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Abstract

In this paper we consider the Cauchy problem for a particular non-symmetric Keyfitz-Kranzer type system,
by using the vanishing viscosity method coupled with the compensated compactness method we get global
bounded entropy weak solutions. The main difficulty is to get uniformly bounded estimates on the viscosity
method and in this paper is studied.

Keywords: Hyperbolic system, global weak solutions, non-symmetric system, Keyfitz-Kranzer type.

Resumen

En este artículo se considera el problema de Cauchy para un sistema no simétrico de tipo Keyfitz-Kranzer
y utilizando argumentos de viscosidad nula junto con el método de compacidad compensada se obtiene
soluciones débiles entrópicas globales. La principal dificultad es obtener estimaciones uniformemente
acotadas en el método de viscosidad y en este trabajo se estudia.

Palabras clave: Sistema hiperbólico, soluciones débiles globales, sistema no simétrico , tipo Keyfitz-
Kranzer.
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1 Introduction

Many of the natural phenomena are modeled by par-
tial differential equations. Some of the most com-
mon partial differential equations are the wave equa-
tion, the heat equation, the Schröndinger equation
and KdV equation. In this type of problems it is
interesting to study the existence and uniqueness of
solutions, which in many cases is not an easy task.
For example, in the review article [1] the author
studies the existence and uniqueness of solutions for
non-linear Schröndinger equation. However, in the
hyperbolic equations the existence and uniqueness
of solutions are a open problems. The goal this paper
show the existence of solutions for a hyperbolic sys-
tem of conservation laws. We consider the balanced
non-symmetric system

{
ρt +(ρφ(ρ,w)) = f (ρ,w),

(ρw)t +(ρwφ(ρ,w))x = g(ρ,w)
(1)

where φ(ρ,w) = Φ(w)−P(ρ), Φ a convex function.
This system was considered in [2] where the author
showed the existence of global weak solution for
the homogeneous system (1). Another system of the
type (1) was considered in [3] as a generalization
to the scalar Buckley-Leverett equations describing
two phase flow in porous media. The system (1),
recently, has been object of constant studies, in [4]
the author considered the particular case in which
Φ(w) = w, P(ρ) = 1

ρ
, in this case the two characte-

ristics of the system (1) are linear degenerate, solving
the Riemann problem the existence and uniqueness
of delta shock solution were established. In this line
in [5] the authors considered the case Φ(w) = w and
P(ρ) = B

ρα with α ∈ (0,1), the existence and unique-
ness of solutions to the the Riemann problem was got
by solving the Generalize Rankine-Hugoniot condi-
tion. In both cases, when Φ(s) = s the system (1)
models vehicular traffic flow in a highway without
entry neither exit of cars, in this case the source term
represents the entry or exit of cars see [6],[7], [8]
and reference therein for more detailed description
of source term.

Notice that when w is constant, the system (1) re-
duces to the scalar balance laws

ρt +(ρΦ(w)−ρP(ρ))x = f (ρ,w),

and from the second equation in (1), g should be of
the form

g = w f .

Moreover, if we make h(ρ) = ρ(Φ(w)−P(ρ)) the
global weak solution of the Cauchy problem{

ρt +h(ρ)x = f (ρ),

ρ(x,0) = ρ0(x),

there exists if h(ρ) is a convex function and the
source term is dissipative i.e.,

h′′(ρ) =−(2P′(ρ)+ρP′′(ρ))> 0

s f (s)≤ 0.

For details on the above result see [9], [10] and refe-
rences therein. In this work we assume the following
conditions,

C1) f , g are Lipschitz functions such that

w f (ρ,w) = g(ρ,w), f (0,0) = 0.

C2) There exist a constant M > 0 such that

s f (s)≤ 0,

for |s|> M.

C3) The function P(ρ) satisfies

P(0) = 0, lim
ρ→0

ρP′(ρ) = 0, lim
ρ→∞

P(ρ) = ∞,

ρP′′(ρ)+2P′(ρ)< 0, for ρ > 0.

Remark 1.1. By example if f (ρ,w) = ρ , then
g(ρ,w) = ρw. In this case we have the non-
symmetric system with lineal damping.

Making m = ρw, system (1) can be transformed in a
symmetric system{

ρt +(ρφ(ρ,m)) = f (ρ,m),

mt +(ρwφ(ρ,m))x = g(ρ,m).

For this system, making F(ρ,m) =

(ρφ(ρ,m),mφ(ρ,m)), we obtain

dF =

(
φ +ρφρ ρφm

mφρ φ +mφm

)
,

so the eigenvalues and eigenvector of dF are given
by

λ1(ρ,m) = Φ(
m
ρ
)−P(ρ), r1 = (1,−

φρ

φm
), (2)

λ2(ρ,m) = Φ(
m
ρ
)−ρP′(ρ), r2 = (1,

m
ρ
). (3)
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From (2) and (3), the k−Riemann invariants are
given by {

W (ρ,m) = Φ(m
ρ
)−P(ρ),

Z(ρ,m) = m
ρ
.

(4)

Moreover,

∇λ1 · r1 = 0,

∇λ2 · r2 = 2P′(ρ)+ρP′′(ρ).

By C3 condition, the system (6) is linear degenerate
in the first characteristic field, non linear degenerate
in the second characteristic field and non strictly hy-
perbolic. In this paper we obtain the main following
theorem

Theorem 1.2. If the initial data

ρ(x,0) = ρ0(x),w(x,0) = w0(x) ∈ L∞(R), (5)

with ρ0(x)≥ 0. The total variation of the Riemann
invariants W0(x) be bounded, and the conditions C1,
C2, C3 holds, then the Cauchy problem (1), (5) has
a global bounded weak entropy solution and wx(x, t)
is bounded in L1(R). Moreover, for w constant, ρ is
the global weak solution of the scalar balance laws

ρt +h(ρ)x = f (ρ),

where h(ρ) = Φ(w)ρ−ρP(ρ), f (ρ) = f (ρ,w).

2 A priori bounds and existence

In order to get weak solutions, in this section we
investigate the problem of the existence of the solu-
tions for the parabolic regularization to the system
(1){

ρt +(ρφ(ρ,w)) = ερxx + f (ρ,w),

(ρw)t +(ρwφ(ρ,w))x = ε(ρw)xx +g(ρ,w)
(6)

with initial data

ρ
ε(x,0) = ρ0(x)+ ε, wε(x,0) = w0(x). (7)

We consider the transformation m = ρw, replacing
in (6) we have{

ρt +(ρφ(ρ,m)) = ερxx + f (ρ,m),

mt +(mφ(ρ,m))x = εmxx +g(ρ,m),
(8)

with initial data

ρ
ε(x,0), m(x,0) =

w0(x)
ρε(x,0)

. (9)

Proposition 2.1. Let ε > 0. The Cauchy problem
(6)–(7) has a unique solution for any (ρ0,w0). More-
over, if (ρ0,w0) ∈ Σ their solutions (ρε ,mε) satisfies

0 < c≤ ρ(x, t)≤M,

∣∣∣∣m(x, t)
ρ(x, t)

∣∣∣∣≤M.

The proof of this theorem is postponed at the end of
the section. We begin with some lemmas that will
be useful afterward.
Let U = (ρ,m)T , H(U) = ( f (U),g(U)) and M =

DF where F(ρ,m) = (ρφ ,mφ). Then the system
(8) can be written in the form

Ut = εUxx +MUx +H.

For any C1, C2 constants let

G1 =C1−W, (10)

G2 = Z−C2, (11)

where W , Z are the Riemann invariants given in (4).
We proof that the region

Σ = {(ρ,m) : G1 ≤ 0,G2 ≤ 0} (12)

is an invariant region.

Lemma 2.2. If ρ ∈C1,2([0,T ]×R) satisfies

ρt +(ρφ(w,ρ))x = f (ρ,w),

with ρ(0, ·) ≥ 0 and w ∈ C1(R) then ρ(t, ·) ≥ 0.
Moreover, if ρ(0, ·)≥ δ > 0,∫ T

0

∫
∞

−∞

ρ|w−w0|dxdt < K

with K constant, then ρ(x, t)≥ δ (ε,T )> 0 in (0,T ).

For the proof of this lemma see [11, Lemma 2.2].

Lemma 2.3. The functions G1 and G2 defined in
(10) and (11), are quasi-convex.

Proof. Let r = (X ,Y ) be a vector. If r ·∇G1 = 0 then
Y = X(m

ρ
+ρ

P′(ρ)
Φ′(w)) thus

∇
2G1(r,r) =

X2
(
− 1

ρ
(2P′′(ρ +ρP′(ρ))+Φ

′′(w)(
P′(ρ)
Φ′(w)

)2
)
.

If r ·∇G2 = 0 then Y = m
ρ

X , thus we have

∇
2G2(r,r) = 0.
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Lemma 2.4. If the condition C1 holds, then G1, G2

satisfy

∇G1 ·H ≤ 0,

∇G2 ·H ≤ 0.

Proof. From (10) and (11), we have that ∇G1 =

(−Φ′(m
ρ
)−P′,Φ′ 1

ρ
) and ∇G2 = (−Φ

m
ρ2 ,Φ

′ 1
ρ
) then

∇G1 ·H =
Φ′

ρ
(−m

ρ
f +g)+P′ f ≤ 0,

∇G2 ·H =
Φ′

ρ
(−m

ρ
f +g)≤ 0.

From the Theorem 14.7 in [12], the region Σ de-
fined in (12) is an invariant region for the system (8).
It follows from (10), (11) that

C1 ≤Φ(
m
ρ
)−P(ρ),

m
ρ
≤C2.

Therefore,

C1−Φ(C2)≤−P(ρ), (13)

we appropriately choose C1, C2 such that

0 < δ ≤ ρ, P(ρ)≤Φ(C2)−C1.

By (13) we have the proof of Proposition 2.1.

3 Weak convergence

In this section we show that the sequence (ρε ,mε)

has a subsequence that converges the weak solutions
to the system (8). For this we consider the following
entropy-entropy flux pairs construct in [2] by the
author

η(ρ,m) = ρF(
m
ρ
),

q(ρ,m) = ρF(
m
ρ
)φ(ρ,m).

The Hessian matrix of η is given by

∇
2
η =

(
F ′′m

2

ρ3 −F ′′m
ρ

−F ′′m
ρ

F ′′ 1
ρ

)
then we have that

∇
2
η(X ,X) =

F ′′

ρ
(
m
ρ

ρx−mx)
2, (14)

where X = (ρx,mx). If (η ,q) is an entropy-entropy
flux pair, multiplying in (8) by ∇η(ρ,m) we have

nt +qx = εηxx−ε∇
2
η(X ,X)+∇η ·G(ρ,m). (15)

Replacing the equation (14) in (15) we have

nt +qx = εηxx−ε
F ′′

ρ
(
m
ρ

ρx−mx)
2.+∇η ·G(ρ,m).

(16)
Chose a function ϕ ∈C∞

0 (R2
+) satisfying ϕ = 1 on

[−L,L]× [0,T ]. Multiplying (16) by ϕ and integrate
the result in (R2

+) we have∫
R
(ηϕ)(x,T )−

∫
R
(ηϕ)(x,0)

−
∫ T

0

∫
R
(ηϕt +qϕx)dxdt

=−ε

∫ T

0

∫
R

F ′′

ρ
(
m
ρ

ρx−mx)
2 + ε

∫ T

0

∫
R

ηϕxxdxdt

−
∫ T

0

∫
R

∇η ·G(ρ,m)dxdt.

From the Proposition 2.1 we have

ε

∫ T

0

∫ L

−L

F ′′

ρ
(
m
ρ

ρx−mx)
2dxdt ≤C. (17)

As a consequence of the inequality (17) we have the
following lemma.

Lemma 3.1. For any ε > 0, if (ρ,m) is a solutions
to the Cauchy problem (8), (9), then

√
ερx,
√

εmx

are bounded in L2
loc(R2

+)⊂Mloc.

We denote by Mloc the space of Radon Measures.
For any bounded set Ω⊂ R2

+ we have

‖εηxx‖W−1,2(Ω) =√
ε‖η‖L∞(Ω)‖

√
εux‖L2(Ω) sup

ϕ

‖ϕx‖L2 → 0,

when ε → 0.

(18)

Thereby,

∇η ·G(ρ,m) ∈ L∞(Ω)⊂ L1(Ω)⊂Mloc. (19)

Lemma 3.2.

g(ρ)t +

(∫
ρ

g′(s) f ′(s)ds+g(ρ)Φ(w)
)

x
, (20)

(ρΦ(w))t +
(
ρΦ

2(w)+ f (ρ)Φ(w)
)

x (21)

are compact in H−1
loc(R

2
+). Particularly

ρt +(ρΦ(w)−ρP(ρ))x

are compact in H−1
loc(R

2
+).
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Proof. The proof of (21) is a consequence of the
Lemma 3.1 and the inequalities (18), (19) and the
Murat’s Lemma. Multiplying in (20) by g′ we have

g(ρ)t +

(∫
ρ

g′(s) f ′(s)ds+g(ρ)Φ(w)
)

x
=

g(ρ)xx− εg′′(ρ)ρ2
x +ρg′(ρ)Φ(w)x +g′ f (ρ,w).

(22)

By a similar argument in the inequality (18) we have

‖εg(ρ)xx‖W−1,2 → 0,as ε → 0.

From the Lemma 3.1 the last term in (22) is in Mloc.
By the Murat’s Lemma we conclude the proof of
(20).

Now we can stablish the proof of the main theorem.
According to the Young’s measures, there exists a
probability measure vx,t associated with the bounded
sequence (ρε ,wε) such that for almost (x, t), vx,t

satisfies the following Tartar equation,

〈vx,t ,η1q2−η2q1〉= 〈vx,t ,η1q2〉−〈vx,t ,η2q1〉

for any entropy-entropy flux pair, where
〈vx,t , f (λ )〉 =

∫
R2 f (λ )dvx,t(λ ). We consider

the following entropy-entropy flux pairs

η1 = ρ
ε , q1 = ρ

ε(Φ(wε)−P(ρε))+wε ,

η2 = ρ
εwε , q2 = ρ

εwε(Φ(wε)−P(ρε))+(wε)2.

Notice that η1q2−η2q1 = 0, then we have that

η1q2−η2q1 = 0,

where ϕ denotes the weak-star limit w∗− limϕ(uε).

Therefore

ρερεwε(Φ(wε)−P(ρε))+(wε)2

−ρεwερε(Φ(wε)−P(ρε))+wε = 0.

Using the the strong convergence of ρε and Φ(wε)

we have
ρ((wε)2− (wε)2) = 0. (23)

The relation (23) includes the pointwise convergence
of wε if ρ > 0.

4 Conclusion

This paper deals with a 2× 2 inhomogeneous sys-
tem of conservation laws of non-symmetric type,
we extended the results of Lu [2] under adecuate
conditions on the source term.
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