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Abstract

The Behrens-Fisher problem refers to a statistical challenge in comparing the mean vectors of two normally distributed p-variate
populations when the covariance matrices of these populations are assumed to be unequal. This problem can be addressed using
Hotelling’s T2 test that requires equality of covariance matrices. However, when the assumption of equality between the two
covariance matrices is violated, the performance of this test can be affected, leading to incorrect conclusions. This article presents
the implementation of 11 alternative tests proposed in the statistical literature for the Behrens-Fisher problem. These tests are
hosted in the stests library in R, and any of these tests can be used through a single function. Additionally, this article conducted
a Monte Carlo simulation study in which factors such as sample size, the distance between the mean vectors, and a scaling factor
between the covariance matrices were examined. The results found that the rejection rate of the null hypothesis (H0 : µ1 = µ2)
increases when there is a greater discrepancy between the two mean vectors and when the sample size increases. The results
demonstrate that all the tests developed in the stests package, which address the multivariate Behrens-Fisher problem, are
plausible for comparing two mean vectors.

Keywords: Behrens-Fisher problem, multivariate statistic, statistical test.

Resumen

El problema de Behrens-Fisher se refiere a un desafío estadístico en la comparación de vectores de medias de dos poblaciones
distribuidas normal p-variadas cuando se asume que las matrices de covarianzas de estas poblaciones no son iguales. Este
problema se puede abordar mediante la prueba T2 de Hotelling y que exige igualdad de matrices de covarianzas. Sin embargo,
cuando el supuesto de igualdad entre las dos matrices de covarianzas se viola, el desempeño de esta prueba puede verse afectada,
dando lugar a conclusiones incorrectas. En este artículo se muestra la implementación de 11 pruebas alternativas propuestas en
la literatura estadística para el problema de Behrens-Fisher, estas pruebas están alojadas en la librería stests en R y por medio de
una sola función se puede usar cualquiera de estas pruebas. Adicionalmente, en este artículo se hizo un estudio de simulación
Monte Carlo en el cual se estudiaron factores como el tamaño de muestra, la distancia entre los vectores de medias y un factor
escalar entre las matrices de covarianza. Como resultado se encontró que la tasa de rechazos de la hipótesis nula (H0 : µ1 = µ2)
aumenta cuando hay una mayor discrepancia entre los dos vectores de media y cuando el tamaño de muestra aumenta. Los
resultados demuestran que todas las pruebas desarrolladas en el paquete stests, que abordan el problema multivariado de
Behrens-Fisher, son plausibles para comparar dos vectores de medias.
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1 Introduction
Several methods have been proposed in the statistical literature to test
the equality of mean vectors for two p-variate normal populations.
This problem, commonly referred to as the Behrens-Fisher problem,
is defined by the following set of hypotheses:

H0 : µ1 = µ2 vs. H1 : µ1 , µ2 (1)

For example, if we are comparing two species (1 and 2) of penguins
according to flipper length and body mass, the vectors µ1 and µ2
contain the means of these two measurements for species 1 and 2,
respectively.

The Hotelling test is one approach to tackle this problem, assuming
equality of the two covariance matrices. However, this test has
limitations when the variance and covariance matrices are unknown
and unequal. To address these deficiencies, several alternative
methods have been developed with the aim of obtaining hypothesis
tests that yield more consistent and efficient results.

The earliest solutions to this problem were proposed by Bennett
[2] and James [6]. Bennett’s solution was based on the univariate
solution presented by Scheffé [15], while James extended the uni-
variate Welch series solution. Yao [19] proposed an extension of the
Welch approximate degrees of freedom and conducted a simulation
study comparing it with James’ solution. Johansen [7] presented
an invariant solution within the context of general linear models
and obtained the exact null distribution of the statistic. Nel and
Van Der Merwe [12] also obtained the exact null distribution of the
statistic and proposed a non-invariant solution. Kim [10] introduced
another extension of the Welch approximate degrees-of-freedom
solution, utilizing the geometry of confidence ellipsoids for the mean
vectors. Krishnamoorthy and Yu [11] proposed a new invariant test
by modifying Nel’s solution. Gamage et al. [4] proposed a procedure
for testing the equality of mean vectors using generalized p-values,
which are functions of sufficient statistics. Yanagihara and Yuan [18]
suggested the F test, Bartlett correction test, and modified Bartlett
correction test. Kawasaki and Seo [9] proposed an approximate
solution to the problem by adjusting the degrees of freedom of the F
distribution.

In the context of conducting Hotelling’s T2 test for multivariate data
assuming equality of the covariance matrices, several R packages pro-
vide useful functions. The ICSNP package offers the HotellingsT2
function, the rrcov package includes the T2.test function, the
Hotelling package, with its hotelling.test function, and the Com-
positional package offers the comp.test function (Hotelling and
James). However, those packages do not provide functions to per-
form the tests proposed by James, [15], [19], [7], [12], [10], [11], [4],
[18] and [9] when the covariance matrices are unequal.

This paper is organized as follows: Section 2 provides an overview
of the statistical tests implemented in the stests R package which
is a programming language and software environment specifically
designed for statistical computing created by the R Core Team [13].
In Section 3, an introduction to the stests R package, which was
created to implement these statistical tests, is presented. Sections 4
and 5 detail the design and results of a simulation study conducted
to compare the statistical tests. Lastly, Section 6 contains conclusions
and discussion.

2 The Behrens-Fisher problem
The univariate version of the Behrens-Fisher problem was proposed
initially by Behrens [1] and then reformulated by Fisher [3]. The
problem concerns comparing the means of two independent normal
populations without assuming the variances are equal. The multi-
variate version of the Behrens-Fisher problem refers to a statistical
hypothesis testing dilemma concerning the comparison of two pop-
ulation means when the variances of the populations are unequal.
The interest can be summarized as follows:

Let Xi1,Xi2, . . . ,Xini a random sample from a p-variate normal pop-
ulation N(µi,Σi) with i = 1, 2. The Behrens-Fisher problem has the
next set of hypotheses:

H0 : µ1 = µ2 vs. H1 : µ1 , µ2 (2)

The tests proposed in the literature require specific inputs, namely
the sample mean vectors and sample covariance matrices, to perform
the necessary calculations. The expressions to obtain these inputs
are as follows:

Xi =

ni∑
j=1

Xi j/ni with i = 1, 2,

and the sample variance-covariance matrices

Si =
1

ni − 1

ni∑
j=1

(Xi j − Xi)(Xi j − Xi)⊤with i = 1, 2.

Next, the statistical tests implemented in the stests R package to
study the hypothesis given in expression (2) are listed.

• Hotelling test.

• First order James’ test (1954).

• Yao’s test (1965).

• Johansen’s test (1980).

• NVM test (1986).

• Modified NVM test (2004).

• Gamage’s test (2004).

• Yanagihara and Yuan’s test (2005).

• Bartlett Correction test (2005).

• Modified Bartlett Correction test (2005).

• Second Order Procedure (S procedure) test (2015).

• Bias Correction Procedure (BC Procedure) test (2015).

All of the tests listed above have expressions for the statistics and
their distributions under the null hypothesis. However, due to the
length and complexity of these expressions, it is recommended that
readers refer to the vignette available in [5] for detailed information.
The vignette provides comprehensive explanations, equations, and
examples related to the statistics and their distribution, allowing
readers to delve into the specifics of each test.

3 The stests package
In this section, we introduce the stests R package, which has been
developed to facilitate the implementation of multivariate statistical
tests for the Behrens-Fisher problem. The package is currently
available on the GitHub platform, allowing users to easily download
and utilize it. To install and use the package, users can use the
following code snippet:

install.packages("devtools")
library(devtools)
install_github(repo='fhernanb/stests',

force=TRUE)
library(stests)

The main function of the stests package is two_mean_vector_test().
This function has the next structure:

© UPTC - Revista Ciencia en Desarrollo Vol. 15 Num. 2. 136

https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo


Jean Paul Piedrahita García & Freddy Hernández Barajas

two_mean_vector_test(xbar1, s1, n1,
xbar2, s2, n2,
delta0 = NULL,
method = "T2",
alpha = 0.05)

The arguments xbar1, s1, and n1 correspond to the sample mean
vector, sample covariance matrix, and size of the sample 1. In the
same way, xbar2, s2, and n2 are the information for the sample
2. The argument delta0 is a p-dimensional numeric vector to test
H0 : µ1 − µ2 = δ0, by default, δ0 = 0.

The method argument can be used to indicate the name of the
hypothesis test, the current values are "T2" (default), "james" (James’
first order test), "yao" (Yao’s test), "johansen" (Johansen’s test),
"nvm" (Nel and Van der Merwe test), "mnvm" (modified Nel and
Van der Merwe test), "gamage" (Gamage’s test), "yy" (Yanagihara
and Yuan test), "byy" (Bartlett Correction test), "mbyy" (modified
Bartlett Correction test), "ks1" (Second Order Procedure), "ks2"
(Bias Correction Procedure). Finally, the alpha argument is used
only to obtain the critic value for the James test.

The two_mean_vector_test() function generates an object of class
htest. For this type of class, we create the general S3 functions
print() and plot(). In the examples below, we illustrate the utility
of these functions.

3.1 Example 1
Here we revisit example 3.7 from Seber [16] on page 116, using the
James first-order test to explore the null hypothesis H0 : µ1 = µ2,
with a significance level of α = 0.05. We can use the function
two_mean_vector_test()with the argument method="james". The
resulting output is stored in the object a.

n1 <- 16
xbar1 <- c(9.82, 15.06)
s1 <- matrix(c(120, -16.3,

-16.3, 17.8), ncol = 2)

n2 <- 11
xbar2 <- c(13.05, 22.57)
s2 <- matrix(c(81.8, 32.1,

32.1, 53.8), ncol = 2)

a <- two_mean_vector_test(xbar1=xbar1,
s1=s1,
n1=n1,
xbar2=xbar2,
s2=s2,
n2=n2,
method='james',
alpha=0.05)

We can write in the R console the object name a to obtain the next
summary for the test.

James test for two mean vectors

data: this test uses summarized data
T2=9.4455, critical_value=7.2308, df=2
alt hyp: mu1 is not equal to mu2

sample estimates:
Sample 1 Sample 2

xbar_1 9.82 13.05
xbar_2 15.06 22.57

From the summary, we note that the critical value is 7.2308, and
the test statistic 9.4455. For this reason there is evidence to reject
H0 : µ1 = µ2.

3.2 Example 2
In this second example we used the data from Yao [19] on page 141.
The objective is to test H0 : µ1 = µ2 versus H0 : µ1 , µ2 using the
Yao test. We can use the function two_mean_vector_test() with
the argument method="yao". The resulting output is stored in the
object b.

n1 <- 16
xbar1 <- c(9.82, 15.06)
s1 <- matrix(c(120, -16.3,

-16.3, 17.8), ncol=2)

n2 <- 11
xbar2 <- c(13.05, 22.57)
s2 <- matrix(c(81.8, 32.1,

32.1, 53.8), ncol=2)

b <- two_mean_vector_test(xbar1=xbar1,
s1=s1,
n1=n1,
xbar2=xbar2,
s2=s2,
n2=n2,
method="yao")

We can write in the R console the object name b to obtain the next
summary for the test.

Yao test for two mean vectors

data: this test uses summarized data
T2 = 9.4455, F = 4.3855,
df1 = 2.000, df2 = 13.001, p-value = 0.03503
alter hyp: mu1 is not equal to mu2

sample estimates:
Sample 1 Sample 2

xbar_1 9.82 13.05
xbar_2 15.06 22.57

From the summary, we observe that the p-value is 0.03503, which
is lower than the conventional significance level of 5%. Therefore,
there is evidence to reject the null hypothesis H0 : µ1 = µ2.

4 Simulation study
A Monte Carlo simulation was conducted to evaluate the perfor-
mance of the function developed for the Behrens-Fisher tests. In the
simulation study we considered four factors:

• p: the dimension of the two normal populations, three cases
were considered, p = 2, p = 3 and p = 5.

• n: the same sample size for both populations was equal
(n1 = n2 = n) with values n = 10, 20, . . . , 150.

• δ: distance between the components of centroids µ1 and µ2.
For p = 2, the values for δ were 0, 10, 20, . . . , 150. For p = 3,
the values for δwere 0, 10, 20, . . . , 150. For p = 5, the values
of δwere 0, 0.5, 1.0, 1.5, . . . , 7.0, 7.5.

• k: a scalar factor to relate the variances and covariances
matrices, that is, Σ2 = k · Σ1. The values considered were
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k = 1, 2, 5, where k = 1 means that both variances and
covariances matrices are equal.

The combination of the aforementioned factors produces 1440 sce-
narios. For each scenario, 1000 samples of size n were generated
from both p-variate normal populations using the mvrnorm function
of the MASS package of [17].

When p = 2, the baseline mean vector and variance-covariance
matrix were taken from example 4.1 by Nel and Van Der Merwe [12],
located on page 3729. The baseline mean vector for population 1 was
held fixed at µ1 = (204.4, 556.6) while µ2 was obtained by adding δ
to each component of µ1. The baseline variance-covariance matrix
Σ1 was

Σ1 =

(
13825.3 23823.4
23823.4 73107.4

)

When p = 3, the baseline mean vector and variance-covariance
matrix were taken from excersice 6.18 by Johnson and Wichern [8],
located on page 344. The baseline mean vector for population 1 was
held fixed at µ1 = (113.4, 88.3, 40.7) while µ2 was obtained by adding
δ to each component of µ1. The baseline variance-covariance matrix
Σ1 was

Σ1 =

138.8 79.1 37.4
79.1 50.0 21.7
37.4 21.7 11.3


When p = 5, the baseline mean vector and variance-covariance
matrix were taken from example 3.10.1 by Rencher and Christensen
[14], located on page 79. The baseline mean vector for population
1 was held fixed at µ1 = (36.09, 25.55, 34.09, 27.27, 30.73) while µ2
was obtained by adding δ to each component of µ1. The baseline
variance-covariance matrix Σ1 was

Σ1 =


65.09 33.65 47.59 36.77 25.43
33.65 46.07 28.95 40.34 28.36
47.59 28.95 60.69 37.37 41.13
36.77 40.34 37.37 62.82 31.68
25.43 28.36 41.13 31.68 58.22


The variance-covariance matrix Σ2 was obtained as Σ2 = k · Σ1. If a
valid variance-covariance matrix Σ is multiplied by a positive scaling
factor k, the resulting matrix retains the property of being positive
definite.

The performance of each test in the simulation study was measured
by the rejection rate of the null hypothesis, which is the probability
of rejecting the null hypothesis when it is actually true. It is also
known as the Type I error rate or significance level. The rejection
rate is typically denoted by the Greek letter α (alpha).

To calculate the rejection rate, you need to specify a critical value
or a range of critical values based on the desired significance level.
The critical value(s) define the boundary between the region where
the null hypothesis is rejected and the region where it is not rejected.
The rejection rate can be expressed as:

α = P(Reject H0|H0 is true)

For the James test [6], we did not calculate the p-value because there
is no distribution for the statistic, so the critic value was used to
calculate the proportion of rejections of H0. In the simulation study,
the significance level was constant at α = 0.05.

5 Results
The rejection rates of the null hypothesis H0 : µ1 = µ2 for scenarios
with p = 2 are illustrated in Figures 1 to 3. When δ = 0 the null
hypothesis is true, the rejection rates of H0 are approximately 0.05.
Furthermore, as the value of δ increases, indicating that the null
hypothesis is false, the rejection rates progressively approach 1.00.
Therefore the rejection rates of the null hypothesis increase as the
discrepancy between the mean vectors µ1 and µ2 becomes larger.

Upon observing Figures 1 to 3, it is evident that as the scaling factor
k increases, the rejection rate of the null hypothesis decreases. This
suggests that a larger scaling factor leads to a more conservative test,
resulting in a lower probability of rejecting the null hypothesis.

Furthermore, it can be observed that as the sample size n increases,
the rejection rate also increases. This implies that with larger sample
sizes, the statistical test becomes more powerful in detecting differ-
ences between the mean vectors, leading to a higher probability of
rejecting the null hypothesis when it is indeed false.
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Figure 1: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 2.

Figures 4 to 6 depict the trend of the rejection rates of the null
hypothesis H0 : µ1 = µ2 for scenarios with p = 3. The pattern
observed is the same for p = 2. As the values of δ and n increase, the
rejection rates also increase.

Figures 7 to 9 illustrate the progression of the rejection rates of the
null hypothesis H0 : µ1 = µ2 for scenarios with p = 5. Similar
patterns can be observed as in p = 2 and p = 3. As the values of δ
and n increase, the rejection rates also increase. This indicates that as
the discrepancy between the mean vectors and the sample size grow,
the statistical tests become more powerful in detecting differences,
resulting in higher rejection rates of the null hypothesis when it is
indeed false.

On the other hand, as the scaling factor k increases, the rejection
rate decreases. This implies that a larger scaling factor leads to a
more conservative test, with a lower probability of rejecting the null
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Figure 2: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 2 and k = 2.
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Figure 3: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 2 and k = 5.
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Figure 4: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 3.
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Figure 5: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 3 and k = 2.
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Figure 6: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 3 and k = 5.

hypothesis. The consistent patterns observed in both p = 2 and p = 5
scenarios suggest a general trend across different dimensions.

Figure 10 illustrates the behavior of the rejection rate for the hypoth-
esis H0 : µ1 = µ2 as a function of sample size n and δ for Yanagihara
and Yuan’s test when p = 3 and k = 2. In this figure, we observe the
general pattern that as the sample size n or δ increases, the rejection
rate also increases. This observed pattern is consistent for each test,
regardless of the dimension p or the value of k.

6 Conclusion and Discussion
In conclusion, the simultation study has provided valuable insights
into the performance of the R functions developed for addressing
the Behrens-Fisher problem. The analysis of various factors and
their impact on the rejection rates of the null hypothesis has yielded
important findings.

The results indicate that as the sample size n increases, the rejection
rate of H0 increases. This suggests that larger sample sizes enhance
the power of the statistical test in detecting differences between the
mean vectors. Consequently, the probability of correctly rejecting
the null hypothesis when it is false is higher, reflecting the increased
sensitivity of the tests.

Another interesting finding is that as the distance δ increases, the
rejection rate also increases. This is an expected result because as
the distance between mean vectors increases, we anticipate a rise in
rejection rates. This observation confirms that the implemented tests
are functioning correctly.

We observed that as the scaling factor k increases, the rejection rate
of the null hypothesis decreases. This implies that a larger scaling
factor leads to a more conservative test, reducing the likelihood of
erroneously rejecting the null hypothesis. However, as the sample
size n increases, the rejection rate of H0 increases regardless of the
value of k.
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Figure 7: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 5.
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Figure 8: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 5 and k = 2.
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Figure 9: Rejection rate of H0 : µ1 = µ2 as a function of δ and
sample n when p = 5 and k = 5.
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Figure 10: Rejection rate of H0 : µ1 = µ2 as a function of sample n
and δ for Yanagihara and Yuan’s test when p = 3 and k = 2.

We observed that the trajectory lines for rejection rates of H0 tend
to decrease for larger values of k and small sample sizes, but these
trajectories approach 100% as the sample size increases.

The developed R functions offer a user-friendly and accessible tool
for conducting Behrens-Fisher tests. The simplicity and efficiency
of these functions make them highly convenient for researchers
and practitioners in the field. Users can confidently rely on the
accuracy and reliability of these functions, as demonstrated by the
comprehensive evaluation and validation carried out in this study.

In summary, the R functions developed for the Behrens-Fisher prob-
lem have exhibited robust performance, providing reliable and
powerful tools for hypothesis testing. Researchers and practitioners
can readily employ these functions to analyze their data, confident
in their ability to accurately assess differences between mean vectors.
The accessibility and user-friendliness of these functions further en-
hance their usability and contribute to the advancement of statistical
analysis in multivariate data.
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