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Abstract

This paper presents a study, both in analytical and numerical form, of a discrete dynami-
cal system associated with a piecewise quadratic family. The orbits of periods one and two are
characterized, and their stability is established. The nonsmooth phenomenon known as bor-
der collision is present when there is a period doubling. Lyapunov exponents are calculated
numerically to determine the presence of chaos in the system.
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Resumen

Este art́ıculo presenta un estudio anaĺıtico y numérico de la dinámica de un sistema
discreto asociado a una familia cuadrática a tramos. Se caracterizan las órbitas de peŕıodo
uno y dos, aśı como su estabilidad. Se muestra la presencia del fenómeno no suave conocido
como bifurcación por colisión de borde cuando ocurre un doblamiento de peŕıodo. Se hallan
numéricamente los exponentes de Lyapunov para detectar la presencia de caos en el sistema.
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1 Introduction

Physical phenomena such as impacting oscil-
lators and switched electronic circuits, among
others, have stimulated the study of piecewise-
smooth dynamical systems. These systems
are characterized by the partition of the state
space into regions determined by smooth vec-
tor spaces but display discontinuities on the
borders between those regions, which turn the
state space into a non-smooth vector space, as
has been studied by several authors, for exam-
ple [1]-[4]. This non-smoothness accounts for
the induction of phenomena such as border-
collision bifurcations, which appear in certain
discrete dynamical systems, discussed in [5]-[7]
and continuous, discussed in [8]-[9] and more
complex systems such as Boost DC-DC con-
verters, where a turn on-turn off switching ac-
tion partitions the state space into two regions.
Border collision bifurcations appear in some
systems where bifurcation due to period dou-
bling is also present [10]-[13], which is the sit-
uation studied in this paper.

The paper is organized as follows: in Sec-
tion 2 the fixed points, the 2-cycles and their re-
spective attraction bases are found analytically.
In Section 3 the bifurcation diagram is found,
and the border collision bifurcation present in
the system whenever a period doubling occurs
is analyzed. A comparative analysis is also per-
formed for the bifurcations in the system that
are attributable to the usual period doubling.
In Section 4, the Lyapunov exponents are found
to determine the presence of chaos in the sys-
tem.

2 Dynamic Model and Fixed Points

This paper consider the dynamical system
Xn+1 = f(Xn) associated with the function:

f(x) =

{
µ(1− x2) si x ≤ 0

µ(x2 − 1) si x > 0

and we take µ > 0 to be the bifurcation pa-
rameter.

We start by recalling that x is a virtual fixed
point of f if f(x) = x and x does not belong to

the domain of f , as discussed by O. Eriksson et
al. [14]. If a point x exists such that f(x) = x,
and x belongs to the domain of f then x is said
to be a fixed point, and its orbit consists of a
single element. On the other hand, if n ∈ N
exists such that fn(x) = x and fk(x) 6= x, for
each 0 < k < n, then x is a periodic point of f
with period n. If x is a periodic point of period
n ∈ N then the orbit of x consists of exactly
the n elements {x, f(x), f2(x), ..., fn−1(x)}.

In the case where the positive orbit of a
point y, {fn(y) : n ∈ N}, is infinite, the ques-
tion arises whether the sequence of iterations
of y converges to a periodical point of the func-
tion, in addition to the influence of the param-
eters of the function on such a convergence.
As usual, the set of points of the domain of
f whose orbit converges to a fixed point x is
called the basin of attraction of x and is de-
noted by Bx. If that set contains only the point
x it is said that x is a repeller or unstable fixed
point. Otherwise, x is called an attractor or
stable fixed point.

2.1 Fixed points

For x > 0, f has a fixed point x1 and a virtual
fixed point x2:

x2 =
1−

√
1 + 4µ2

2µ
x1 =

1 +
√

1 + 4µ2

2µ

with −1 < x2 < 0 and 1 < x1.
For x ≤ 0, f has a fixed point z1 and a

virtual fixed point z2, where z1 = −x1 and
z2 = −x2, such that:

z1 < −1 and 0 < z2 < 1

By the derivative criterion x1 and z1 are unsta-
ble.

In Fig 1 the fixed points for f(x) may be
observed.

3 Results and Discussion

3.1 Orbits of period two

To find the orbits of period two, or 2-cycles, we
set f2(x) = x. From the definition of f , it can
be seen that
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f2(x) =


g(x) = µ− µ3(1− x2)2

si x ∈ (−∞,−1] ∪ (0, 1]

h(x) = µ3(1− x2)2 − µ
si x ∈ (−1, 0] ∪ (1,+∞)

The virtual fixed points of f(x), Λ1 =
{x2, z2}, form a 2-cycle as shown in Fig 2. Note
that f2(x2) = h(x2) = x2 and f2(z2) = g(z2) =
z2

By the derivative criterion we have that if√
3

2 < µ, the 2-cycle Λ1 is unstable, and if

0 < µ ≤
√

3
2 , the 2-cycle is stable.

To find the basin of attraction of Λ1 we re-
quire the fact that f2 is increasing, as well as
the following lemmas.

Lemma 3.1. If x ∈ (0, z2) then gn(x) ∈ (0, z2)
for all n ∈ N and the sequence (gn(x))n is in-
creasing in this interval.

As 0 < x < z2, then 0 < g(0) = µ − µ3 <
g(x) < g(z2) = z2 and by induction, it follows
that 0 < gn(x) < z2. Now, because

g(x)− x = −µ3x4 − 2µ3x2 − x+ µ− µ3

= (x− z1)(x− z2)(−µ3x2 + µ2x− µ+ µ3)

then z1 < 0 < x < z2 and
(∀ x ∈ R)

(
−µ3x2 + µ2x− µ+ µ3 < 0

)
we have

that g(x) − x > 0. Hence, because f2 is
increasing, g is also increasing; consequently
0 < gn(x) < gn+1(x) < z2

Lemma 3.2. If x ∈ (0, z2) then gn(x) −→ z2.

By Lemma 3.1, there is an L > 0 such that
limn→∞ g

n(x) = L. Suppose that L < z2. Be-
cause L < g(L) and g(L) < µ then L < µ.
Let

q =

√√√√1−

√
µ− L
µ3

Then q < g(q) = L. For ε = L− q there exists
N ∈ N such that ∀n > N |gn(x) − L| < ε.
Thus, L − gn(x) = |gn(x) − L| < ε, 0 < q <
gn(x) < z2 and because g is increasing, then
L < gn+1(x) for x ∈ (0, z2),which is a contra-
diction. Hence, limn→∞ g

n(x) = z2.

Proposition 3.1. (0, 1] ⊆ Bz2
By Lemma 3.2 we have that (0, z2] ⊆ Bz2 .

In an analogous way, it is shown that, if x ∈
(z2, 1] then gn(x) −→ z2.

To find the remaining intervals of the basin
of attraction of z2, we define the function l with

domain R+ ∪ {0} as l(z) =

√
1 +

√
µ+z
µ3

. We

have that l(z) = h−1(z) for z > 1 and l(z)
is increasing in z ∈ (1, x1). So, it can be

seen that the function l satisfies the relation
1 < l(0) < l(1). From this inequality, and us-
ing the fact that l is increasing, it follows that:

1 < l(0) < l(1) < l2(0) < l2(1) < . . . (1)

. . . < ln(0) < ln(1) < . . .

Now, we will prove that ln(1) −→ x1 when-
ever n → +∞. Because ln(1) is increas-
ing and bounded, there exists an L such that
limn→∞ l

n(1) = L. Assume that L < x1

and let ε = L − h(L) > 0. There exists an
N ∈ N such that ∀n > N , |ln(1) − L| < ε.
Hence L − ln(1) < L − h(L) and applying h
we have that 0 < h(L) < ln(1) < x1. So
0 < L < ln+1(1) which is a contradiction.

In an analogous way, it may be seen that
ln(0) −→ x1.

From the last two observations, it follows
that the length of the intervals (ln(0), ln(1)]
tends to zero when n→ +∞.

Proposition 3.2.
⋃
n∈N(ln(0), ln(1)] ⊆ Bz2.

Let x ∈
⋃
n∈N(ln(0), ln(1)] and x ∈

(lk(0), lk(1)] for some k ∈ N. Then, lk−1(0) <
h(x) ≤ lk−1(1) and because h is increasing, ap-
plying h in the last inequality k−1 times results
in 0 < hk(x) ≤ 1. By Proposition 3.1, it follows
that hk(x) ∈ Bz2 .

A similar line of reasoning leads to the fol-
lowing result:

Proposition 3.3.
⋃
n∈N(−ln+1(0),−ln(1)] ⊆

Bz2 .

From propositions 3.1, 3.2 and 3.3 we have
that

C =
(⋃

n∈N(−ln+1(0),−ln(1)]
)
∪ (0, 1] ∪(⋃

n∈N(ln(0), ln(1)]
)
⊆ Bz2
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In fact C = Bz2 , as we shall see further on.

Proposition 3.4. D =
(⋃

n∈N(−ln(1),−ln(0)]
)

∪ (−1, 0] ∪
(⋃

n∈N(ln(1), ln+1(0)]
)
⊆ Bx2 .

Using mathematical induction, we see that
−fn(x) = fn(−x). Now, let x ∈ Bz2 and
we shall show that −x ∈ Bx2 for all n ∈ N
with x 6= ln(1) and x 6= ln(−1). If x ∈ Bz2
then fn(x)→ z2, −fn(x)→ −z2 and therefore
fn(−x) → x2. If x = 0 then f(0) = µ3 − µ
and because −1 < µ3 − µ < 0, we have that
0 ∈ Bx2 .

Finally, if x ∈ D then −x ∈ C so −x ∈ Bz2 ,
leaving us with x ∈ Bx2 .

We shall now look at the basin of attraction
of the 2-cycle Λ1.

Proposition 3.5. BΛ1 = Bx2 ∪Bz2 = (z1, x1)
with Bx2 ∩Bz2 = ∅ .

Because Bx2 ⊆ (z1, x1) and Bz2 ⊆ (z1, x1),
it follows that Bx2 ∪ Bz2 ⊆ (z1, x1). Now, let
x ∈ (z1, x1) and consider the case where x ∈
(0, x1). For ε = x1−x there exists n1 ∈ N such
that, for all n > n1, |ln(1)− x1| < ε. Hence
x < ln(1) and consequently, x ∈ Bx2 ∪Bz2 .

In a similar way, the inclusion for the case
x ∈ (z1, 0] may be shown.

Fig 3 shows the basin of attraction of Λ1

obtained numerically.
Next, we characterize the remaining 2-

cycles of the system. For this purpose, let
h(x) = x, initially, that is:

µ3(x− x1)(x− x2)(x− x3)(x− x4) = 0

where x3 =
−1−
√

4µ2−3
2µ and x4 =

−1+
√

4µ2−3
2µ .

For g(x) the fixed points are z1, z2, z3 = −x3

and z4 = −x4.
If 0 < µ <

√
3

2 , then x3, x4, z3 and z4 are
not real. Hence, there are no more 2-cycles.

If µ =
√

3
2 , then x3 = x4 = x2 = −1

2µ and

z3 = z4 = z2 = 1
2µ , and we again obtain the

2-cycle Λ1.

If
√

3
2 < µ < 1, we have −1 < x3 < x4 <

0 and 0 < z4 < z3 < 1. So x3 and x4 belong
to the domain of h(x) and z3, z4 belong to the
domain of g(x).

Consequently, we have the following addi-
tional 2-cycles:

Λ2 = {x3, z4} y Λ3 = {x4, z3}

By the derivative criterion, both 2-cycles
are stable. The 2-cycles Λ2 and Λ3 are shown
in Fig 4.

A similar construction for the basin of Λ1

leads to:

Bx3 =
(⋃

(−ln(1),−ln(−x2))
)
∪ (−1, x2)

∪
(⋃(

ln(1), ln+1(x2)
))

Bz4 =6
(⋃

(−ln(0),−ln(x2))
)
∪ (0, z2)

∪
(⋃

(ln(0), ln(z2))
)

Bx4 =
(⋃

(−ln(−x2),−ln(0)]
)
∪ (x2, 0]

∪
(⋃

(ln(x2), ln(0)]
)

Bz3 =
(⋃(

−ln+1(x2),−ln(1)
])
∪ (z2, 1]

∪
(⋃

(ln(z2), ln(1)]
)

So, BΛ2 = Bx3 ∪ Bz4 and BΛ3 = Bx4 ∪ Bz3 , as
illustrated in Figs 5 and 6.

If µ = 1, then x3 = −1, x4 = 0 = z4 and
z3 = 1, in which case the fixed point x3 does
not belong to the domain of h(x); nevertheless,
we have found the stable 2-cycle Λ4 = {0, 1}
whose basin of attraction is B0 ∪B1, where

B0 =
(⋃

(−ln(−x2),−ln(x2))
)
∪ (x2, z2)

∪
(⋃

(ln(x2), ln(z2)]
)

B1 =
(⋃(

−ln+1(x2),−ln(1)
])
∪ (z2, 1]

∪
(⋃

(ln(z2), ln(1)]
)

If 1 < µ, then x3 < −1, 0 < x4 < 1, 1 < z3

and −1 < z4 < 0. Consequently, these points
do not belong to the domains of h(x) and g(x),
respectively, so these cases are not considered.

Finally, if x > x1 it may be seen that
fn(x) → +∞; additionally, if x < z1 then
fn(x) → −∞. Hence, if x ∈ (−∞, z1) ∪
(x1,+∞) it follows that x does not belong to
the basin of attraction of any 2-cycle.
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3.2 Numerical Calculations

To obtain the basins of attraction of Figs 3, 5
and 6, numerically, the following procedure was
used: a point x0 in the domain of f2 was taken,
and its positive orbit {x0, f(x0), ..., fn(x0)} was
found, with n = 1000. If the difference between
fn(x0) and a fixed point x of f2 was less than
ε = 10−3 then x0 was taken as a point in the
basin of attraction of x.

3.3 Bifurcation Diagram

It is well-known that the dynamics of a system
may change drastically when one or more of
its parameters vary. This qualitative change
or structural change is known as a bifurca-
tion. In general, bifurcation theory studies
the structural changes undergone by dynami-
cal systems when their parameters change, as
discussed elsewhere [15]-[16]. These types of
changes may be appreciated in their respective
bifurcation diagrams, as the bifurcation dia-
gram determines whether the system converges
to an n-cycle or exhibits random behavior. In
Figs 7 and 8 , a bifurcation diagram is shown
for the system under study, where the horizon-
tal axis represents the values of the parameter
µ and the vertical axis represents the iterations
of the variable x. An initial condition x0 is cho-
sen, its positive orbit {x0, f(x0), ..., fn(x0)} is
found with n = 2000 for each value of µ , and
the last 100 iterations are plotted, according
[17].

From the diagram, it can be seen that for
certain values of the bifurcation parameter, two
coexisting stable 2-cycles are present. Then,
depending on what basin of attraction the ini-
tial condition belongs to, the corresponding 2-
cycle will appear in the bifurcation diagram.

These diagrams show that, for 0 < µ <
√

3
2 ≈

0.866 there exists a stable 2-cycle Λ1 = {x2, z2}
formed by the virtual fixed points of f(x).

When µ =
√

3
2 , the first bifurcation occurs, and

the former 2-cycle becomes unstable and gives
rise to two 2-cycles, Λ2 and Λ3, symmetrical
with respect to the point x = 0 (as may be

seen in Fig 4).
At µ = 1 the second bifurcations appears,

called a border-collision bifurcation because
when µ → 1, then x4 → 0 and z4 → 0; ad-
ditionally, at µ = 1, x4 and z4 collide at x = 0
and disappear to give rise to a 4-cycle. This
process is repeated for the bifurcation diagram
windows where f(x) does not present chaotic
behavior. In Fig. 9,an enlargement of the di-
agram is shown where these two bifurcations
occur.

In Fig. 11 a comparative analysis is per-
formed between a bifurcation due to period
doubling and a bifurcation due to border col-
lision in a scenario with period doubling bifur-
cation, based on [10].

3.4 Lyapunov Exponents

Lyapunov exponents may be used to measure
the future separation of two orbits which were
initially very close to each other. In general,
the analytic calculation of these exponents is
extremely involved, requiring the use of numer-
ical calculation. If the orbits were initially very
close to each other and remain so in the future,
then the associated Lyapunov exponents will
all be negative. However, if the paths diverge,
there will be at least one positive Lyapunov ex-
ponent. In this manner, Lyapunov exponents
are related to the system’s sensitivity to initial
conditions.

Lyapunov exponents can be calculated nu-
merically as in [18], with the following method:

λ(x) = lim
n→∞

1

n

n−1∑
k=0

ln
∣∣f ′(xk)∣∣

where xk = fk(x) .
The Lyapunov exponents for f(x) with the

initial condition x0 = 0.5 are shown in Fig.
10. It can be seen that, for certain values of
the parameter µ, there exist positive Lyapunov
exponents. Because the system evolves in a
bounded fashion in the state space, it can be
concluded that the system exhibits chaotic be-
havior [17],[19].
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Figure 1: f(x) with µ = 0.9 Figure 2: Λ1 for µ = 0.9

Figure 3: BΛ1 for µ = 0.5 Figure 4: Λ2 and Λ3 for µ = 0.9

Figure 5: BΛ2 for µ = 0.95 Figure 6: BΛ3 for µ = 0.95

6



Figure 7: Bifurc. Diag. with x0 = 0.5 Figure 8: Bifurc. Diag. with x0 = −0.5

Figure 9: Enlargement of Fig. 7 Figure 10: Lyapunov exponents for f(x)

Figure 11: a) Classical period-doubling bifurcation scene. b) Border collision bifurcation in
the presence of period doubling.
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4 Conclusions

Piecewise smooth one-dimensional applications
may generate complex dynamics, such as the
coexistence of attractors and border-collision
bifurcations, as discussed elsewhere [5]-[7].

For the system considered herein, the func-
tion f(x) has two unstable fixed points and two

virtual fixed points, if 0 < µ ≤
√

3
2 , there is only

one stable 2-cycle formed by the virtual fixed

points; if
√

3
2 < µ < 1, then the existing stable

periodic orbit becomes unstable, giving rise to
two stable 2-cycles; if µ = 1, the two 2-cycles
Λ2 and Λ3 collide and form an orbit with period
4. Finally, if 1 < µ, the 2-cycle vanishes.

The stability analysis of orbits with periods
one and two was performed using the derivative
criterion, together with the respective basins of
attraction of the orbits, showing that the orbits
are formed by a countable collection of intervals
whose lengths tend to zero.

Simulations were carried out using Matlab
to numerically study the dynamics of the sys-
tem, and the agreement of simulations with an-
alytic results was confirmed.
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