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Abstract

In many real world problems the symmetries of the system are only an approximation; the parameters

involved in those systems generate an imperfection, where different bifurcation types converge, leading to

critical situations called catastrophes.

In the dynamic model of a bead on a wire in a inclined and suspended position, the system represents a

catastrophic, condition that to be studied and analyzed, was necessary to use the bifurcation and catastrophe’s

theories1. The results can be compared with the real world, by the landslide qualitative model, caused by a

winter situation.
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Resumen

En muchos problemas del mundo real, las simetrías del sistema son solo una aproximación; los parámetros

involucrados en tales sistemas generan una imperfección, en la cual convergen diferentes tipos de bifurcación,

conduciendo a situaciones críticas, denominadas catástrofes. En el modelo dinámico de una cuenta sobre

un alambre en posición inclinada y suspendida, el sistema representa una condición catastrófica, que para

estudiarse y analizarse fue necesario utilizar las teorías de la bifurcación y las catástrofes. Los resultados

pueden compararse con el mundo real, mediante el modelo cualitativo del derrumbe, causado por una

situación de invierno.

Palabras clave: Teoría de la bifurcación, Teoría de la catástrofe, Sistemas dinámicos, Puntos fijos, No lineal,

Estabilidad.
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1This is a problem that was proposed by Strogatz in [11] chapter 3, section 3.6.5.
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1. Introduction

In the study of a dynamic bifurcation system, the

changes in the behavior that arise from the variations

of a given system, are classified [1, 2, 3]. The qualita-

tive nature that represent the solutions, depend on the

parameters that appear in this [2], leading to drastic

changes that allow the application of the catastrophe

theory, which was originated by the French mathe-

matician René Thom’s work in the early seventies [4,

5, 6] and it is regarded as a topological theory, that

even if do not provides quantitative descriptions and

predictions, does provide some qualitative descrip-

tions and predictions, based on the space geometries,

that do not have a specific magnitude, neither a cer-

tain scale [7, 8, 9].

The catastrophe theory also deals with irregulari-

ties and breakdowns, which are appropriate in a sys-

tem analysis, where the only observation available

are the discontinuities generated by the parameters

involved in the system’s variations [2, 10], as in the

case of a wire suspended in a straight line, with a

deternined inclination angle, that depending on some

parameters controled variations, can altered the equi-

librium state of the system, causing a sudden abrupt

change, that produces a catastrophe, that resembles

a landslide in a real system. The catastrophe’s study

is carried out, from a cusp catastrophe model, co-

rresponding to the seven elementary types of René

Thom catastrophes [4, 6, 11, 12].

2. Dynamic Model of a Bead Suspended and

Sliding on a Tilted Wire

The system consists of a mass m bead, suspended

on a straight inclined wire, which is forced to slide at

a θ angle with respect to the horizontal. The bead is

attached to a spring of a κ constant elasticity and and

a L0 length, and it is actuated by the force of gravity.
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Figure 1. Diagram of a dynamic system (taken from

[11]).

Coordinates are chosen along the wire, so that

x = 0 to the nearest reference point with respect

to the spring support point. This variable represents

the bead’s path around its equilibrium point. The

distance between the spring support point and the

wire is designated with the letter a, that corresponds

to another variable of the system (check Figure 1).

The equation of motion describing the equilibrium

position is given by,

mgsinθ = κx

(

1−
L0

L

)

, (1)

L is the hypotenuse obtained from the sum of catheti

x and a. When the wire is horizontal (i.e θ = 0 ), the-

re is a perfect symmetry between the left and right

sides of the wire and x = 0 is always an equilibrium

position. If θ , to 0, there may be a considerable in-

clination which causes the bead balance to suddenly

disappear , making it to slide downhill.

3. Results and Discussion

To analyze the stability of the system is used the

bifurcations theory [2, 3, 11] and the catastrophe

theory and by a comfort way of working with the di-

mensionless representation equation (1), which takes

the following form:

1−
h

u
=

R
√

1+u2
, (2)

when,

u =
x

a
; h =

mg

κ
senθ; R = L0. (3)

By plotting both sides of the equation (2) gives the

behavior that presents the existing fixed points in the

system, Figure 2.

For the R<1 values, there is only one balance

point, which is unstable and may disappear when

the h values get close to R.

For R>1 there are seven equilibrium points which

are taken from the intersections generated by the

two graphs union, which generates the right side,

while the left side generates the equation (2), which

disappears if its value is greater than the R values.

On the other hand, in Figure 2 shows that two

curves intersect in the case R>1, which indicates

that it has a Saddle-node bifurcation [2, 3, 11]. Such

bifurcation curves are given by:
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Figure 2. Behavior that presents the dimensionless equa-

tion varying to R (author’s source).

h = −u3 and R = (1+u2)
3
2 , (4)

and plot the bifurcation curves observed behavior

is obtained in the Figure 3, in which there is a point

where the two curves joined tangentially, and the

cusp-point corresponds to the point of the system,

which arises at the point approximately Rh = (0,−1)

and as more R curves diverge, the stable equilibrium

points are located around the cusp-point but not in

this.

Now to make the system qualitative analysis seen

in a three dimensional graph, it is needed to find

a form of equation (2) for small r, h, u. So, for

convenience we make r = R−1 and to expand it by

the neglected Taylor higher order terms, obtaining

the following equation:

h+ ru−
1

2
u3 = 0, (5)

that by associating it, with the Thom’s elementary

catastrophe, resembles the cusp catastrophe [12] by

having two control parameters r, h and a variable

state u. Therefore to graph the equation (5) which

has the characteristic form of the cusp catastrophe

[5, 6,12] (check Figure 4), the surface folded projec-

tion corresponds to that observed in Figure 3, which

means that the bifurcation curves of equation (4) are

the bifurcation set of the catastrophe.
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Figure 3. The bead system stability diagram on a incli-

ned wire (author’s source).

In Figure 4, the trajectory JI, increases the values

of the parameters h and r, running from I to N, where

N finds it hard to move to L, consequently h presents

a small increment which allows the jump from N to

L. This abrupt transition from one state to another

becomes the catastrophe, which in this case leads to

the system collapse.
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Figure 4. Cusp catastrophe model for the dynamical sys-

tem of a count suspended in an inclined wire (author’s

source).

This means that taking into account the system

dimensional variables (h in equation (3)), we know

that when working with large values of the bead

mass m, and the small elasticity constant κ, the spring

elasticity limit tendency, is prone to be exceeded, due

to the increasing amount of mass it tends to support.

In turn, the parameter value R, that corresponds to

the spring length L0, is prone to reach a peak that

causes the wire to slide downhill. The same happens

if the angle θ that belongs to the parameter h too

large, then a significant inclination appears, allowing

an increasing friction force generated in the bead,
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with respect to the wire missing magnitude, causing

the sliding.

So that if we refer to a real system, such as a slo-

pe ground on which a greater inclination or more

land without friction force and cohesion, its presen-

ce, sooner or later should produce a slide, called a

natural catastrophe, which occurs due to the discon-

tinuity and the abrupt change in the system dynamic

components and structure.

In order to study the real system, there should be

generated a simulation, in which beads are super-

imposed on a grid (since we work with only one

particle, or not many) to simulate the slipping, also

there should be introduced some real parameters re-

lated to the theoretical model, such as: The moisture

that had to do with the friction and cohesion inten-

sity, the grain type or size concerns about the mass

of each count, the field adhesion properties, which

correspond to the spring elasticity constant κ and the

model inclination angle, that should have to see, with

the inclination angle of the slope.

On the other side, one can produce another catas-

trophe, when M try to get to I, because at this point,

it is produced a sudden jump from one state to anot-

her, but in this case the r and h values decrease. The

cycle generated by I, N, L, M, I in Figure 4 is called

hysteresis [10].

4. Conclusions

A system number of fixed points or equilibrium,

depends on the parameters involved variation, since

their appearance or disappearance causes, lead to a

saddle-node type bifurcation.

The trajectories designated in Figure 4, allow to

comprise a physically system dynamics and its cri-

tical point, so when occurs any sudden changes or

jumps on it, they become a catastrophic event, as

they alter its equilibrium state, regarding the system

original dimensional variables.

The presence of events as disturbances or falls in

a system originate significant changes, which leads

to abrupt changes called catastrophes [13], which

depends on certain controled parameters, that their

occurrence can lead to the system collapse, as obser-

ved in the model of the bead on the bent wire, or it

may happen on a hill or slope of a mountain, where

some parameters such as humidity, soil type and the

slope of the ground, tend to vary considerably and

suddenly causing landslides, with some significant

damage.

The Catastrophe Theory provides some and a lan-

guage to build a model, that offers an insight into

a system developing dynamics, taking into account

the transitions discontinuously, with their sudden

jumps and changes, so it could be used to analyze

other situations or disciplines such as, heartbeats,

prison riots, embryology, experimental psychology,

economics, geology and hydrodynamics.
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