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Abstract

It is well-known that the time dependent Ginzburg-Landau theory is a reliable theoretical tool to investigate

the Shubnikov state in a superconductor sample in presence of an external applied magnetic field. In

this work, we solved the system of the Ginzburg-Landau equations in two and three dimensions for two

particular cases: For a parallelepiped with volumeVp; with transversal area Sp = 9ξ 2(0), 36ξ 2(0) and height

hp = 1ξ (0), 6ξ (0), where ξ (0) is the coherence length. In the other hand, for a thin disk with a centered

circular and triangular defect, with topology of dot/anti-dot. In both cases are immersed into a homogeneous

magnetic field. The effects of pinning/anti-pinning forces due to defects in the disk and demagnetization

effects due to the finite size of the parallelepiped on configuring vortices and critical fields are discussed. In

the tridimensional case, the magnetic field and the order parameter are not invariant along the direction z.
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Resumen

Es bien conocido que la teoría de Ginzburg-Landau es una herramienta teórica confiable para investigar

el estado de Shubnikov en muestras superconductoras en presencia de campos magnéticos aplicados. En

este trabajo resolvemos el sistema de ecuaciones Ginzburg Landau en dos y tres dimensiones en dos casos

particulares: para un paralelepípedo de volumen Vp; con área transversal Sp = 9ξ 2(0), 36ξ 2(0) y altura

hp = 1ξ (0), 6ξ (0), donde ξ (0) es la longitud de coherencia y por otra parte, para un disco fino con un

defecto circular y triangular centrado con topología punto/anti-punto. En ambos casos las muestran estan

submersas en un campo magnético homogeneo. Los efectos de las fuerzas de anclaje/anti-anclaje debido a

los defectos en el disco y los efectos de demagnetización debido al tamaño finito del paralelepipedo sobre la

configuración de vortices y campos críticos son discutidos. En el caso tridimensional, el campo magnético y

el parámetro de orden no son invariantes a lo largo de la dirección z.
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1. Introduction

If the size of the superconducting sample along

the direction of the external magnetic field is ap-

plied is smaller than the lateral dimensions of its

cross section, the demagnetizing effects (the shiel-

ding currents produced an stray field which enhance

the magnetic induction near the edge of the sample)

plays a very important role in the superconducting

physics. Then, the magnetic field necessary to nu-

cleate vortices in mesoscopics samples, is larger than

the equivalent for macroscopic samples, which is

just the applied field [1, 2]. In 2013, F. Rogeri et.

al studied the magnetic field profile in a supercon-

ducting with SQUID geometry employing a genui-

nely 3D approach for the Ginzburg Landau equations

[3]. Several authors studied the magnetic properties

in mesoscopic three-dimensional disk and spheres,

they found different features in the magnetization

measured by comparatively small Hall probes and

the creation of a surface layer at higher magnetic

fields that increase the number of vortices in the

sample [4, 5]. In a recent work, using the conven-

tional 2D Ginzburg-Landau approximation, the aut-

hors of this paper studied the influence of a pentago-

nal/hexagonal trench/barrier on the superconducting

state of a mesoscopic disk, they found new pheno-

mena due to the competing interactions of the boun-

dary/geometry/ and nanoengineered defects [6, 7].

The possibility to control the vortex density has ma-

de them one of the favorite experimental [8]−[13]

and theoretical [14]−[16] systems for studies of

the physics of solid state. Due to the experimental

advances is possible to propose almost any mesos-

copic system for theoretical study and obtain their

critical parameters, which determine the properties

of the superconductor and its applications. This is of

interest for fundamental physics, also for potential

device applications in nanoelectronics [19]−[21].

In this paper, We show that different of vortex latti-

ce structures can be obtained, some of which have

symmetries that depend on from the geometric of the

defect and the interaction between the surface and

strong pinning/anti-pinning centers.

2. Theory

We simulate a superconducting parallelepiped of

variable volume Vp = Sphpξ 3(0), hp and Sp takes

values 1ξ (0), 6ξ (0), 8ξ (0), and 9ξ 2(0), 36ξ 2(0)

respectively, with a temperature T = 0 and κ = 1.0.

The applied magnetic fieldHe was ramped in steps of

∆H = 10−3. The superconducting state is described

in the Ginzburg-Landau theory by the order parame-

ter |ψ|, where |ψ|2 represent the superconducting

electronic density, and the potential vector A, related

to magnetic induction by B = ∇×A [22, 23]:

ψ = −(i∇+A)2ψ +ψ(1−|ψ|2) (1)

A = Re [ψ̄(−i∇−A)ψ]−κ2
∇×∇×A (2)

For the parallelepiped case we solve the real 3D

Ginzburg-Landau equations, the size of the simula-

tion box is taken large to ensure that the local magne-

tic field equals the applied field far from the sample

boundaries:

n · (i∇+A)ψ = 0 , at ∂Ωsc, (3)

∇×A = He, at ∂Ω, (4)

where ∂Ωsc is the superconducting material-vacuum

interface and ∂Ω is the vacuum-vacuum interface,

and n is the outward unit vector, normal to the in-

terface ∂Ωsc [3]. For the thin disk with defects we

solve the 2D Ginzburg-Landau equations [26, 27]:

∂ψ

∂ t
+

1

g
(i∇+A0) ·g(i∇+A0)ψ−ψ +ψ3 = 0 (5)

where g(r,θ) is a function which describes the thick-

ness of the sample. In this case, the magnetic field

can be taken nearly uniform inside the superconduc-

tor H0 = ∇×A0 [27]. For a 2D superconducting

square sample we take g(x,y) = 1.0 in all compu-

tational mesh.

3. Results and Discussion

3.1. 3D Case

The Figure1 show the order parameter intensity in

a comparative study between the 2D and 3D models

for Sp = 36ξ 2(0) and hp = ξ (0) at He = 0.110Hc2

in the down branch of the magnetic field. As we can

see this case present a topological difference in the

vortex configuration.

In the Figure 2 we shown the magnetic induction

h for the Meissner state (N = 0) at He = 1.2Hc2(0)

and single vortex state (N = 1) at He = 2.2Hc2(0),

for the samples with d = 1ξ (0), d = 8ξ (0) and Sp =

9ξ 2(0) at the middle plane of the superconductor

(z= 0). As we can see, the demagnetization effects

are more significant in the Meissner state.
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Figure 1. (Color online) The order parameter intensity:

a comparative study between the 2D and 3D models for

Sp = 36ξ 2(0) and hp = ξ (0) at He = 0.110Hc2 in the

down branch of the magnetic field

3.2. 2D Case

For the thin disk, the parameters used in our nume-

rical simulations were: κ = 0.8854, T = 0. The disk

radii is R= 26ξ (0). Figure 3 we can see that the mag-

netization curves for the superconducting disk with

triangular or circular defect are qualitatively simi-

lar, and the density of the superconducting electrons

show appreciable modifications in its configuration.

The values of the critical magnetic fields for the

first and second vortices entrance H f irst = 1.033Hc2,

Hsecond = 1.067Hc2 are approximately the same for

circular (blue line) and triangular (black line) defects.

In the Figure 4 we shown the contour plot of the

order parameter for several vorticities. The disk with

central defect barrier is in the left column and with

a hole defect is in the right column. The vortices

nucleate at the central region of the surface (a), in

spite of differences between H0 values in line (b),

the pinning state is obtained first using a hole defect,

posteriorly, in line (c), for indicated values of H0

the force of vortex-vortex interaction overcomes the

repulsive force exerted by the barrier and several vor-

tex are found in this defect. Finally, line (d) shown

the hole defect reaching normal state, whereas for

larger values of H0 vortices can be discriminated. In

the following, we analyze a superconducting disk

with triangular defects Figure 5 which exhibit dif-

ferent behaviour of pinning effect. line (a) shown

a typical vortices entrance in both case triangular

barrier (left column) and hole (right column), but

in line (b), that the vortices are found in the hole

defect with H0 = 1.1c2, whereas there is no penetra-

Figure 2. Magnetic induction h for the Meissner state

(N = 0) at He = 1.1Hc2(0) and single vortex state (N =

1) at He = 2.1Hc2(0), for the samples with d = 1ξ (0),

d = 8ξ (0) and Sp = 9ξ 2(0).

tion of vortices, as we can see, in the defect barrier

with H0 = 1.174Hc2, similar situation occurs in li-

ne (c). By increasing the applied magnetic field the

number of vortices is increased in the triangular hole

defect and it become to normal state, however, the
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magnetic flux penetrate in the triangular barrier from

the boundary until reach the normal state without

vortex nucleation.

Figure 3. Magnetization as a function of the external ap-

plied magnetic field with circular and triangular defect.

(Insets) snapshot of the square modulus of the order

parameter |ψ|2 at He = 0.0, and the magnetic induction
~h, at He = 1.12 and He = 1.56 respectively.

Figure 4. (Contour plot) Square modulus of the loga-

rithm of order parameter |ψ|2 for circular barrier (left

column) and circular hole (right).

Figure 5. (Contour plot) Square modulus of the loga-

rithm of order parameter |ψ|2 for triangular barrier (left

column) and triangular hole (right column).

4. Conclusion

In conclusion, the analysis of a 3D superconduc-

tor show that the demagnetization effects are more

significant in the Meissner state. For the 2D case, our

calculations show that novel vortex structures can be

obtained as well as its symmetries can be modified

choosing the correct defect in presence of an external

magnetic field applied perpendicular at its surface.
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