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Abstract

In this paper, we use the notion of crisp stochastic process and refined neutrosophic theory to define the concept of refined
neutrosophic stochastic process. This project came to us due to the necessity to study randomness on neutrosophic theory taking
the idea that in real world indeterminacy is around it. Besides, we choose refined neutrosophic theory since there are several
indeterminacy situations in one problem. Throughout the paper, we present some important results and define the concept of
n-dimensional AHisometry for defining some results on refined neutrosophic process.
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1 Introduction
The notion of neutrosophic probability theory was presented
by Smarandache [1]; in this text, the author showed a new
topic that could be studied in which indeterminacy is differ-
ent from randomness. For example, let’s consider that we
are throwing a coin. In classical probability theory, there
are two possibilities, but in real life, it is well-known that
other aspects can affect the results. This means that there
is an indeterminacy that can show that neither of those pos-
sibilities can be obtained. In this order, in 2021 Zeina and
Hatip [2] introduced the notion of neutrosophic random vari-
able, and in this paper, the authors proved some relevant
results. Following that idea, Granados in 2021 [3] presented
some new notions on neutrosophic random variables which
complemented the original idea of [2]. Besides, in the same
year, Granados and Sanabria [4] showed the notion of in-
dependence on neutrosophic random variables. Taking into
account these notions, many results have been developed by
several authors following these ideas, such as neutrosophic
continuous distribution [5], discrete distribution [6], and
convergence [7]. Furthermore, some real-life applications
have been presented. Nguyen et al. [8] used an interval
neutrosophic to present a model using stochastic Brownian
motion; and Mullai et al. [9] presented an inventory model
by applying these concepts.

The concept of refined neutrosophic is one of the most im-
portant notions in neutrosophic theory since it admits the
existence of a division of indeterminacy. Indeterminacy
can be divided into several parts. When indeterminacy is
divided into two parts, it is called quadipartitioned; when
divided into three parts, it is called pentapartitioned; when
divided into four parts, it is called heptapartitioned; and
when divided into n-parts, it is called refined indetermi-
nacy [10]. We shall recall that when refined neutrosophic
is studied, it is the more general concept that can be stud-
ied since all the divisions, from one until n, are involved in
that notion. Following this idea, we will present a gener-
alization of neutrosophic stochastic process [11] by using
the n-refined concept. Besides, we present the notion of
n-dimensional AH-isometry, which is important to prove
our theorems. The concept of refined literal indeterminacy
neutrosophic number (refined literal neutrosophic number)
was defined as Nr = a+b1I1 + . . .+bnIn for i ∈N, where
a,b1, . . . ,bn ∈R.

2 Refined Literal Neutrosophic Stochastic Process
Definition 2.1
Let {ζ (t), t ∈ T} and {η1(t), t ∈ T}, {η2(t), t ∈ T}, . . . ,
{ηn(t), t ∈ T} be a collection of crisp (classical) stochastic
processes. Refined literal neutrosophic stochastic process
is defined as {Nr(t), t ∈ T} where Nr(t) = ζ (t)+η1(t)I1 +
η2(t)I2+ . . .+ηn(t)In, n∈N; for N : (Ω×T )→R(I). ζ (t)
and ηn(t) are called the determinant part and indeterminant
parts of Nr(t), respectively.

Remark 2.2

For a better use, we sometimes write Nr(t)= ζ (t)+
n

∑
i=1

ηn(t)In.

Theorem 2.3
Let {Nr(t), t ∈ T} be a refined literal neutrosophic stochas-
tic process. Then, the ensemble average function of {Nr(t), t ∈
T} is given by:

µNr (t) = µζ (t)+
n

∑
i=1

µηn (t)In.

Proof. For a fixed t ∈ T , {ζ (t), t ∈ T} and {ηn(t), t ∈ T},
n ∈ N, become random variables. Thus, {Nr(t), t ∈ T}
becomes a literal neutrosophic random variable. Based on
properties of literal neutrosophic random variables, we have:

µNr (t) = E[Nr(t)]

= E

[
ζ (t)+

n

∑
i=1

ηn(t)In

]

= E[ζ (t)]+E

[
n

∑
i=1

ηn(t)In

]

= E[ζ (t)]+
n

∑
i=1

E[ηn(t)In]

= µζ (t)+
n

∑
i=1

µηn (t)In.

Theorem 2.4
Let {Nr(t), t ∈ T} be a refined literal neutrosophic stochas-
tic process. Then, the autocorrelation function is given by:

RNr (s, t) = Rζ (s, t)+
n

∑
i=1

In
[
Rζ ηn (s, t)+Rηnζ (s, t)+Rηn (s, t)

]
.

Proof.

RNr (s, t) = E[Nr(s) ·Nr(t)]

= E

[(
ζ (s)+

n

∑
i=1

ηn(s)In

)
·

(
ζ (t)+

n

∑
i=1

ηn(t)In

)]

= E

[
ζ (s)ζ (t)+ζ (s)

n

∑
i=1

ηn(t)In +
n

∑
i=1

ηn(s)Inζ (t)+
n

∑
i=1

ηn(s)In

n

∑
i=1

ηn(t)In

]

= E

[
ζ (s)ζ (t)+ζ (s)

n

∑
i=1

ηn(t)In +
n

∑
i=1

ηn(s)Inζ (t)+
n

∑
i=1

ηn(s)ηn(t)In

]

= E[ζ (s)ζ (t)]+E

[
n

∑
i=1

ηn(s)Inζ (t)+ζ (s)
n

∑
i=1

ηn(t)In +
n

∑
i=1

ηn(s)ηn(t)In

]

= Rζ (s, t)+
n

∑
i=1

In
[
Rζ ηn (s, t)+Rηnζ (s, t)+Rηn (s, t)

]
.

Remark 2.5
If s = t, RNr(t, t) is followed by

Rζ (t, t)+
n

∑
i=1

In
[
Rζ ηn (t, t)+Rηnζ (t, t)+Rηn (t, t)

]
=

E
[
ζ

2(t)
]
+

n

∑
i=1

In
[
2Rζ ηn (t, t)+E

[
η

2
n (t)

]]
.
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Theorem 2.6
Let {Nr(t), t ∈ T} be a refined literal neutrosophic stochas-
tic process. Then, its auto-covariance function is given by

CNr (s, t) = RNr (s, t)−µNr (s)µNr (t).

Proof.

CNr (s, t) = cov[Nr(s),Nr(t)] = E{[Nr(s)−µNr (s)][Nr(t)−µNr (t)]}

= E{Nr(s)Nr(t)−µNr (t)Nr(s)−µNr (s)Nr(t)+µNr (s)µNr (t)}
= RNr (s, t)−µNr (t)µNr (s)−µNr (s)µNr (t)+µNr (s)µNr (t)

= RNr (s, t)−µNr (s)µNr (t).

i.e,

CNr (s, t) = Rζ (s, t)+
n

∑
i=1

In
[
Rζ ηn (s, t)+Rηnζ (s, t)+Rηn (s, t)

]
−

(
µζ (s)+

n

∑
i=1

µηn (s)In

)(
µζ (t)+

n

∑
i=1

µηn (t)In

)

= Rζ (s, t)−µζ (s)µζ (t)+
n

∑
i=1

In[Rζ ηn (s, t)+

Rηnζ (s, t)+Rηn (s, t)]

−
n

∑
i=1

In
[
µηn (s)µζ (t)+µζ (s)µηn (t)+µηn (s)µηn (t)

]
= Rζ (s, t)−µζ (s)µζ (t)+

n

∑
i=1

In
[
Rζ ηn (s, t)+Rηnζ (s, t)+

Rηn (s, t)−µηn (s)µζ (t)−µζ (s)µηn (t)−µηn (s)µηn (t)
]
.

Remark 2.7. If s = t, CNr(s, t) is followed by

cov[Nr(t),Nr(t)] = E{[Nr(t)−µNr (t)][Nr(t)−µNr (t)]}

= E[(Nr(t)−µNr (t))
2]

= var[Nr(t)].

In this case, var[Nr(t)] is given by

Rζ (t, t)−µζ (t)µζ (t)+
n

∑
i=1

In
[
Rζ ηn (t, t)+Rηnζ (t, t)+Rηn (t, t)

−µηn (t)µζ (t)−µζ (t)µηn (t)−µηn (t)µηn (t)
]

= E
[
ζ

2(t)
]
−µ

2
ζ
(t)+

n

∑
i=1

In
[
2Rζ ηn (t, t)

−2µζ (t)µηn (t)−µ
2
ηn (t)+E

[
η

2
n (t)

]]
.

Theorem 2.8. Let Nr(t1)= ζ (t1)+∑
n
i=1 ηn(t1)In and Mr(t2)=

ω(t2)+∑
m
j=1 ρm(t2)Im be two refined literal neutrosophic

stochastic processes where ζ (t1), ηn(t1), ω(t2), and ρm(t2)
are independent. Then,

E[Nr(t1)Mr(t2)] = E

[(
ζ (t1)+

n

∑
i=1

ηn(t1)In

)(
ω(t2)+

m

∑
j=1

ρm(t2)Im

)]

= E[ζ (t1)ω(t2)]+E

[
ζ (t1)

m

∑
j=1

ρm(t2)Im

]

+E

[
ω(t2)

n

∑
i=1

ηn(t1)In

]
+E

[
n

∑
i=1

ηn(t1)In

m

∑
j=1

ρm(t2)Im

]
.

Since ζ (t1), ηn(t1), ω(t2) and ρm(t2) are independent, we
have

E[Nr(t1)Mr(t2)] = E[ζ (t1)]+E[ω(t2)]+E[ζ (t1)]+E

[
m

∑
j=1

ρm(t2)Im

]

+E[ω(t2)]+E

[
n

∑
i=1

ηn(t1)In

]
+E

[
n

∑
i=1

ηn(t1)In

]
+

E

[
m

∑
j=1

ρm(t2)Im

]

= E

[
ζ (t1)+

n

∑
i=1

ηn(t1)In

]
E

[
ω(t2)+

m

∑
j=1

ρm(t2)Im

]
= E[Nr(t1)]E[Mr(t2)].

It is well-know that in neutrosophic literature, AH-Isometry
is an important tool that can help to results some problems.
However, refined AH-Isometry has not been studied in gen-
eral cases so far. For that reason, before to present some
results on refined literal neutrosophic stochastic process, we
should first to prove some results on refined AH-Isometry.

We know that I can be split into several parts as needed, i.e.,
I1, I2, . . . , In with conditions In

m = In for n,m ∈N. Besides,
InIn−1In−2 . . . I1 = I1I2 . . . In−1In = I1.

Definition 2.9 Let (R,+,×) be a ring. (R(I1, . . . , In),+,×)
is called a refined neutrosophic ring generated by R, I1, . . . , In.

Definition 2.10 The refined n-dimensional AH-isometry
between the ring R(I1, . . . , In) and the Cartesian product R×
R× . . .×R is defined as follows:

g : R(I1, . . . , In)→ R×R× . . .×R

g(a+b1I1 + . . .+bnIn) =

(a,a+b1 +b2 + . . .+bn,a+b2 + . . .+bn, . . . ,a+bn)

Example 2.11 For the ring (Z,+,×), the corresponding
refined n-dimensional neutrosophic ring is

Z(I) =

(
m+

p

∑
j=1

npIp; m,np ∈Z and p ∈N

)
.

Theorem 2.12 Let R be any ring with unity 1, R(I1, . . . , In)
be its corresponding refined n-dimensional neutrosophic
ring. Then, R(I1, . . . , In) � R×R× . . .×R.

Proof. We can present the refined n-dimensional AH-Isometry
between R(I1, . . . , In) and R×R× . . .×R as

g : R(I1, . . . , In)→ R×R× . . .×R

g(a+b1I1 + . . .+bnIn) = (a,a+b1 +b2 + . . .+

[bn,a+b2 + . . .+bn, . . . ,a+bn).

Let t1 = a+b1I1 + . . .+bnIn and t2 = c+d1I1 + . . .+dnIn
be two refined n-dimensional neutrosophic elements. Then,
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g(t1 + t2) = g([a+ c]+ [b1 +d1]I1 + . . .+[bn +dn]In)

= (a+ c,a+ c+b1 +d1 +b2 +d2 + . . .+bn +dn,a+ c+b2 +d2+

. . .+bn +dn, . . . ,a+ c+bn +dn)

= (a,a+b1 +b2 + . . .+bn, . . . ,a+bn)+(c,c+d1 +d2 + . . .+

dn, . . . ,c+dn)

= g(a+b1I1 +b2I2 + . . .+bnIn)+g(c+d1I1 +d2I2 + . . .+dnIn)

= g(t1)+g(t2).

Now,

g(t1 · t2) = g((a+b1I1 + . . .+bnIn) · (c+d1I1 + . . .+dnIn))

= g

(
a+

p

∑
j=1

bpIp

)
·

(
c+

p

∑
j=1

dpIp

)

= g

(
ac+a

p

∑
j=1

dpIp + c
p

∑
j=1

bpIp +
p

∑
j=1

bpdpIp

)

= g

(
ac+

p

∑
j=1

Ip(adp + cbp +bpdp)

)

=
(
ac,ac+

p

∑
j=1

(adp + cbp +bpdp),ac+
p

∑
j=2

(adp + cbp +bpdp),

= . . . ,ac+adp + cbp +bpdp
)

=

(
a,a+

p

∑
j=1

bp, . . . ,a+bp

)
·

(
c,c+

p

∑
j=1

dp, . . . ,c+dp

)
= g(a+b1I1 + . . .+bnIn) ·g(c+d1I1 + . . .+dnIn)

= g(t1) ·g(t2).

Therefore, g is a correspondence one to one, due to ker(g) =
{0}, and for every (a,b1,b2, . . . ,bn)∈R×R×. . .×R, there
exists x = a+(b1 −b2)I1 +(b2 −b3)I2 + . . .+(bn −a)In ∈
R(I1, . . . , In), such that g(x) = (a,b1,b2, . . . ,bn). Hence, g
is an isomorphism.

Remark 2.13. The inverse isomorphism of g is g−1 : R×
R× . . .×R→ R(I1, I2, . . . , In) with g−1(u1,u2, . . . ,un) =
(u1,(u2 −u1)I1,(u3 −u1)I2, . . . ,(un −u1)In) .

With the previous theorem, it can be easy to define and prove
results on refined literal neutrosophic stochastic processes
using AH-isometry.

Definition 2.14. Let {Nr(t), t ∈ T} be a refined literal neu-
trosophic stochastic process. Applying AH-isometry on
Nr(t), t ∈ T yields to

g[Nr(t)] = g

(
ζ (t)+

n

∑
i=1

ηn(t)In

)

=

(
ζ (t), ζ (t)+

n

∑
i=1

ηn(t), ζ (t)+
n

∑
i=2

ηn(t), . . . , ζ (t)+ηn(t)

)
.

Notice that using refined n-dimensional AH-isometry, we
transfer the refined literal neutrosophic stochastic process
{Nr(t), t ∈ T} into n-classical stochastic processes:

{ζ (t), t ∈ T},

(
ζ (t)+

n

∑
i=1

ηn(t), t ∈ T

)
,

(
ζ (t)+

n

∑
i=2

ηn(t), t ∈ T

)
,

. . . ,{ζ (t)+ηn(t), t ∈ T}.

This means that we can study the characteristics of {Nr(t), t ∈
T} by studying all its n-classical stochastic processes.

Example 2.15. In theorem 2.3, we proved that µNr(t) =
µζ (t)+µηn In. We can obtain the same results by using the
n-dimensional AH-isometry as can be seen next:

We have Nr(t) = ζ (t)+∑
n
i=1 ηn(t)In. Thus,

E[Nr(t)] = E

[
ζ (t)+

n

∑
i=1

ηn(t)In

]
.

Applying the isometry function g, we get:

g(E[Nr(t)])= g

(
E

[
ζ (t)+

n

∑
i=1

ηn(t)In

])
=E

[
g

(
ζ (t)+

n

∑
i=1

ηn(t)In

)]
.

Thus,

E

[
ζ (t),ζ (t)+

n

∑
i=1

ηn(t)

]
= (µζ (t),µζ (t)+µηn (t)).

Using the inverse isometry we get:

g−1 (g(E[Nr(t)])) = E[Nr(t)] = µζ (t)+µηn In.

Definition 2.16. Let {Nr(t), t ∈ T} be a refined literal
neutrosophic stochastic process. We will call F(xNr , t) =
P(Nr(t)≤ xNr) the first order distribution of {Nr(t), t ∈ T}
where xNr = x1 + y1I1 + y2I2 + · · ·+ ynIn and x,yn ∈R.

Definition 2.17. A refined literal neutrosophic stochastic
process is said to be weakly stationary if the following con-
ditions hold:

1. µNr(t) = µNr = µ1 +µ2I1 + · · ·+µnIn−1.

2. E[Nr(t) ·Nr(t − τNr)] = RNr(τ).

Theorem 2.18. A refined literal neutrosophic stochastic

process Nr(t) = ζ (t)+
n

∑
i=1

ηnIn is weakly stationary if and

only if {ζ (t), t ∈ T},

{
ζ (t) +

n

∑
i=1

ηn(t), t ∈ T

}
,

{
ζ (t) +

n

∑
i=2

ηn(t), t ∈ T

}
, . . . , {ζ (t)+ηn(t), t ∈ T} are weakly sta-

tionary.

Proof. Let’s consider that {ζ (t), t ∈T},

{
ζ (t)+

n

∑
i=1

ηn(t), t ∈

T

}
,

{
ζ (t)+

n

∑
i=2

ηn(t), t ∈ T

}
, . . . , {ζ (t)+ηn(t), t ∈ T}

are weakly stationary. Since {ζ (t), t ∈ T} is weakly station-
ary, then µζ (t) = µζ = k, where k ∈ R and E[ζ (t) · ζ (t −

τ)] = Rζ (τ). Now, consider that

{
ζ (t)+

n

∑
i=1

ηn(t), t ∈ T

}
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is weakly stationary, thus
µζ+∑

n
i=1 ηn(t) = E [ζ (t)+∑

n
i=1 ηn(t)] = µζ +µηn = t, where

t ∈R, this implies µηn = µηn = i, where i ∈R, and

Rζ+∑
n
i=1 ηn (t, t − τ)

= E

[(
ζ (t)+

n

∑
i=1

ηn(t)

)(
ζ (t − τ)+

n

∑
i=1

ηn(t − τ)

)]

= E

[
ζ (t)ζ (t − τ)+ζ (t)

n

∑
i=1

ηn(t − τ)+
n

∑
i=1

ηn(t)ζ (t − τ)+

n

∑
i=1

ηn(t)ηn(t − τ)

]
= Rζ (t, t − τ)+Rζ ηn (t, t − τ)+Rηnζ (t, t − τ)+Rηn (t, t − τ)

Since ζ (t)+∑
n
i=1 ηn(t) is weakly stationary, then

Rζ+∑
n
i=1 ηn(t, t − τ) must only depend on the difference τ ,

hence the only way of it can be

Rζ+∑
n
i=1 ηn (t, t − τ) = Rζ (t, t − τ)+

n

∑
i=1

[
Rζ ηn (t, t − τ)+

Rηnζ (t, t − τ)+Rηn (t, t − τ)

]
= Rζ+∑

n
i=1 ηn (τ),

which means that Rζ ηn(t, t − τ) = Rηn(T ). Therefore,

E[Nr(t)] = E

[
ζ (t)+

n

∑
i=1

ηn(t)In

]
= µζ (t)+µηn (t)In

= µζ +µηn I

= µNr = a, where a ∈R.

By theorem (2.4),

RNr (t, t − τ) = Rζ (τ)+
n

∑
i=1

In
[
Rζ ηn (τ)+Rηnζ (τ)+Rηn (τ)

]
= RNr (τ).

The cases for

(
n

∑
i=2

ηn(t), t ∈ T

)
,

{
n

∑
i=3

ηn(t), t ∈ T

}
, . . . ,{

n

∑
i=n−1

ηn(t), t ∈ T

}
are proved similarly.

Next, we will consider that {ζ (t)+ηn(t), t ∈ T} is weakly
stationary, thus µζ+∑ηn(t) =E[ζ (t)+ηn(t)] = µζ+ηn(t)] = g,
where g ∈ R, this means µηn(t) = µηn = p, where p ∈ R,
and

Rζ+ηn (t, t − τ) = E [(ζ (t)+ηn(t))(ζ (t − τ)+ηn(t − τ))]

= E

[
ζ (t)ζ (t − τ)+ζ (t)ηn(t − τ)+

ηn(t)ζ (t − τ)+ηn(t)ηn(t − τ)

]
= Rζ (t, t − τ)+Rζ ηn (t, t − τ)+Rηnζ (t, t − τ)+Rηn (t, t − τ)

Since ζ (t)+ηn(t) is weakly stationary, then Rζ+ηn(t, t−τ)
must only depend on the difference τ , hence the only way
of it can be

Rζ+ηn (t, t − τ) = Rζ (t, t − τ)+Rζ ηn (t, t − τ)+Rηnζ (t, t − τ)+Rηn (t, t − τ)

= Rζ+ηn (τ)

This implies Rζ ηn(t, t − τ) = Rηn(τ). Therefore,

E[Nr(t)] = E[ζ (t)+ηn(t)In]

= µζ (t)+µηn (t)In

= µζ +µηn I

= µNr

= s, where s ∈R.

By theorem (2.4),

RNr (t, t − τ) = Rζ (τ)+ In[Rζ ηn (τ)+Rηnζ (τ)+Rηn (τ)]

= RNr (τ).

Therefore, we have proved that {Nr(t), t ∈ T} is weakly
stationary. Next, let’s assume that {Nr(t), t ∈ T} is weakly
stationary. Since {Nr(t), t ∈ T} is weakly stationary, then
E[Nr(t)]= µNr(t)= µNr = j, where j ∈R, but E[Nr(t)]=

µζ (t)+
n

∑
i=1

µηn(t)In, so both µζ (t) and µηn(t) must only de-

pend on time. Therefore, µζ = µζ (t) and µηn(t) = µηn ,
which implies that µζ+ηn(t) = µζ +µηn = u, where u ∈R.
Besides, we obtain

RNr (t, t−τ)=Rζ (t, t−τ)+
n

∑
i=1

In[Rζ ηn (t, t−τ)+Rηnζ (t, t−τ)+Rηn (t, t−τ)].

And since {Nr(t), t ∈T} is weakly stationary, then RNr(t, t−
τ) must only depend on the difference τ . Thus, the following
equations hold:

Rζ (t, t − τ) = Rζ (τ). (2.1)

Rζ ηn (t, t − τ) = Rζ ηn (τ), (2.2)

Rηnζ (t, t − τ) = Rηnζ (τ), (2.3)

Rηn (t, t − τ) = Rηn (τ) (2.4)

And since µζ = µζ (t) and (2.1), we imply that {ζ (t), t ∈
T} is weakly stationary, and by using (2.2), (2.3), (2.4)

and µζ+∑ηn(t) = µζ + µηn = u,

{
ζ (t)+

n

∑
i=1

ηn(t), t ∈ T

}
,{

ζ (t)+
n

∑
i=2

ηn(t), t ∈ T

}
, . . . ,{ζ (t)+ηn(t), t ∈ T}
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are weakly stationary.

Theorem 2.19. Consider that {Nr(t), t ∈ T} is a weakly
stationary refined literal neutrosophic process with auto-
correlation function RNr(t). Then, the following statements
hold:

(1) RNr(t) = RNr(−τ).

(2) |RNr(t)| ≤ RNr(0).

Proof. (1) We get

RNr (τ) = Rζ (τ)+
n

∑
i=1

In[Rζ ηn (τ)+Rηnζ (τ)+Rηn (τ)].

Similarly,

RNr (−τ) = Rζ (−τ)+
n

∑
i=1

In[Rζ ηn (−τ)+Rηnζ (−τ)+Rηn (−τ)].

Using properties of cross-correlation function in classical
stationary processes, we obtain RNr(t) = RNr(−τ).

(2) Taking n-dimensional AH-isometry,

g(|RNr (t)|) = |E [g(Nr(t) ·Nr(t − τ))]|

=

∣∣∣∣∣E
[

g

(
ζ (t)+

n

∑
i=1

ηn(t)In

)(
ζ (t − τ)+

n

∑
i=1

ηn(t − τ)In

)]∣∣∣∣∣
=

∣∣∣∣∣E
[

g

(
ζ (t)+

n

∑
i=1

ηn(t)In

)
g

(
ζ (t − τ)+

n

∑
i=1

ηn(t − τ)In

)]∣∣∣∣∣
=

∣∣∣∣∣E
[(

ζ (t),ζ (t)+
n

∑
i=1

ηn(t), . . . ,ζ (t)+ηn(t − τ)

)

=

(
ζ (t − τ),ζ (t − τ)+

n

∑
i=1

ηn(t − τ), . . . ,ζ (t − τ)+ηn(t − τ)

)]∣∣∣∣∣
=
(
|Rζ (τ)|, . . . , |Rζ+ηn (τ)|

)
≤ (0, . . . ,0).

Now, taking g−1, we get that |RNr(t)| ≤ RNr(0).

Definition 2.20. Let {Nr(t), t ∈ T} and {Mr(t), t ∈ T} be
two literal neutrosophic stochastic processes. They are said
to be refined jointly weakly stationary if the following con-
ditions hold:

(1) Nr(t) and Mr(t) are weakly stationary.

(2) RNrMr(t, t − τ) = RNrMr(τ).

Theorem 2.21. Let {Nr(t), t ∈ T} and {Mr(t), t ∈ T} be re-
fined jointly weakly stationary literal neutrosophic stochastic
processes. Assume the literal neutrosophic stochastic pro-
cess Zr(t) defined as Zr(t) = Nr(t)+Mr(t). Then, Zr(t) is
weakly stationary.

Proof. Since {Nr(t), t ∈ T} and {Mr(t), t ∈ T} are refined
jointly weakly stationary literal neutrosophic stochastic pro-
cesses, we have µNr(t) = µNr and µMr(t) = µMr . Therefore,
E[Zr(t)] = µZr(t) = µMr(t)+µNr(t) = µMr +µNr = µZr .

Now, we know that RNr(t, t−τ) =RNr(τ), RMr(t, t−τ) =
RMr(τ), RNrMr(t, t−τ)=RNrMr(τ), and RMrNr(t, t−τ)=
RMrNr(τ), thus

RZr (t, t − τ) = E[(Nr(t)+Mr(t))(Nr(t − τ)+Mr(t − τ))]

= E[Nr(t)Nr(t − τ)]+E[Mr(t)Nr(t − τ)]

+E[Nr(t)Mr(t − τ)]+E[Mr(t)Mr(t − τ)]

= RNr (τ)+RMrNr (τ)+RNrMr (τ)+RMr (τ)

= RZr (τ).

Therefore, this proves that Zr(t) is weakly stationary.

The following example shows a refined neutrosophic stochas-
tic process which is weakly stationary process

Example 2.22. Let {Nr(t), t ∈ T} be a refined neutrosophic
stochastic process defined as follows:

Nr(t) = ζ (t)+ζ (t)I1 +ζ (t)I2,

for I1 , I2, where {ζ (t), t ∈ T} is a classical stochastic pro-
cess defined as ζ (t) = Acos(t)+Bsin(t) for A and B being
random variables defined as

A B
Prob. 1

3
2
3

Now, µNr(t) = 0 and
RNr(s, t) = 2cos(τ)+6cos(τ)I1 +6cos(τ)I2 = RNr(τ).
Therefore, this shows that {Nr(t), t ∈ T} is weakly station-
ary.

If I1 = I2, Nr(t) becomes a classical neutrosophic stochastic
process and the condition satisfies as well.

3 Conclusion
In this paper we have defined the notion of refined neu-
trosophic stochastic process, which can be represented in
Rn for n-classical stochastic processes. The first one is

{ζ (t), t ∈ T} and the rest are

{
ζ (t)+

n

∑
i=1

ηn, t ∈ T )

}
, where

the dependence is on the number of indeterminacies that the
problem has. Many results were obtained in the classical
way and by using n-dimensional AH-isometry.

The results obtained in this paper can be applied in several
real situations in different fields of mathematics and other
sciences such as finance, biology, decision-making, and so
on. Besides, we encourage the reader to explore potential
applications of this concept.
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