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Abstract

Steady state distribution of the buffer content of a fluid queue modulated by two independent birth and death

processes is found using differential equation techniques to solve a system of equations. The inflow rates

are determined by a birth and death process with finite state space and the outflow rate from the buffer is

determined by the current state of another independent birth and death process with four states, evolving in

the background. Combining these two birth and death processes a continuous time Markov chain is obtained.

The steady state buffer content distribution for this fluid queue driven driven by a continuous time Markov

chain is thus obtained. Finally, we present numerical results to illustrate the feasibility of the proposed

model.
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Resumen

La distribución del estado estacionario del contenido de una cola de fluido en un dispositivo modulado por

dos procesos independientes de nacimiento y muerte, se encuentra utilizando técnicas diferenciales para

resolver un sistema de ecuaciones. Las tasas de flujo de entrada se determinan mediante un proceso de

nacimiento y muerte, con espacio de estados finitos y la tasa de flujo de salida del recipiente se determina por

el estado actual de otro proceso independiente de nacimiento y muerte con cuatro estados, que evolucionan

en el fondo. Mediante la combinación de estos dos procesos de nacimiento y muerte se obtiene una cadena

de Markov de tiempo continuo. Se observa que la distribución del estado estacionario del contenido de una

cola de fluido se modula por una cadena de Markov en tiempo continuo. Finalmente, se presentan resultados

numéricos para ilustrar la viabilidad del modelo propuesto.

Palabras clave: Cadena de Markov de tiempo continuo, Distribución de estados estacionarios, Procesos de

nacimiento y muerte.
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1. Introduction

The term queuing system is used to indicate a co-

llection of one or more waiting lines along with a

server or collection of servers that provide service

to these waiting lines. Delays and queuing problems

are most common features not only in our daily-life

situations such as at a bank or postal office, at a ticke-

ting office, in public transportation or in a traffic jam

but also in more technical environments, such as in

manufacturing, computer networking and telecom-

munications. They play an essential role for business

process re-engineering purposes in administrative

tasks.

In queueing theory, there are numerous applica-

tions where the information flow has to be treated

as a continuous stream rather than considering its

discrete nature. The resulting queuing models are

called fluid queues. Fluid queues are closely related

to dams. A dam can be modeled as a reservoir, in

which water builds up due to rainfall, is temporarily

stored, and then released according to some release

rule. Consequently, a fluid queue can be viewed as

a dam in which work is buffered until enough ca-

pacity becomes available. Fluid queues are used to

represent systems where some quantity accumulates

or is depleted; gradually over time, subject to some

random environment. Fluid models are highly used

in performance evaluation of telecommunication sys-

tems, modern communication networks, ATM’s and

statistical multiplexers where the aggregate inflow

can be viewed as fluid instead of individual custo-

mers.

In a fluid queue model a divisible commodity

(fluid) arrives at a storage facility where it is sto-

red in a buffer and gradually released. In a standard

queueing system we consider, individual customers

or jobs arriving at service facility, possibly wait, then

receive service and depart. For such models we count

the number of customers in the system and describe

the experience of individual customers. In contrast

a fluid queue model is used in applications where

individual customer is so small that they can hardly

be distinguished. It is then easier to imagine a con-

tinuous stream of work that flows into the system

instead of customers. Fluid queues are used to repre-

sent systems where some quantity accumulates or is

depleted, gradually over time, subject to some ran-

dom environment. Some examples of such systems

are a dam or a reservoir in which water builds up

due to rainfall, is temporarily stored and then relea-

sed according to some release rule, communication

networks where data carried by these networks are

packaged in many small packets, etc.

For fluid queues models, we study the buffer con-

tent at any time t, which is the amount of work in

the system, that can be of finite or infinite capacity.

The buffer content cannot be negative, so when the

buffer content decreases to zero, the buffer content

stays zero as long as the net input rate is negative.

A fluid queue driven by a Markov process, is a

two-dimensional Markov process, of which the first

component, or level, varies according to the second

component, the phase, which is the state of a Markov

process evolving in the background. Fluid flows into

the buffer at a rate which depends on the state of

the background Markov process and fluid flows out

from the buffer at some rate. In order that a stationary

distribution for the buffer exist, the stationary net

input rate should be negative.

Steady state and transient analyses for fluid queues

driven by Markov process using different techniques

have been studied in much detail by various authors

([4], [7], [13], [15], [2]). [4] uses the continued frac-

tion approach to get the exact steady state solution of

a fluid queue driven by an M/M/1 queue. The met-

hodology used to achieve the required solutions by

is transforming the underlying system of differential

equations using Laplace transforms to a system of

difference equations leading to a continued fraction.

In [7] uses matrix analytic technique wherein the

computation of the steady state distribution is redu-

ced to the analysis of a discrete time, discrete state

space quasi-birth-death model. In van Doorn and

Scheinhardt [13] present a survey of techniques for

analysing the performance of a fluid queue which

receives and releases fluid at rates which are determi-

ned by the state of a background birth-death process.

The buffer is assumed to be infinitely large, but the

state space of the modulating birth-death process

may be finite or infinite.

Transient analysis has also been discussed by few

authors for some specific queuing models such as

fluid queues with background process birth death

process or input process governed by M/M/1 queue.

Virtamo and Norros [15] analyzed a fluid queue
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driven by an M/M/1 queue and proposed a spectral-

decomposition method. The key of the method is to

express the generalized eigenvalues explicitly using

the Chebyshev polynomials of the second kind.

In [2] Lenin and parthasarathy discuss fluid

queues with infinite buffer capacity driven by an

M/M/1/N queue. They find analytically the eigen

values of the underlying diagonal matrix and hence

the steady state distribution function of the buffer oc-

cupancy. [8] and [5] presented the transient solution

using a direct approach with the help of recurrence

relations. In [8] the transient behavior of stochastic

fluid flow models in which the input and output ra-

tes are controlled by a finite homogeneous Markov

process is analyzed. The solution is based on only

recurrence relations.

In [5] a fluid queue driven by an infinite-state birth

death process (BDP) whose birth and death rates are

suggested by a chain sequence is discussed. The sta-

tionary solution for the background BDP suggested

by a chain sequence does not exist and hence the

stationary distribution for fluid queue driven by such

BDPs also does not exist. However their transient

probabilities yield a simple closed form solution. In

[9] Sericola consider a finite buffer fluid queue re-

ceiving its input from the output of a Markovian

queue with finite or infinite waiting room. The input

flow into the fluid queue is thus characterized by a

Markov modulated input rate process and for a wide

class of such input processes, a procedure for the

computation of the stationary buffer content of the

fluid queue and the stationary overflow probability

is derived based on recurrence relations.

In [10] the exact transient solution of fluid queue

driven by M/M/1 queue are found using recurrence

relations and continued fraction. In [11] the exact

transient solution of fluid queue driven by BDP with

infinite state space by first converting the system

of differential equations into a system of algebraic

equations using Laplace transform. Then the method

of continued fractions is used.

In [6] the time-dependent (or transient) solution

for a mathematical model of statistical multiplexing

is presented. The model consists of N statistically

independent and identical sources and each source

alternates between the on state and the off state. The

double Laplace transform method is used, and the

partial differential equation that governs the multiple-

xer behavior is reduced to the eigenvalue problem of

a matrix equation in the Laplace transform domain.

A lot of study has been carried on the steady sta-

te analysis of fluid queues driven by infinite state

Markov process but the steady state analysis of fluid

queues driven by finite state Markov process has

not been extensively performed due to complexity

of the problem. The reason being that the Chapman

- Kolmogorov equations corresponding to a given

fluid queue form a system of conservation laws for

which no explicit or closed form solution is available.

This motivates to analyse the steady state behaviour.

Further, it motivates to obtain various performance

measures. In this paper, we present the steady state

distribution of the buffer content of a fluid queue mo-

dulated by two independent birth death processes is

found using differential equation techniques to solve

a system of equations [1].

The rest of the paper is organized as follows. Sec-

tion 2 gives the complete description of the fluid

model. Section 3 presents the steady-state distribu-

tion of the buffer occupancy. Further, the numerical

result is illustrated. Finally, Section 4 concludes the

paper.

2. Model Description

Let X := {X(t), t ≥ 0} be a continuous-time stochas-

tic process such that for any t ≥ 0, X(t) is the amount

of work offered to the system in the interval [0, t].

The buffer can be interpreted as a fluid reservoir, to

which input is offered according to the input process

X. The buffer is drained at a constant rate r, i.e., a

tap at the bottom of the fluid reservoir releases fluid

at rate r as long as the buffer is nonempty. After the

fluid is processed, it immediately leaves the system.

We write C(t) for the amount of work in the buffer

at epoch t, and call this the buffer content.

We describe the fluid queue driven by finite state

Markov process. Let {X(t), t ≥ 0} denote the back-

ground birth death process which takes values in

S = {0,1,2, . . . ,N}. Let λi and µi represent the birth

and death rates respectively. When the system is in

state i, the buffer content changes at a rate ri (which

can be both positive and negative). If the buffer is

empty, and the Markov process is in a state i with

ri < 0, then the buffer remains empty. We let
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πi = Π
i−1
j=1

λ j

µ j+1

, i ∈ S .

The stationary state probabilities pi, of the back-

ground birth death process can then be represented

as

pi =
πi

∑

j∈S π j

, i ∈ S .

In order that a limit distribution for C(t), the con-

tent of the reservoir at time t, exist, the stationary net

input rate should be negative, that is,

N
∑

i=1

ri pi < 0.

We assume that the above condition is satisfied. In

what follows we let

S + = {i ∈ S |ri > 0} and S − = {i ∈ S |ri < 0}.

d+ = |S +|, d− = |S −|.

Letting

Fi(t, x) = P{X(t) = i,C(t) ≤ x}, t ≥ 0, x ≥ 0, i ∈ S .

The Kolmogorov equations for the two dimensional

process {X(t),C(t)} are given by, for i ∈ S :

∂Fi(t, x)

∂t
+ ri

∂Fi(t, x)

∂x
= −(λi+µi)Fi(t, x)

+λi−1Fi−1(t, x)+µi+1Fi+1(t, x).

But assuming that the process is in equilibrium, we

may set Fi(t, x) = Fi(x) and
∂Fi(t,x)
∂t = 0 and, hence

obtain the system

dFi(x)

dx
=
λi−1

r
Fi−1(x)−

λi+µi

r
Fi(x)

µi+1

r
Fi+1(x),

satisfying the conditions,

Fi(0) = 0, i ∈ S + and lı́m
x→∞

Fi(x) = pi, i ∈ S .

The above equations are then solved to get the steady

state solution.

The inflow rates of fluid to the buffer varies with

time. The inflow rate is determined by a birth death

process (BDP) {X(t), t ≥ 0} with finite state space

{1, 2, . . . , N}. Let λi, i = 1, 2, . . . , N −1 be the birth

rates and µi, i = 2, 3, . . . , N be the death rates of this

BDP. When X(t) is in some state i, i ∈ {1, 2, . . . , N},

then the inflow rate into the fluid buffer is given by

ci, which can take any real value (+ve or -ve). When

the buffer level reaches zero and the inflow rate at

that time is negative, then the buffer level remains at

zero until the inflow rate becomes positive. The rates

c′
i
s, i = {1,2, . . . ,N} represents the random arrival

rates of the information at any intermediate node.

The outflow rate from the buffer is determined by

the states of another independent BDP {Y(t), t ≥ 0}

with four states, 1, 2, 3 and 4. Let αi, i = 1, 2, 3 be

the birth rates and βi, i = 2, 3, 4 be the death rates of

this BDP. When Y(t) is in some state i, i ∈ {1, 2, 3, 4},

then the outflow rate from the fluid buffer is given

by hi. Note that h1 > h2 > h3 > h4. The transitions

of {Y(t), t ≥ 0} from one state to another represents

the switching of the transmission rates from one step

higher to one step lower or vice versa.

By combining these two above mentioned in-

dependent BDPs, we obtain a CTMC with fini-

te number of states. We denote this CTMC by

{Z(t), t ≥ 0} with state space S = {(1,1), (1,2), (1,3),

(1,4), (2,1), (2,2), (2,3), (2,4), . . . , (N,1), (N,2),

(N,3), (N,4)}. This CTMC has 4N states. The state

transition diagram for this process {Z(t), t ≥ 0} is

shown in Figure 1. Note that, in this CTMC, we have

assumed that diagonal transitions are not feasible

in a small time interval. Whenever, Z(t) = (i, j), i ∈

{1, 2, . . . , N}, j ∈ {1, 2, 3, 4}, the outflow rate from

the buffer is h j. The considered fluid model driven

by the underlying CTMC with four different outflow

rates and state dependent inflow rates is shown in

Figure 2.
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Figure 1. State transition diagram of the background

CTMC Y(t).

3. Buffer Occupancy Distribution

In this section, we obtain the steady-state distribu-

tion of the buffer occupancy. First, we describe the

background stochastic process. Next, we describe

the governing equation for the fluid model. Let
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Figure 2. Buffer Diagram for the fluid model.

pi, j(t) = Pr [The state of the CTMC {Z(t), t ≥ 0}

is (i,j) at the time t],

t ≥ 0 i = 1, 2, . . . , N, j = 1, 2

For simplification, we enumerate the state (i, j) un-

der a single index. Let q1(t), q2(t), . . ., q4N−1(t),q4N(t)

be the 4N state probabilities of the CTMC {Z(t), t ≥

0} which are given by:

q4n+1(t) = pn+1,1(t), n = 0, 1, . . . , N −1

q4n+2(t) = pn+1,2(t), n = 0, 1, . . . , N −1

q4n+3(t) = pn+1,3(t), n = 0, 1, . . . , N −1

q4n+4(t) = pn+1,4(t), n = 0, 1, . . . , N −1

Hence, corresponding to the new indexing of

the states of {Z(t), t ≥ 0}, we define a new

CTMC, {K(t), t ≥ 0} with finite state space S =

{1, 2, . . . , 4N}. The state transition diagram for this

process {K(t), t ≥ 0} is shown in Figure 3.

Now, as a consequence, the buffer content of the

considered fluid queue is now determined by the

CTMC {K(t), t ≥ 0}. The generator matrix of the

CTMC {K(t), t ≥ 0}, Q is given by
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(1)

The buffer content at any time t is denoted by C(t)

and we assume that C(0) = 0. Hence, we now have a

bi-dimensional stochastic process {C(t), K(t), t ≥ 0}.

The net flow rate into the buffer, denoted by ri, is

given by

For n = 0, 1, 2, . . . , N −1; j = n+1

ri =



































c j−h1, i = 4n+1

c j−h2, i = 4n+2

c j−h3, i = 4n+3

c j−h4, i = 4n+4

(2)

We have the following differential equation [14]:

dC(t)

dt
=

{

rK(t), C(t) > 0

0, C(t) = 0 and rK(t) < 0

This implies that whenever the CTMC {K(t), t ≥

0} is in state i, i ∈ S , the corresponding net flow rate

is ri. And each ri must be either positive or negative

with at least one ri > 0 because otherwise the buffer

will remain empty forever.

The buffer occupancy distribution is defined as

Fi(t, x) = Pr{K(t)

= i, C(t) ≤ x}; t ≥ 0, x ≥ 0, i ∈ S
(3)

where Fi(t, x) is the probability that the background

Markov process {K(t), t≥ 0} is in some state i and the

buffer content is less then or equal to some quantity x.

The distribution of the buffer occupancy is a mixed

distribution with a positive mass at x = 0, given as

Fi(t, x) =



































0; for x < 0, t ≥ 0, i ∈ S

Pr {K(t) = i, C(t) = 0}; for x = 0, t ≥ 0, i ∈ S

Pr {K(t) = i, C(t) ≤ x}; for x > 0, t ≥ 0, i ∈ S

(4)

And in the long run, as t →∞ and x →∞,

4N
∑

i=0

Fi(t, x) = 1 (5)

The governing differential equation for the fluid

queue is given by [12]

∂Fi(t, x)

∂t
= −ri

∂Fi(t, x)

∂x

+
∑

j∈S

F j(t, x)Q( j, i), i ∈ S
(6)

where Fi(t, x) is defined in equation (3) and Q is

given in equation (1).
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Figure 3. State transition diagram of the CTMC K(t).

In the next subsection, we obtain the steady-state

distribution for the buffer occupancy.

We define the steady-state distribution (in the long

run as t →∞) as

Fi(x) = lı́m
t→∞

Fi(t, x) (7)

where Fi(t, x) is defined in equation (3). For the

steady-state solution to exist, we need a stability

condition. For the fluid queue, this stability condi-

tion is that as t → ∞, the stationary net flow rate

should be negative, that is

4N
∑

i=1

qi ri < 0 (8)

Now, using (7), in the long run as t→∞, equation

(6) becomes

0 = −ri

dFi(x)

dx
+
∑

j∈S

F j(x)Q( j, i), i ∈ S (9)

Let ~F(x) be column vector formed by the 4N sta-

tionary probabilities and is given by

~F(x) = (F1(x), F2(x), . . . , F4N(x))
T

and let R be the diagonal matrix given by

R = diag(r1, r2, . . . , r4N)

Hence, the equation (9) in matrix form is given by

d

dx
~F(x) = R−1QT ~F(x) (10)

Theorem 1. The steady-state distribution of buffer

occupancy is given by

~F(x) = ~q+

d+
∑

j=1

k j ez j x Φ j

where ~F = (F1, F2, . . . , F4N)
T and ~q is the column

vector of steady-state probabilities of the CTMC

{K(t), t ≥ 0} model. That is, ~q = (q1, q2, . . . , q4N)
T

and z1, z2, . . . , z4N are the 4N eigen values of R−1QT

with respective eigen vectors Φ1, Φ2, . . . , Φ4N . d+ is

the number of states of the CTMC {K(t), t ≥ 0} with

positive net flow rate and k′
j
s are some constants.

Please refer [3, 11] for the proof.

Now, we present the numerical results obtained for

the steady-state distribution of the buffer occupancy.

For the purpose of numerical illustration, we have

taken the number of states, 4N = 24. The values of

other parameters are given in Table 1.

Table 1. List of parameters.

Rates Meaning Value

λ Arrival rate of X(t) 0.02 to 0.06

µ Departure rate of X(t) 0.06 to 0.09

α Forward rate of Y(t) 0.03 to 0.05

β Backward rate of Y(t) 0.03 to 0.05

ci Inflow rate of fluid c1 = 1,5, c2 = 2,75,

into the buffer when c3 = 3, c4 = 4,5,

X(t) is in state i c5 = 5, c6 = 6,5

h j Outflow rate of fluid h1 = 11, h2 = 5,5,

into the buffer when h3 = 2, h4 = 1

Y(t) is in state j

Now, we present the steady-state distribution of

the buffer occupancy. The steady-state distribution

of buffer occupancy is defined as

F(x) = Pr [buffer content C(t) ≤ x]

Hence, we have

F(x) =

4N
∑

i=1

Fi(x)

where Fi(x), i ∈ S are obtained by using Theorem 1.

Figure 4 shows the variation of F(x) with the buf-

fer content x, where x is varied from 0 to 10000.
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It is observed that there is a positive mass at x = 0

and F(x)→ 1 as x →∞. Hence, this shows that the

buffer occupancy has mixed distribution.
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0

F
(x

)
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Buffer contentn (x)

Figure 4. Cumulative distribution function of buffer

occupancy.

4. Conclusion and Future Work

Most of the work done in the fluid queues involve

a single BDP as the background Markov process.

But, we present a fluid queue which is driven by two

independent background BDPs, which in turn give

rise to a CTMC. Using the fluid model, the steady-

state distribution of the buffer content is obtained. As

future work, we are planning to obtain the transient

distribution of the buffer content using fluid queue

approach.
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