Bootstrap

Based on the sample, we can obtain B size n samples with replacement
(Table 1) denoted as Y∗bj, with b = 1, . . . ,B and j = 1, . . . ,n. At each

case, the estimator
(
θ̂∗b

)
of the parameter of interest is calculated.

Using the Bootstrap samples and the estimations θ̂∗b, b = 1, . . . ,B in

Table 1: Representation of the Bootstrap random samples: Asterisk
indicates that a sample size n with replacement is obtained from
Y1, . . . ,Yn.

j
b 1 . . . n θ̂
1 Y∗11 . . . Y∗1n θ̂∗1
2 Y∗21 . . . Y∗2n θ̂∗2
...

...
. . .

...
...

B Y∗B1
. . . Y∗Bn

θ̂∗B

Table 1, the Bootstrap estimator, its bias and variance are given by

θ̂boot =
1
B

B∑
b=1

θ̂∗b (1)

biasboot =
(
Ê(θ̂) − θ̂

)
=

1
B

B∑
b=1

θ̂∗b − θ̂ (2)

V(θ̂)boot =
1
B

B∑
b=1

θ̂∗b − 1
B

B∑
b=1

θ̂∗b


2

(3)

Assuming normality a 100(1 − α)% CI to θ is given by 1
B

B∑
b=1

θ̂∗b ± Z1− α2

√
V(θ̂)boot


In general the CI can be obtained as(

θ̂∗α
2
, θ̂∗1− α2

)
, (4)

with θ̂∗α
2

and θ̂∗
1− α2

percentiles obtained from θ̂∗b, b = 1, . . . ,B.

2.2 Bias, standard error, and confidence intervals using
Jackknife

As in the previous section, assume that we have a sample Y1, . . . ,Yn
be a random sample of Y ∼ f (y,θ), θ is the parameter of interest and
θ̂ = g(Y1, . . . ,Yn) its estimator. The bias

(
E(θ̂) − θ

)
and the variance

V(θ̂) are unknown. Let θ̂−i the estimator obtained after deleting
Yi, i = 1, . . . ,n. The Jackknife estimator of θ is defined as

θ̂jack =
1
n

n∑
i=1

θ̃i, (5)

where θ̃i = nθ̂ − (n − 1)θ̂−i. θ̃i, i = 1, . . . ,n, are called Tukey's
pseudovalues. Alternatively we have

θ̂jack =
1
n

n∑
i=1

θ̃i

=
1
n

n∑
i=1

(
nθ̂ − (n − 1)θ̂−i

)
=

1
n

n∑
i=1

nθ̂ − (n − 1)
1
n

n∑
i=1

θ̂−i

= nθ̂ − (n − 1)θ̂n,
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with θ̂n =
1
n

n∑
i=1
θ̂−i.

In order to estimate the bias of the Jackknife estimator, E(θ̂) and θ
are replaced by θ̂ and θ̂jack respectively. Specifically

biasjack = θ̂ − θ̂jack

= θ̂ − (nθ̂ − (n − 1)θ̂n)

= θ̂ − nθ̂ + (n − 1)θ̂n

= (n − 1)θ̂n − (n − 1)θ̂

= (n − 1)(θ̂n − θ̂).

Let Y1, . . . ,Yn be a random sample and Ȳ the sample mean. The
variance of this statistic can be approximated using the sample
variance as

V(Ȳ) =
σ2

n
→ V̂(Ȳ) =

S2

n

and consequently

V̂(Ȳ) =
1

n(n − 1)

n∑
i=1

(
Yi − Ȳ

)2 . (6)

Adapting the equation (6) to the pseudo-values θ̃1, . . . , θ̃n we have

V̂(θ̂)jack =
1

n(n − 1)

n∑
i=1

θ̃i −
1
n

n∑
j=1

θ̃ j


2

. (7)

It can be shown that [9]

T =
θ̂jack − θ√

V̂(θ̂jack)
∼ t-studentn−1.

Then a 100(1 − α)% CI for θ is(
θ̂jack ± tn−1,1− α2

√
V̂(θ̂jack)

)
.

3 Inference on the coefficient of variation using Bootstrap
and Jackknife

In this Section, we show, using Monte Carlo simulation, the behavior
of Bootstrap and Jackknife in statistical inference (estimation and
hypothesis testing) on the coefficient of variation.

3.1 Estimation of the coefficient of variation
Assume Y ∼ f (y,Θ), µ = E(Y), and σ2 = V(Y), and we want to
estimate the coefficient of variation θ = CV = σµ . Based on Monte
Carlo simulation [4], we compare Bootstrap and Jackknife in terms of
bias and standard errors of estimation. [33] conducted a similar study
based on Normal data. We extend that work using simulations from
four probability models (Normal, Gamma, Poisson, and Binomial)
obtained using R [26]. In Table 2, we show the expressions of the CV
of the four models considered.

To estimate the CV using Bootstrap, we first take a random sample
size n with replacement from the original dataset. We then calculate
the CV of this bootstrap sample. We repeat this process B times
to obtain B bootstrap samples and CV estimates. The standard
deviation of these B estimates can be used as an estimate of the
standard error of the CV. The confidence interval for the CV can
then be obtained using the standard error and the desired level
of confidence. To estimate the CV using Jackknife, we create n
subsamples by leaving out one observation from the original dataset

Table 2: Probability models considered to study the consistency
and power of the tests on the coefficient of variation

Model Parameters (Θ) Mean Variance CV

Normal (µ = 10, σ = 2) µ σ2 σ
µ = 0.200

Gamma (α = 2, β = 2) α
β

α
β2

√
α
α = 0.707

Poisson λ = 5 λ λ
√
λ
λ = 0.447

Binomial (n = 10, p = 0.4) np np(1 − p)
√

np(1−p)
np = 0.387

Table 3: Summary of Bootstrap estimation of the coefficient of
variation

General case Coefficient of variation
θ̂ ĈV = S/X̄

θ̂boot =
1
B

B∑
b=1
θ̂∗b ĈVboot =

1
B

B∑
b=1

ĈV∗b

biasboot = θ̂boot − θ̂ biasboot = ĈVboot − ĈV

V(θ̂)boot =
1
B

B∑
b=1

(
θ̂∗b −

1
B

B∑
b=1
θ̂∗b

)2

V(ĈV)boot =
1
B

B∑
b=1

(
ĈV
∗

b −
1
B

B∑
b=1

ĈV
∗

b

)2

at a time. We then calculate the CV of each subsample. The mean
of these n estimates is used as an estimate of the CV. To facilitate
the interpretation of the results in Tables 3 and 4 are presented the
expressions of Bootstrap and Jackknife estimation defined in Sections
2.1 and 2.2 corresponding to the coefficient of variation. We consider
samples size n = 5, 10, 15, . . . , 200. The results are presented in Figure
1. Various aspects are remarkable in this Figure. The Jackknife
bias is less than the Bootstrap one, and its performance increases
with continuous distributions (Normal and Gamma). Bootstrap
underestimates the CV in all cases considered. We note that the
greater the sample size, the better the Bootstrap estimation (less bias).
For n values close to 200, the estimations by these methodologies are
very similar. The methods produce similar standard error estimations
from relatively small sample sizes. The results in Figure 1 suggest
that Jackknife can be a better option for estimating bias and standard
deviation of the coefficient of variation, particularly when the sample
size is small.

3.2 Hypothesis testing on the coefficient of variation
The power of a test using Bootstrap or Jackknife depends on the
number of resamples or Jackknife samples used, as well as the
characteristics of the original dataset. Generally, increasing the
number of resamples or Jackknife samples will increase the power
of the test, but at the cost of computational time. An essential factor
that can affect the power of the test is the underlying distribution of
the data. Bootstrap and Jackknife methods can perform well if the
data are normally distributed. Here, we empirically compare (using
simulated data) the power of tests based on Bootstrap and Jackknife.
For this purpose, we simulate samples from the distributions in
Table 2. Specifically, we test the hypothesis

Table 4: Summary of Jackknife estimation of the coefficient of
variation

General case Coefficient of variation
θ̂ ĈV = S

X̄

θ̂−i ĈV−i =
S−i
X̄−i

θ̂n =

∑n
i=1 θ̂−i

n ĈVn =

∑n
i=1 ĈV−i

n
θ̃i = nθ̂ − (n − 1)θ̂n C̃Vi = nĈV − (n − 1)Ĉn

θ̂jack =

∑n
i=1 θ̃i

n ĈVjack =

∑n
i=1 C̃Vi

n
biasjack = θ̂ − θ̂jack biasjack = ĈV − ĈVjack

V̂(θ̂jack) =

n∑
i=1

(θ̃i−
1
n

n∑
j=1
θ̃ j)2

n(n−1) V̂(ĈVjack) =

n∑
i=1

( ˜CVi−
1
n

n∑
j=1

˜CV j )2

n(n−1)
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Figure 1: Estimation (left) and standard error (right) of the coefficient of variation according to the sample size (grey and black curves correspond
to Jackknife and Bootstrap, respectively). The dashed line in the left panel corresponds to the CV of reference. From top to bottom, we have the
results for Normal, Gamma, Poisson, and Binomial distributions, respectively.
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Ho : CV = CV0

Ha : CV > CV0 (8)

with CV0 defined with the expressions in the last column of the
Table 2. The steps to calculate the power curves for each one of the
probability models considered are the following

1. We fix a sample size n = 100 and a significance level α = 5%.

2. One sample size n is simulated under the null hypothesis.

3. We generate many Bootstrap and Jackknife samples by re-
sampling with replacement or deleting one observation at a
time, respectively.

4. For each Bootstrap or Jackknife sample, the CV is calculated
and used to test whether it is significantly different from the
CV under the null model (given in Table 2).

5. The proportion of times the null hypothesis is rejected across
all Bootstrap or Jackknife samples is calculated This propor-
tion is an estimate of the power of the test.

6. We repeat steps 3-5 for many values of µ, α, λ, and p, respec-
tively, under the alternative hypothesis.

The results obtained are presented in Figure 2. These suggest that in
all cases (four probability models), the tests based on Bootstrap are
more powerful than those found with Jackknife.

4 Review of Bootstrap and Jackknife in kernel density
estimation

Kernel density estimation is widely used in several applied con-
texts, including, among others, marine biology [22], chemistry [20],
and econometrics [34]. A fundamental aspect of kernel estimation
is bandwidth selection. Usually, leave-one-out and k-fold cross-
validation are used for establishing the optimal bandwidth [3]. Here
we compare the performance of Bootstrap and Jackknife in this
scenario. Bootstrap and Jackknife can be used to estimate the vari-
ability of the kernel density estimator, but they differ in how they
generate the resamples. Bootstrap requires random sampling with
replacement, while Jackknife involves leaving out one observation
at a time. In this section, we compare these strategies according to
their performances in both histogram density estimation (Section 4.1)
and kernel density estimation (Section 4.2). Specifically, we estimate
the uncertainty of the estimated density function in kernel density
estimation.

4.1 Bootstrap and Jackknife in bandwidth histogram esti-
mation

The histogram is one of the most broadly used graphical tools in
descriptive data analysis [29]. This tool is a kernel density estimator
where the underlying kernel is uniform [3]. Although there are better
options for estimating the density, in this work, we consider the
histogram given its extensive use in real data analysis. Specifically, it
is established which of the two resampling methodologies (Bootstrap
or Jackknife) performs best in estimating the amplitude of the class
intervals.
Given an observed sample x1, . . . , xn, the histogram estimator of the
density function f (x) is defined as

f̂H(x) =
1

nh

n∑
i=1

1
2
I[−1,1]

( xi − x
h

)
=

1
nh

n∑
i=1

KU(u),

with

u =
(xi − x

h

)
,

KU(u) =
{

1
2 −1 < u < 1
0 other case

The optimal bandwidth h is the one that minimizes the asymptotic
mean integrated squared error (AMISE), defined as [3]

AMISE( f̂h) =
1

nh
+

h2

12
R( f ′), with R( f ′) =

∫
∞

−∞

(
f ′(x)

)2 dx, (9)

where f (x) is the population density. To estimate h is usually con-
sidered f (x) as a Gaussian distribution with mean and standard
deviation estimated from the sample. Taking derivative of the
AMISE with respect to h and equating to zero yields

h =
(

6
nR( f ′)

)1/3

.

Under the Gaussianity assumption

R( f ′) =
1

4
√
πσ3
.

h = 3.491σn−1/3, and therefore

ĥ = 3.491̂σn−1/3, with σ̂ =
IQR
1.35

(10)

4.2 Bootstrap and Jackknife in bandwidth kernel density
estimation

The problem of estimating h depends only on the σ estimation.
Here we evaluate the performance of Bootstrap and Jackknife in
the estimation of h. The estimations obtained are compared with
the classical estimation given in Equation (10). The Tables 5 and 6
show in parallel the general definitions of Bootstrap and Jackknife
estimators and the corresponding expressions for estimating the
bandwidth h by means of these approaches. In order to compare the

Table 5: Summary of Bootstrap estimation of the bandwidth h in
kernel density estimation. Assume that ĥ∗b is the estimation of the
bandwidth h based on a Bootstrap sample

General case Bandwidth h
θ̂ ĥ = 3.491σ̂n−1/3

θ̂boot =
1
B

B∑
b=1
θ̂∗b ĥboot =

1
B

B∑
b=1

ĥ∗b

biasboot = θ̂boot − θ̂ biasboot = ĥboot − ĥ

V(θ̂boot) =
1
B

B∑
b=1

(
θ̂∗b −

1
B

B∑
b=1
θ̂∗b

)2

V(̂hboot) = 1
B

B∑
b=1

(̂
h∗b −

1
B

B∑
b=1

ĥ∗b

)2

methodologies, we conduct a simulation study. Suppose X ∼ N(µ =
10, σ = 3). Using R software [26], we simulate random samples
size n = 10, 20, 30, . . . , 200 from X, and at each case, we estimate the
parameter h by using the estimator in Equation (10). We also carry
out an estimation of h through Bootstrap and Jackknife (see Tables
5 and 6). The simulation results are shown in Table 7. There are
several remarkable aspects of this Table.

With small samples, the estimations by the three methods (classical,
Bootstrap, and Jackknife) are very similar, and for large samples
(n ≥ 60), the three estimations coincide. In all cases, the estima-
tions are very close to the value of the parameter h. This result
indicates that any of them can be used. However, one advantage
of Bootstrap and Jackknife over classical estimation is that these
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Figure 2: Power curves based on simulated data. One side hypothesis of the coefficients of variation obtained with four probability models.
Normal (µ = 10, σ = 2) (top left), Gamma(α = 2,β = 2) (top right), Poisson (λ = 5) (bottom left), Binomial (n = 10, p = 0.4)

Table 6: Summary of Jackknife estimation of the bandwidth h in
kernel density estimation. Assume that σ̂−i is the estimation of
standard deviation based on a sample x1, . . . , xi−1, xi+1, . . . , xn.

General case Bandwidth h
θ̂ ĥ = 3.491σ̂n−1/3

θ̂−i ĥ−i = 3.491σ̂−i(n − 1)−1/3

θ̂n =
1
n
∑n

i=1 θ̂−i ĥn =
1
n
∑n

i=1 ĥ−i

θ̃i = nθ̂ − (n − 1)θ̂n h̃i = n̂h − (n − 1)ĥn

θ̂jack =
1
n
∑n

i=1 θ̃i ĥjack =
1
n
∑n

i=1 h̃i

biasjack = θ̂ − θ̂jack biasjack = ĥ − ĥjack

V(θ̂jack) =

n∑
i=1

(θ̃i−
1
n

n∑
j=1
θ̃ j)2

n(n−1) V(̂hjack) =

n∑
i=1

(h̃i−
1
n

n∑
j=1

h̃ j)2

n(n−1)

allow for assessing the uncertainty of the estimations (employing
the corresponding confidence intervals). As expected with both
methodologies (Bootstrap and Jackknife), a large sample size pro-
vides narrower confidence intervals. In all cases, Bootstrap and
Jackknife confidence intervals contain the corresponding parameter
h. The results indicate that Bootstrap and Jackknife are valid and
valuable alternatives for estimating the interval bandwidth in the
histogram density estimation. These are preferable to the classical
estimation since they allow obtaining, in addition to the point estima-
tion, a measure of variability in the estimation. In the case of small
samples, the Bootstrap intervals are slightly narrower than those
obtained with Jackknife. This point suggests that Bootstrap might be
more suitable when n values are small. Let x1, . . . , xn a sample size
n of a population with unknown density f (x). The kernel density

Table 7: Assume X ∼ N(µ, σ). h: optimal amplitude in histogram
density estimation. ĥ: classical estimation. ĥboot and ĥjack are the
approaches based on Bootstrap and Jackknife, respectively. In
these cases we also include 95% confidence intervals.

n µ σ σ̂ h ĥ ĥboot CI(ĥboot) ĥjack CI(ĥjack)
10 10 3 2.1 4.9 5.1 4.7 (2.9, 6.4) 5.3 (2.8, 7.7)
20 10 3 2.4 3.9 3.1 3.0 (2.1, 3.7) 3.1 (2.2, 4.0)
30 10 3 2.6 3.4 2.9 2.8 (2.1, 3.5) 3.0 (2.2, 3.7)
40 10 3 2.7 3.1 2.7 2.7 (2.2, 3.2) 2.7 (2.2, 3.3)
50 10 3 2.6 2.8 2.5 2.4 (2.0, 2.8) 2.5 (2.1, 2.9)
60 10 3 2.7 2.7 2.4 2.4 (2.0, 2.8) 2.4 (2.0, 2.9)
70 10 3 3.0 2.5 2.3 2.3 (1.9, 2.6) 2.3 (2.0, 2.7)
80 10 3 3.0 2.4 2.3 2.3 (1.9, 2.5) 2.3 (2.0, 2.6)
90 10 3 3.0 2.3 2.2 2.2 (1.9, 2.4) 2.2 (1.9, 2.5)
100 10 3 3.0 2.3 2.1 2.1 (1.9, 2.3) 2.1 (1.9, 2.4)
120 10 3 3.0 2.1 2.0 2.0 (1.8, 2.2) 2.0 (1.9, 2.2)
150 10 3 3.0 2.0 1.9 1.9 (1.7, 2.0) 1.9 (1.7, 2.0)
200 10 3 3.0 1.8 1.7 1.7 (1.6, 1.8) 1.7 (1.6, 1.8)

estimator of f (x) is given by

f̂k(x) =
1
n

n∑
i=1

1
h

K
(x − xi

h

)
where K is a kernel function (Gaussian, Epanechnikov, triangular,
biweight, etc.) and h is the bandwidth. The optimal h is the value
that minimizes the AMISE( f̂k (x)) defined as

AMISE =
R(k)
nh
+

h4σ4
K

4
R( f ′′), where

R(k) =
∫

K2(u)du and R( f ′′) =
∫

( f ′′(x))2dx.
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Table 8: Assume X ∼ N(µ, σ). h: optimal amplitude in kernel density
estimation. ĥ: classical estimation. ĥboot and ĥjack are the approaches
based on Bootstrap and Jackknife, respectively. In these cases we
also include 95% confidence intervals.

n µ σ σ̂ h ĥ ĥboot CI(ĥboot) ĥjack CI(ĥjack)
10 10 3 2.1 2.0 2.1 2.0 (1.2, 2.7) 2.1 (1.2, 3.1)
20 10 3 2.4 1.7 1.4 1.3 (1.0, 1.7) 1.4 (1.0, 1.8)
30 10 3 2.6 1.6 1.4 1.4 (1.0, 1.7) 1.4 (1.0, 1.8)
40 10 3 2.7 1.5 1.4 1.3 (1.1, 1.6) 1.4 (1.0, 1.6)
50 10 3 2.6 1.5 1.3 1.2 (1.0, 1.4) 1.3 (1.0, 1.5)
60 10 3 2.7 1.4 1.3 1.2 (1.0, 1.5) 1.3 (1.0, 1.5)
70 10 3 3.0 1.4 1.2 1.2 (1.0, 1.5) 1.2 (1.0, 1.4)
80 10 3 3.0 1.3 1.2 1.2 (1.1, 1.4) 1.2 (1.0, 1.4)
90 10 3 3.0 1.3 1.2 1.2 (1.0, 1.3) 1.2 (1.0, 1.4)
100 10 3 3.0 1.3 1.2 1.2 (1.0, 1.3) 1.2 (1.0, 1.3)
120 10 3 3.0 1.2 1.1 1.1 (1.0, 1.3) 1.2 (1.0, 1.3)
150 10 3 3.0 1.2 1.1 1.1 (1.0, 1.3) 1.1 (1.0, 1.2)
200 10 3 3.0 1.1 1.0 1.0 (1.0, 1.1) 1.1 (1.0, 1.1)

Differentiating the AMISE with respect to h we have

∂AMISE
∂h

= −
R(k)
nh2 +

4h3σ4
K

R( f ′′)

4
Equating to zero

h3σ4
K

R( f ′′) =
R(k)
nh2

h5 =

 R(k)
nσ4

K
R( f ′′)


h =

 R(k)
σ4

K
R( f ′′)

1/5
1

n1/5
.

The optimal bandwidth h is obtained assuming f (x) as a Gaussian
density. Hence, after some calculations, we have that the optimal
bandwidth in kernel density estimation is obtained by

ĥ = 1.059̂σn−1/5. (11)

Changing ĥ = 3.491σ̂n−1/3 by Equation (11) in Tables 5 and 6, we
obtain the corresponding expressions to do the estimation of the
optimal bandwidth in kernel density estimation by using Bootstrap
and Jackknife. In Table 8, we show the estimations of the optimal
bandwidth in kernel density estimation based on the same samples
simulated to generate the results in Table 7. As in the particular case of
the histogram, the bandwidth estimations shown in Table 8 indicate
that Bootstrap and Jackknife can be favorable alternatives to carry out
the estimation of the density using the general methodology based on
kernel. We present the results using a Gaussian kernel; however, we
obtained similar results with others. As in the case of the histogram
estimation, in this section, we can conclude that using Bootstrap or
Jackknife can be preferable because these approaches allow having an
estimation of the variability for the estimator. Particularly with small
sample sizes is helpful to know the uncertainty in the estimation.
As in the case of the histogram estimation, we note that Bootstrap
can be preferable with small samples because narrower confidence
intervals are obtained. The results in Tables 7 and 8 show that the
estimators ĥboot and ĥjack are consistent, i.e, limn→∞ĥboot = h and
limn→∞ĥjack = h.

5 Bootstrap and Jackknife in bandwidth kernel regression
estimation

Bootstrap and Jackknife have been compared under various re-
gression contexts. Among others in linear [2], generalized linear
[12, 30, 33], and logistic regression [14]. This paper compares the
efficiency of Bootstrap and Jackknife in estimating the bandwidth
in kernel regression. This parameter, denoted as h (as in Sections
4.1 and 4.2 but now in a regression scenario), determines the width
of the kernel function, which in turn affects the smoothness of the

estimated regression function. The choice of the bandwidth is crit-
ical, as it can greatly affect the bias and variance of the regression
estimator. Suppose we have an observed bivariate random sample
(yi, xi), i = 1, . . . ,n with y and x the response and predictor variables,
respectively. We want to estimate the regression model.

yi = m(xi) + ei, i = 1, . . . ,n. (12)

Let f (x) and f (x, y) be the univariate and bivariate density functions
of the variable X and the random vector (Y,X). The estimation of a
kernel regression model based on the observed sample (xi, yi), i =
1, . . . ,n is given by [3]

m̂(x) =
1

f̂ (x)

∫
y f̂ (y, x)dy

=
1

1
n
∑n

i=1
1
h K

( x−xi
h

) ∫
y f̂ (y, x)dy

=

1
n
∑n

i=1
1
h K

( x−xi
h

)
yi

1
n
∑n

i=1
1
h K

( x−xi
h

)
=

∑n
i=1 K

( x−xi
h

)
yi∑n

i=1 K
( x−xi

h

)
=

n∑
i=1

wi yi, with wi =
K

( x−xi
h

)
∑n

i=1 K
( x−xi

h

) ,
where K is a kernel (Gaussian, rectangular, triangular, Epanechnikov,
etc) and h > 0 is the bandwidth that controls the amount of smoothing.
For a particular i, i = 1, . . . ,n,we have

ŷi = m̂(xi)

=

∑n
j=1 K

( xi−x j
h

)
y j∑n

m=1 K
( xi−xm

h

)
=

n∑
j=1

w(xi, x j)y j. (13)

In matrix notation, the estimates at the n sampling points are calcu-
lated as

ŷ1
ŷ2
...

ŷn

 =


w(x1, x1) w(x1, x2) · · · w(x1, xn)
w(x2, x1) w(x2, x2) · · · w(x2, xn)
...

...
. . .

...
w(xn, x1) w(xn, x2) · · · w(xn, xn)




y1
y2
...

yn

 .
A key point in kernel regression is to determine the bandwidth h.
The usual strategy is based on choosing the h value that minimizes
the mean squared error (MSE) defined as [18]

MSE(h) =
1
n

n∑
i=1

(
yi − ŷi

1 − ν/n

)2

, (14)

with

ν = trace(W) =
n∑

i=1

w (xi, xi) . (15)

In general, a small bandwidth will result in a high degree of local
smoothing, while a large bandwidth will lead to less local smoothing
and more global effects. A bandwidth that is too small may generate
overfit of the data, while a bandwidth that is too large may produce an
over-smoothing of the data and miss significant local trends. Various
methods can be used to determine the optimal bandwidth, such
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as cross-validation or minimizing a particular criterion (e.g., mean
squared error or Akaike's information criterion). Cross-validation
involves partitioning the data into training and validation sets and
evaluating the performance of the model with different bandwidth
values. The bandwidth that results in the best behavior on the
validation set is then chosen as the optimal bandwidth. In this Section,
we compare Bootstrap and Jackknife to establish their efficiency in
estimating the optimal bandwidth h in kernel regression according
to the criterion in Equation (14). The Jackknife method in kernel
regression involves repeatedly fitting the kernel regression estimator
to a subset of the data, leaving out one observation each time. The
estimation of the kernel regression function is then calculated using
all the observations and each subset of the data. The Jackknife
estimation of the bandwidth is obtained using the pseudovalues are
calculated as

h̃i = n̂h − (n − 1)̂hn, with

ĥn =

∑n
i=1 ĥ−i

n
,

where ĥ and ĥ−i are defined using the criterion in Equation (14),
with and without considering, respectively, the i-th observation
(yi, xi), i = 1, . . . ,n. The pseudo-values can be used to estimate h,
the variance of the kernel regression estimator ĥ and a confidence
interval for h. Specifically we have

ĥjack =
1
n

n∑
i=1

h̃i,

V̂(ĥjack) =
1

n(n − 1)

n∑
i=1

̃hi −
1
n

n∑
i=1

h̃i

2

,

(
ĥjack ± tn−1,1− α2

√
V̂(ĥjack)

)
.

Using the quantiles α2 and
(
1 − α2

)
from the pseudovalues, an approx-

imate confidence interval for the bandwidth of the kernel regression
can be obtained as (̃

h α
2
, h̃1− α2

)
.

On the other hand, the Bootstrap method can also be used to obtain
many estimations (using resampling with replacement) and, conse-
quently, a variability measure and a confidence interval for the band-
width h calculating the quantiles of the distribution of the Bootstrap
estimations. Let (x∗11, y

∗

11), . . . (x∗1n, y
∗

1n), . . . , (x∗B1, y
∗

B1), . . . (x∗Bn, y
∗

Bn) be
B Bootstrap samples size n taken from (xi, yi), i = 1, . . . ,n. Based on
each one of these is obtained an estimation of h according to the
criterion in Equation (14), i.e., we find

(
ĥ∗1, . . . , ĥ

∗

B

)
. The Bootstrap

estimator of the bandwidth, its variance, and the corresponding
confidence interval are given by

ĥboot =
1
B

B∑
b=1

ĥ∗b,

V
(
ĥboot

)
=

1
B

B∑
b=1

ĥ∗b −
1
B

B∑
b=1

ĥ∗b


2

,

(
ĥboot ± Z1− α2

√
V̂(ĥjack)

)
Using the quantiles of the Bootstrap estimations

(
ĥ∗1, . . . , ĥ

∗

B

)
a confi-

dence interval for the bandwidth of the kernel regression estimator
can be also obtained as (

ĥ∗α
2
, ĥ∗1− α2

)
.
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Figure 3: Left panel: Scatterplot of (xi, yi), i = 1, . . . , 1000 points
simulated from the model Y = 0.2x + 0.5x2

− 0.8x3 + ϵ, ϵ ∼ N(0, 30)
which is assumed as the population data and fitted kernel regression
model with h = 0.37 (red curve). Right panel: Simulation of n = 80
data from the population data (gray points in the right panel) and
estimated kernel regression model (red curve) with ĥ = 0.65.

5.1 Simulation study
Here we present some simulation results comparing Bootstrap and
Jackknife in estimating the bandwidth in kernel regression. For
this purpose we assume Y = 0.2x + 0.5x2

− 0.8x3 + ϵ, ϵ ∼ N(0, 30)
as the population model (Figure 3). The red line corresponds
to the fit of a kernel regression model with bandwidth h = 0.37,
which was calculated according to the criterion in Equation (14). The
comparisons are made by taking samples of size n = 20, 40, 60, . . . , 200
from this model. For illustrative purposes, in the right panel is
presented an estimated a kernel regression model with a sample
size n = 80 of the population model. In this case, the bandwidth
estimation is ĥ = 0.64. Varying the sample size are obtained the
estimations ĥ, ĥboot and ĥjack (Table 9). Note that in practice given
a dataset (xi, yi), i = 1, . . . ,n we have just one estimation of ĥ and
several estimations of ĥboot and ĥjack obtained by resampling the
data recorded. In this real case, we only could determine confidence
intervals employing the approaches based on Bootstrap and Jackknife.
For this reason, in order to compare the three methodologies (classical,
Bootstrap, and Jackknife), we calculate confidence intervals based
on the percentiles 5% and 95% obtained from 300 sets of values of
ĥ, ĥboot and ĥjack generated with an equal number of samples size
n = 20, 40, 60, . . . , 200 simulated from the population model (Table
9). The results suggest that the tree estimators are consistent, i.e.,
as we collect more and more data (when n increases), the difference
between the estimated value and the “true value of the parameter ”
(assumed equal to 0.37) will become smaller and smaller. According
to the results in Table 9, the Jackknife estimations are very close to
the obtained with the classical approach. We also note (see last row
of the table) that the estimates by Jackknife tend more quickly to the
fixed reference value (h = 0.37) than those obtained by Bootstrap.
These results indicate that Jackknife may be a more appropriate and
efficient option than Bootstrap to estimate the bandwidth in Kernel
regression. In general is accepted that in regression problems, as
long as the data set is reasonably large, Bootstrap is often acceptable.
However, the estimations ĥboot and the corresponding confidence
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Table 9: Assume Y = 0.2x + 0.5x2
− 0.8x3 + ϵ a regression function

with ϵ ∼ N(0, 30). The optimal bandwidth (see Section 5) in a kernel
regression model calculated with 1000 data simulated from the pop-
ulation model is h = 0.36. ĥ, ĥboot, and ĥjack identify the approaches
classical and based on Bootstrap and Jackknife, respectively, which
are calculated for each sample size as the mean of fifty simulations.
We also include 95% confidence obtained as percentiles 5% and 95%
of the fifty estimations.

n ĥ CI(ĥ) ĥboot CI(ĥboot) ĥjack CI(ĥjack)
20 0.74 (0.40, 1.22) 0.70 (0.50, 0.96) 0.74 (0.42, 1.20)
40 0.73 (0.39, 0.87) 0.68 (0.49, 0.92) 0.72 (0.45, 0.99)
60 0.68 (0.39, 0.85) 0.66 (0.48, 0.91) 0.70 (0.43, 0.87)
80 0.64 (0.38, 0.80) 0.65 (0.48, 0.88) 0.65 (0.41, 0.84)
100 0.62 (0.37, 0.75) 0.65 (0.47, 0.84) 0.63 (0.39, 0.80)
120 0.57 (0.37, 0.74) 0.64 (0.47, 0.83) 0.57 (0.37, 0.76)
140 0.56 (0.36, 0.73) 0.63 (0.46, 0.78) 0.55 (0.37, 0.75)
160 0.54 (0.36, 0.71) 0.61 (0.46, 0.74) 0.52 (0.36, 0.74)
180 0.55 (0.36, 0.70) 0.60 (0.45, 0.72) 0.50 (0.36, 0.72)
200 0.49 (0.36, 0.65) 0.59 (0.44, 0.71) 0.49 (0.36, 0.70)

Table 10: Results based on Bioluminescence data. Assume Y =
m(x)+e, with m(x) a kernel regression function. ĥ: optimal estimation
based on lest square. ĥboot and ĥjack are the approaches based on
Bootstrap and Jackknife, respectively. In these cases, we also include
95% confidence intervals.

n ĥ ĥboot CI(ĥboot) ĥjack CI(ĥjack)
51 373 371 (349, 385) 372 (371, 376)

intervals CI(ĥboot) in Table 9 suggest that in the context of Kernel
regression, Bootstrap is not the best option to establish the variability
of the bandwidth estimator ĥ.

5.2 Application to bioluminescence data
Bioluminescence is the emission of light by living organisms, typ-
ically due to chemical reactions involving luciferin and luciferase
enzymes [16]. Overall, analyzing bioluminescence data can provide
valuable insights into the biological processes and respect for the
environmental and experimental factors affecting bioluminescence
activity [27]. Bioluminescence is very common in the ocean, at least
in the pelagic zone. Bioluminescent creatures occur in all oceans
at all depths, with the greatest numbers found in the upper 1000
m of the vast open ocean [32]. The relationship between pelagic
bioluminescence and depth has been considered from various per-
spectives. Among additive models [13], [17], and additive mixed
models [36] have been used in this context. This work applies a
Kernel regression model to a pelagic bioluminescence dataset taken
from [35]. Based on these data, the aim is to illustrate how to define
confidence intervals for the bandwidth h parameter. The scatterplot
and the fitted Kernel regression model with bandwidth h = 373 are
shown in Figure 4

From Table 10, we can establish that the optimal bandwidth h that
minimizes the criterion in Equation (5) is ĥ = 373. We also note that
the estimations by Bootstrap and Jackknife are very close to this
value; however, Jackknife is a better option to define the confidence
interval for h because, on the one hand, it includes the ĥ value and,
on the other hand, is shorter than the obtained by Bootstrap. The
results in this Section confirm that Jackknife is a good alternative in
kernel regression to define the bandwidth estimation uncertainty.

6 Conclusion and further research
The results in this work suggest that in the particular case of the
coefficient of variation, Jackknife tends to produce less biased esti-
mates, but it may have lower power than Bootstrap. In the case of
the histogram and kernel density estimation, both methodologies
produce similar results. Finally, in the context of Kernel regression,
Jackknife is a better option. Resampling methods are helpful nowa-
days in many contexts. Power studies comparing these approaches
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Figure 4: Scatterplot (dots) of pelagic bioluminescence along a depth
gradient in the northeast Atlantic Ocean for a particular station. Data
taken from [35]. Red curve corresponds to a Kernel regression model
with an optimal bandwidth ĥ = 373.

in many statistical areas are required. For example, evaluating
its performance in splines regression and neural networks can be
valuable.
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