
i
i

“v7n2a10_4917-The*Transient*and*Asymptotic” — 2016/11/3 — 16:40 — page 109 — #1 i
i

i
i

i
i

Ciencia en Desarrollo, Vol. 7 No. 2
ISSN 0121-7488 – Julio-Diciembre de 2016, pp. 109-124

The Transient and Asymptotic Moments for the Random Mission
Time of a System

Los momentos transitorios y estables para el tiempo de misión de un sistema

Álvaro Calvachea*

Viswanathan Arunachalamb

Selvamuthu Dharmarajac

Recepción: 27-ene-2016
Aceptación: 02-jun-2016

Abstract

In this paper, we study fault tolerant systems having one or more components and its system availability over
the random mission time. The mission time is the time that elapses since the initial operation of the system
until its cumulative working time achieves a predetermined fixed time. The main objective of this paper
is to obtain the transient and asymptotic moments for the random mission time of the system availability
subject to failures, as well as its distribution function, by using the theory of travel time distributions of a
mobile, which passes through a finite number of paths wherein the average speed of the mobile varies from
a path to another. A numerical example is presented to show the usefulness of the proposed model.
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Resumen

En este artículo se estudian sistemas tolerantes a fallas con uno o más componentes, y su disponibilidad
durante el tiempo aleatorio de misión. El tiempo de misión es aquél que transcurre desde la operación inicial
del sistema hasta que su tiempo acumulado de trabajo alcanza un tiempo fijo predeterminado. El objetivo
principal del artículo es la obtención de los momentos transitorios y estables del tiempo de misión de la
disponibilidad del sistema sujeto a fallas, así como el análisis de su función de distribución, mediante el
uso de la teoría de las distribuciones de tiempo de viaje de un móvil, que transita por un número finito de
caminos, en los que la velocidad promedio del móvil varía de camino a camino. Un ejemplo numérico se
presenta para mostrar la utilidad del modelo propuesto.
Palabras clave: Tiempo de misión, Tiempo acumulado en operación, Momentos transitorios, Momentos
estables.
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1. Introduction

This paper studies systems having one or more
components, which can be arranged in parallel or
series. The characteristic of our systems is that when
system fails, they can be repaired, and while the
systems are repaired, the they stop working. These
systems can be classified into those that are fault
tolerant and those that are not fault tolerant. Fault
tolerant systems are those that do not compromise
the entire enterprise. For example, systems for online
transaction processing or systems for control process.
These require an almost continuous operation and
they tolerate short downtime. The preventive and
corrective maintenance is generally allowed in these
systems. On the other hand, systems that are not
fault tolerant are those that provide a high reliability
over a long period of the mission time, like those
used in aerospace and in aviation. The system can-
not be tolerated during downtime and the system
reliability is an appropriate measure, since it is im-
possible to achieve desired purpose if the system
fails before completion. In such cases, it is impor-
tant and is more useful to analyze the transient or
time dependent behavior of the system as failures
occur occasionally, as compared to the steady state
behavior. For fault tolerant systems, it is more ap-
propriate to consider the time for which the system
is in operation. Therefore, in these systems the most
appropriate measure of evaluation is that the fraction
of time the system is operating, which is also called
availability of the system. Goyal and Tantawi [9]
presented a complete analysis about a success (risk)
measure of guaranteed availability.

De Souza e Silva and Gail [7] analyzed re-
pairable fault tolerant systems. The system is mod-
eled as a homogeneous Markov process. The distri-
bution of cumulative up-time, that is, the distribution
of the total time during which the system was in
operation over a finite interval time is evaluated nu-
merically. In this evaluation, the capability to specify
error tolerances in advance, numerical stability and
simplicity of implementation are applied. Sericola
[15] extended the work of [7] and obtained a closed-
form solution for the distribution of the total time
spent in a subset of states of a homogeneous Markov
process during a finite time period. The results were
applied to a fault tolerant system. Rubino and Seri-
cola [14] considered a repairable computer system

with alternating time periods during which it delivers
uptime process and downtime process. The cumu-
lative distribution of the uptime for the nth period
is obtained. Donatiello and Iyer [8] presented a so-
lution using Laplace transform of the distribution
of availability using a semi-Markov process. Re-
cently Arunachalam et al. [1] studied some useful
approximation methods for the availability function.

Berry and Belmont [3] summarized different
methods for analyzing the distributions of vehicle
speeds and travel times. They found the relation-
ship between speeds and travel times, set forth ap-
plications to preliminary data and suggested which
techniques of analysis were best suited to the re-
quirements of the engineers. Arunachalam and Dhar-
maraja [2], and Kharoufeh and Gautam [10] de-
scribed a fluid queueing model as one of the stochas-
tic systems which determines the amount of fluid
contained in the buffer at any time instant. The sys-
tem was modeled as a continuous fluid that enters a
buffer and then leaves the buffer through a channel
with a constant output capacity. Also, exists an exter-
nal process, called the random environment process
that modulates the input of fluid to the buffer and
the states of this process dictates the rate at which
fluid flows into the buffer. Kharoufeh and Gautam
presented a model that described the time of travel of
a vehicle for a link of fixed length. The system was
controlled by a random environment process that de-
termined the speed of the vehicle in each one of the
states. Then, they realized that the two models could
be attempted with the same methodology, and finally
some results in the first model are used to obtain
new results for the second model. Note that, these
results presented by them have been complemented
with others, such as those shown by Vanajakshi et al.
[16], who gave an important application introducing
at real-time short-term prediction of travel time for
intelligent transportation systems. It should be noted
that D’Angelo et al. [6] applied time series tech-
niques for short-term travel time prediction. Also,
Chen and Chien [5] analyzed the factors that would
have an impact on the prediction accuracy about
short-term travel time. On this point, it is important
to note that Roden [13] identified potential alterna-
tive methods of addressing the travel time issue and
he estimated the pros and cons of each method.

In this paper, we focus the availability analysis
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of the systems in which the random time required
to accomplish the mission. The main idea is to con-
sider for the distribution of system availability, that
the cumulative time in system uptime is similar to
the distance accumulated by a vehicle in a period of
time. Then the result of the Laplace-Stieltjes trans-
form for the distribution of the availability obtained
by Donatiello and Iyer [8] is presented, but by using
the methodology utilized by Kharoufeh and Gautam
[10]. The contribution of the paper lies in the new
results such as transient and asymptotic moments of
the mission time.

The paper is organized as follows. In Section
2, the description of the availability model for the
system is presented. The solution in Laplace and
Laplace-Stieltjes transforms for the differential equa-
tion of the underlying model is derived. Also, the
results for the transients and asymptotic moments are
presented. In Section 3, the alternative approaches
are presented by using the probabilistic reasoning of
the moments and the moment generating function of
the mission time. The results obtained in Section 2
are graphically illustrated in Section 4.

2. Distribution of System Availability

In this section, we study the faulty tolerant sys-
tems having one or more components. We are in-
terested to study the ratio of time that the system
is working between the total time since the system
started. This proportion is a random variable and it is
known by the system availability. We now study the
behavior of the distribution function of the system
availability.

2.1. Description of the Model

The operating and the failure state of the sys-
tem is modeled as a continuous time Markov chain
(CTMC) with two states, namely, down state and up
state. The aim is to determine the behavior of the
random time of the system is working for an amount
fixed of time. We shall use the following notations:

1. {Zt , t ≥ 0}: CTMC which describes if the sys-
tem is in up state or in down state at time t.

2. S = {0,1}: State space of {Zt , t ≥ 0}. 0 rep-
resents the down state of the system and 1 is
indicates of the up/operative state of the system.

3. Ct : If we call {Z = 1}= {t ≥ 0 | Zt = 1}, then

the cumulative up-time is defined by

Ct =
∫ t

0
I{Z=1}(v)dv,

where IA represents the indicator function over
the event A. Also, C = {Ct , t ≥ 0} is the cumu-
lative up-time process.

4. Q =

[
−λ0 λ0

λ1 −λ1

]
is the infinitesimal generator

for the process {Zt , t ≥ 0}.
5. VZt =

d
dt Ct is the rate at which accumulates the

time when the system is up, in a time t ≥ 0,
therefore V1 = 1 and V0 = 0.

6. V =

[
0 0
0 1

]
= diag(V0,V1) is called the speed

diagonal matrix[11].
7. z0: The initial distribution, that is,

z0 =
(
Pr{Z0 = 0}, Pr{Z0 = 1}

)
= (0,1),

since, we have supposed that the system starts
in up-state.

8. Hi(x, t) for i ∈ S: Probability that at time t, the
system is in state i, and that in the time interval
[0, t), the time spent by the system in up state is
less than the time x. Hence,

Hi(x, t) = Pr
{

Ct ≤ x,Zt = i
}
, i = 0,1.

9. H(x, t): Row vector

H(x, t) =
[
H0(x, t),H1(x, t)

]
.

10. Mx: Given a fixed time x≥ 0, the mission time
for x is

Mx = inf
{

t ≥ 0 |Ct ≥ x
}
.

Mx is the random time that has elapsed since
the initial operation of the system, for that its
cumulative time working is x. This time x is
also called the length of the mission.

11. G(x, t) = FMx(t): For x fixed, it is the cumula-
tive distribution function for Mx, i.e.,

G(x, t) = FMx(t) = P
{

Mx ≤ t
}
.

12. R(x, t) = FCt (x): For a fixed t, it is the cumula-
tive distribution function for Ct , i.e.,

R(x, t) = FCt (x) = Pr
{

Ct ≤ x
}
.
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13. mr(x): The rth moment of Mx, that is,

mr(x) = E
[
M r

x

]
, for x≥ 0,

if this value exists.
14. I and 1: The identity matrix and the column

vector of the only ones, respectively.

2.2. The Availability Model

The following three Lemmas are required to eval-
uate the distribution of the mission time.

Theorem 1.
{

Mx < t
}
=
{

Ct > x
}

for t,x≥ 0.

Proof . Follows from the definition of Mx.

Theorem 2. G(x, t) = 1−R(x, t) = 1− ∑
i∈S

Hi(x, t).

Proof . G(x, t) = Pr
{

Mx ≤ t
}
= Pr

{
Ct ≥ x

}
, by

Lemma 1, and then G(x, t) = 1− Pr
{

Ct ≤ x
}
=

1− ∑
i∈S

Pr
{

Ct ≤ x,Zt = i
}
= 1− ∑

i∈S
Hi(x, t).

Theorem 3. The joint probability distribution
H(x, t) satisfies the system of the partial differential
equations:

∂H0(x, t)
∂ t

=−λ0H0(x, t)+λ1H1(x, t) (1)

∂H1(x, t)
∂ t

+
∂H1(x, t)

∂x
= λ0H0(x, t)−λ1H1(x, t) (2)

with initial conditions:

H0(x,0) = 0 and H1(x,0) = 1. (3)

Proof . Since that Ct is a differentiable function in
almost everywhere, therefore:

Ct+δ =Ct +δ
d
dt

Ct +o(δ ) =Ct +δ VZt +o(δ )

where limδ→0 o(δ )/δ = 0. For j ∈ S,

Pr
{

Ct+δ ≤ x,Zt = j
}
= Pr

{
Ct +δ VZt +o(δ )≤ x,Zt = j

}
= Pr

{
Ct ≤ x−δ VZt +o(δ ),Zt = j

} (4)
= Pr

{
Ct ≤ x−δ Vj +o(δ ),Zt = j

} (5)
= H j(x−δ Vj, t)+o(δ ).

Also,

for all t ≥ 0, Ct is independent with Zt , (6)

in fact,

Pr
{

Ct ≤ x
∣∣Zt = a

}
= Pr

{∫ t

0
I{Z=1}(v)dv ≤ x

∣∣Zt = a
}

= Pr

{∫ t

0
I{Z=1}(v)dv ≤ x

}
= Pr

{
Ct ≤ x

}
.

Thus,

H0(x, t +δ ) =Pr
{

Ct+δ ≤ x,Zt+δ = 0
}

= ∑
j∈S

Pr
{

Ct+δ ≤ x,Zt+δ = 0,Zt = j
}

= ∑
j∈S

Pr
{

Zt+δ = 0 |Ct+δ ≤ x,Zt = j
}

×Pr
{

Ct+δ ≤ x,Zt = j
}

(6)
= ∑

j∈S
Pr
{

Zt+δ = 0 | Zt = j
}

×Pr
{

Ct+δ ≤ x,Zt = j
}

and by (5),

= ∑
j∈S

Pr
{

Zt+δ = 0 | Zt = j
}

×
(

H j(x−δ Vj, t)+o(δ )
)

=
(
1−λ0 δ +o(δ )

)
×
(

H0(x−δ V0, t)+o(δ )
)

+
(
λ1 δ +o(δ )

)
×
(

H1(x−δ V1, t)+o(δ )
)

=(1−λ0 δ )×H0(x, t)+ λ1 δ

×H1(x−δ , t)+o(δ )

=H0(x, t)− λ0 δ ·H0(x, t)+λ1 δ

×H1(x−δ , t)+o(δ ). (7)

Then,

∂

∂ t
H0(x, t) = lim

δ→0

H0(x, t +δ )−H0(x, t)
δ

and by (7),

= lim
δ→0

[
−λ0 H0(x, t)+λ1 H1(x−δ , t)+

o(δ )
δ

]
=−λ0 H0(x, t)+λ1 H1(x, t).
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Hence, equation (1) is satisfied. Now,

H1(x, t +δ ) =Pr
{

Ct+δ ≤ x,Zt+δ = 1
}

= ∑
j∈S

Pr
{

Ct+δ ≤ x,Zt+δ = 1,Zt = j
}

= ∑
j∈S

Pr
{

Zt+δ = 1 |Ct+δ ≤ x,Zt = j
}

×Pr
{

Ct+δ ≤ x,Zt = j
}

(6)
= ∑

j∈S
Pr
{

Zt+δ = 1 | Zt = j
}

×Pr
{

Ct+δ ≤ x,Zt = j
}

and by (5),

= ∑
j∈S

Pr
{

Zt+δ = 1 | Zt = j
}

×
(

H j(x−δ V j, t)+o(δ )
)

(and since Q=

[
−λ0 λ0

λ1 −λ1

]
is the infinitesimal gen-

erator for the process {Zt , t ≥ 0}),

=
(
λ0 δ +o(δ )

)
·
(

H0(x−δ V0, t)+o(δ )
)

+
(
1−λ1 δ +o(δ )

)
·
(

H1(x−δ V1, t)+o(δ )
)

and as V0 = 0,V1 = 1,

=(λ0 δ ) ·H0(x, t)+
(
1−λ1 δ

)
·H1(x−δ , t)+o(δ )

=λ0 δ ·H0(x, t)+ H1(x−δ , t)

− λ1 δ ·H1(x−δ , t)+o(δ ). (8)

Then,

∂

∂ t
H1(x, t) = lim

δ→0

H1(x, t +δ )−H1(x, t)
δ

(8)
= lim

δ→0

[
λ0 H0(x, t)−λ1 H1(x−δ , t)

+
H1(x−δ , t)−H1(x, t)

δ
+

o(δ )
δ

]
=λ0 H0(x, t)−λ1 H1(x, t)−

∂

∂x
H1(x, t).

Hence (2) holds. Besides, since the process is as-
sumed to starts in the up state, therefore:

H0(x,0) = Pr
{

C0 ≤ x,Z0 = 0
}

(6)
= Pr

{
C0 ≤ x

}
·Pr
{

Z0 = 0
}
= 1 ·0 = 0,

and

H1(x,0) = Pr
{

C0 ≤ x,Z0 = 1
}

(6)
= Pr

{
C0 ≤ x

}
·Pr
{

Z0 = 1
}
= 1 ·1 = 1.

Hence we obtain (3).

Remark 4. The equations (1) and (2), with initial
conditions (3) can be written in the matrix form:

∂H(x, t)
∂ t

+
∂H(x, t)

∂x
V = H(x, t)Q (9)

with initial condition:

H(x,0) = z0. (10)

2.3. The Laplace Transform and the Laplace-
Stieltjes Transform of the Distribution
Function for Ct

We shall use the following notations in the re-
sults to follow:

1. If f (t) is a real function, we denote by f ∗(s2)

its Laplace transform (LT), with respect to t (if
it exists), i.e.,

f ∗(s2) =
∫

∞

0
e−ts2 f (t)dt.

2. And if g(x) is a real function, we denote
by g̃(s1) its Laplace-Stieltjes transform (LST),
with respect to x (if it exists), i.e.,

g̃(s1) =
∫

∞

0
e−xs1 dg(x).

3. H̃∗(s1,s2) represents the two-dimensional vec-
tor, double Laplace and Laplace-Stieltjes trans-
form (LT-LST) of H(x, t) (if it exists), i.e.,

H̃∗(s1,s2) :=
∫

∞

0
e−xs1 dH∗(x,s2). (11)

4. If H is differentiable, then

H̃∗(s1,s2) =
∫

∞

0

∫
∞

0
e−xs1−ts2

∂

∂x
H(x, t)dt dx. (12)

Theorem 5. In an interval of time [0, t), the dou-
ble Laplace and Laplace-Stieltjes transform of the
distribution function for Ct , that is, the LT-LST of
R(x, t) = Pr{Ct ≤ x} is given by:

R̃∗(s1,s2) =
s2 +λ0 +λ1

(s2 +λ0)(s1 + s2 +λ1)−λ0λ1
. (13)
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Proof . Taking LT, with respect to t in (1) and for
using the first part of the initial conditions in (3), we
obtain:

s2 H∗0 (x,s2) = −λ0 H∗0 (x,s2) + λ1 H∗1 (x,s2)

and we have:

H∗1 (x,s2) =
λ0 + s2

λ1
H∗0 (x,s2). (14)

Now, taking LT with respect to t in (2) and for
using the second part of the initial conditions in (3),
we obtain:

s1 H∗1 (x,s2)−1+
∂

∂x
H∗1 (x.s2) =

λ0 H∗0 (x,s2) − λ1 H∗1 (x,s2) (15)

and replacing (14) in (15):

s2
(
λ0 + s2

)
λ1

H∗0 (x,s2)−1+
λ0 + s2

λ1

∂

∂x
H∗0 (x,s2)=

λ0 H∗0 (x,s2)−
(
λ0 + s2

)
H∗0 (x,s2).

Taking LT with respect to x with H∗1 (0,s2) = 0, we
obtain:(

s1 + s2
)(

λ0 + s2
)

λ1
H∗∗0 (s1,s2)−

1
s1

=

λ0 H∗∗0 (s1,s2)−
(
λ0 + s2

)
H∗∗0 (s1,s2)

and solving for H∗∗0 (s1,s2):

H∗∗0 (s1,s2) =
λ1

s1

[(
s2 +λ0

)(
s1 + s2 +λ1

)
− λ0λ1

] . (16)

Taking LT with respect to x in (14) and by (16):

H∗∗1 (s1,s2) =
λ0 + s2

s1

[(
s2 +λ0

)(
s1 + s2 +λ1

)
− λ0λ1

] . (17)

Hence, we get

H̃∗0 (s1,s2) =
λ1(

s2 +λ0
)(

s1 + s2 +λ1
)
− λ0λ1

(18)

H̃∗1 (s1,s2) =
λ0 + s2(

s2 +λ0
)(

s1 + s2 +λ1
)
− λ0λ1

. (19)

Remember that, R(x, t) = Pr{Ct ≤ x} (Probability
that in interval the time [0, t), the amount of time
spent by the system in up-state is less or equal to
time x.) Thus,

R(x, t) =Pr
{

Ct ≤ x,Zt = 0
}
+Pr

{
Ct ≤ x,Zt = 1

}
=H0(x, t)+H1(x, t).

Then,

R̃∗(s1,s2) = H̃∗0 (s1,s2)+ H̃∗1 (s1,s2) (20)

and by (18), (19) and (20), we obtain the result in
(13).

Remark 6. Note that the equations (18) and (19)
can be written in matrix form as follows:

H̃∗(s1,s2) = z0
[

s2 I+ s1 V−Q
]−1 (21)

In fact,

z0
[

s2 I+ s1 V−Q
]−1

= (0, 1)

(
s2

[
1 0

0 1

]
+ s1

[
0 0

0 1

]
−

[
−λ0 λ0

λ1 −λ1

])−1

=
1

(s2 +λ0)(s1 + s2 +λ1)−λ0λ1
[λ1,s2 +λ0] =[

H̃∗0 (s1,s2), H̃∗1 (s1,s2)
]
= H̃∗(s1,s2).

2.4. Transient Moments for the Mission Time Mx

In this subsection, we answer to the following
questions: Given a length of the mission x≥ 0, what
is the expected value of the mission time Mx? What
is its variability? Before we discuss some results that
provide answer to these questions, we present the
following remark:

Remark 7. Note that (13) coincides with the result
obtained by Donatiello and Iyer [8], however, the
their approach was based on renewal theoretic argu-
ment. We now give the closed form expression for
R(x, t), in the case that {Zt , t ≥ 0} to be a Markov
process:

R(x, t) =

1−e−λ1x

1+
e−λ0(t−x)

(
2λ1xI0[α]+

4x2I1[α]
√

λ0λ1√
x(t−x)

)
−2xλ1

2λ1x−1

 ,

where α = 2
√

λ0λ1x(t− x) and Ii[α] is the modified
Bessel function of order i.
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Theorem 8. Given the fixed time x≥ 0, then

E
[

Mx
]
=

λ0 +λ1

λ0
x, (22)

Var
[

Mx
]
=2

λ1

λ 2
0

x. (23)

Proof . First, by Lemma 2,

G(x, t) = 1−∑
i∈S

Hi(x, t),

and by properties of the Laplace Transform and the
Laplace-Stieltjes transform, we obtain:

G̃(x,s2) =−G(x,0)+ s2 G∗(x,s2)

=−
[
1−∑

i∈S
Hi(x,0)

]
+ s2

[
1
s2
−∑

i∈S
H∗i (x,s2)

]

=−
[
1−∑

i∈S
Pr
{

Z0 = i
}]

+ s2

[
1
s2
−∑

i∈S
H∗i (x,s2)

]
= 1− s2 ∑

i∈S
H∗i (x,s2). (24)

For r ∈ {1,2, . . .}, differentiating r times with res-
pect to s2, by induction it is possible to demonstrate
that,

∂ rG̃(x,s2)

∂ sr
2

=

−

[
s2 ∑

i∈S

∂ rH∗i (x,s2)

∂ sr
2

+ r ∑
i∈S

∂ r−1H∗i (x,s2)

∂ sr−1
2

]
.

(25)

On the other hand, note that if F is a differentiable
real function and if f (t) = F ′(t) then f ∗(s) = F̃(s)
and therefore,

dnF̃(s)
dsn =

dn f ∗(s)
dsn

=
[
(−t)n f (t)

]∗
(s) =

∫
∞

0
(−t)n f (t)e−t s dt,

and hence,

dnF̃(0)
dsn =

dn f ∗(0)
dsn

=
[
(−t)n f (t)

]∗
(0) =

∫
∞

0
(−t)n f (t)dt.

Then,

mr(x) = E
[
M r

x

]
=
∫

∞

0
tr ∂G(x, t)

∂ t
dt

= (−1)r ∂ rG̃(x,0)
∂ sr

2

and by (25),

mr(x) = (−1)r+1 r ∑
i∈S

∂ r−1H∗i (x,0)
∂ sr−1

2

= (−1)r+1 r

[
∂ r−1H∗0 (x,0)

∂ sr−1
2

+
∂ r−1H∗1 (x,0)

∂ sr−1
2

]

and taking LST on both sides,

m̃r(s1) =

(−1)r+1 r

[
∂ r−1H̃∗0 (s1,0)

∂ sr−1
2

+
∂ r−1H̃∗1 (s1,0)

∂ sr−1
2

]
.

(26)

Hence, by (18), (19) and (26), we obtain:

m̃1(s1) = H̃∗0 (s1,0)+ H̃∗1 (s1,0)

=
λ1(

λ0
)(

s1 +λ1
)
− λ0λ1

+
λ0(

λ0
)(

s1 +λ1
)
− λ0λ1

=
λ0 +λ1

λ0 s1
.

Therefore,

m1(x) =
λ0 +λ1

λ0
x = E

[
Mx
]
. (27)

Also by (18), (19) and (26):

m̃2(s1) =−2

[
∂ H̃∗0 (s1,0)

∂ s2
+

∂ H̃∗1 (s1,0)
∂ s2

]

= 2

(
λ1

λ 2
0 s1

+

(
λ0 +λ1

λ0

)2 1
s2

1

)
.

Therefore,

m2(x) = 2
λ1

λ 2
0

x+
(

λ0 +λ1

λ0

)2

x2 = E
[

M 2
x

]
.

(28)
Finally,

Var
[

Mx
]
= E

[
M 2

x

]
−E

[
Mx
]2

= 2
λ1

λ 2
0

x.

115



i
i

“v7n2a10_4917-The*Transient*and*Asymptotic” — 2016/11/3 — 16:40 — page 116 — #8 i
i

i
i

i
i

Álvaro Calvache et al.

2.5. Asymptotic Moments for the Mission Time
Mx

We now obtain the asymptotic moments of first and
second order, for the mission time Mx.

Corollary 9.

lim
x→∞

E
[
Mx
]

x
=

λ0 +λ1

λ0
, and

lim
x→∞

E
[

M 2
x

]
x2 =

(
λ0 +λ1

λ0

)2

.

(29)

Proof . This result follows from Theorem 8, more
precisely from equations (27) and (28).

Remark 10. Kharoufeh and Gautam [11] found that
if the process {Zt , t ≥ 0} has a stationary distribution
p, the speed diagonal matrix V is defined positive
and m′2(x)→ ∞ as x→ ∞, then,

lim
x→∞

m1(x)
x

=
1

p ·V ·1
, and

lim
x→∞

m2(x)
x2 =

1(
p ·V ·1

)2 .

(30)

Now, by taking

lim
V0→0+

1
p ·V ·1

and lim
V0→0+

1(
p ·V ·1

)2 ,

the results in (30) also are valid in our model, since
the expressions in its denominators are continuous
and limV0→0+

(
p ·V ·1

)
6= 0. Hence, we can demon-

strate (29), without using Theorem 8. In fact, for
t ≥ 0, let us denote Pi j(t) = Pr{Zt = j | Z0 = i},
for i, j ∈ S and the transition probability matrix
P(t) = [Pi j(t)]i, j∈S. It is well known that (Refer [4]):

P(t) =
λ1

λ0+λ1
+ λ0

λ0+λ1
e−(λ0+λ1)t λ0

λ0+λ1
− λ0

λ0+λ1
e−(λ0+λ1)t

λ1
λ0+λ1

− λ1
λ0+λ1

e−(λ0+λ1)t λ0
λ0+λ1

+ λ1
λ0+λ1

e−(λ0+λ1)t


and therefore,

p =

[
λ1

λ0 +λ1
,

λ0

λ0 +λ1

]
(31)

is a stationary distribution row vector for {Zt , t ≥ 0}.
But,

p ·V ·1 =

[
λ1

λ0 +λ1
,

λ0

λ0 +λ1

] [
0 0
0 1

] [
1
1

]
=

λ0

λ0 +λ1
.

Then, by the first part of (30),

lim
x→∞

E
[
Mx
]

x
=

1
p ·V ·1

=
λ0 +λ1

λ0
.

Similarly, using the second part of (30), we obtain,

lim
x→∞

E
[

M 2
x
]

x2 =

(
λ0 +λ1

λ0

)2

.

Corollary 11.

lim
x→∞

Var[Mx]

x
= 2

λ1

λ 2
0
.

Proof . The result follows from Theorem 8.

3. Alternative Approaches

In this section, we present some alternative ap-
proaches to derive the moments for the mission time
E
[
Mk

x
]
, for x > 0 and k ∈ Z+ (if they exist), without

using Lemma 3 and inverting transforms. First, we
present a direct derivation of the moments of the
mission time.

Lemma 12. For x > 0, h > 0 and k ∈ Z+,

E
[
Mk

x+h
]
=

k

∑
j=0

(
k
j

)
E
[
M j

x
]

E
[
Mk− j

h

]
, (32)

if E
[
M j

t
]

exists, for all t ≥ 0, for all j = 0,1, . . . ,k.

Proof . By the strong Markov property, we have

E
[

Mk
x+h

∣∣∣Mx = z
]
= E

[
(z+Mh)

k
]
, (33)

then,

E
[
Mk

x+h
]
= E

[
E
[
Mk

x+h

∣∣Mx
]]

=
∫

∞

0
E
[

Mk
x+h

∣∣∣Mx = z
]

dFMx(z)

(33)
=

∫
∞

0
E
[
(z+Mh)

k
]

dFMx(z),

=
∫

∞

0
E

[
k

∑
j=0

(
k
j

)
z j Mk− j

h

]
dFMx(z)

and as M j
x and Mk− j

h are integrable with respect to
FZ ×FMx , and so it is possible to use the Fubini’s
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theorem, to interchange the integral with the expect
value:

= E

[
k

∑
j=0

(
k
j

) [∫
∞

0
z j dFMx(z)

]
Mk− j

h

]

= E

[
k

∑
j=0

(
k
j

)
E
[
M j

x
]

Mk− j
h

]

=
k

∑
j=0

(
k
j

)
E
[
M j

x
]

E
[
Mk− j

h

]
.

Lemma 13. For x > 0, and k ∈ Z+,

E
[
Mk

x
]
=

k−1

∑
j=0

(
k
j

)(
lim
h→0

Mk− j
h
h

)∫ x

0
E[M j

s ]ds.

Proof . Let fk be the function defined by fk(x) :=
E[Mk

x ] for x≥ 0 and k ∈ Z+, and f0(x) = 1 for x≥ 0.
Then,

fk(x+h)− fk(x)
(32)
=(

k

∑
j=0

(
k
j

)
E
[
M j

x
]

E
[
Mk− j

h

])
−E[Mk

x ],

=
k−1

∑
j=0

(
k
j

)
E
[
M j

x
]

E
[
Mk− j

h

]
=

k−1

∑
j=0

(
k
j

)
f j(x) fk− j(h). (34)

We assume that the limit exists, then,

f
′
k(x)

(34)
= lim

h→0

∑
k−1
j=0

(k
j

)
f j(x) fk− j(h)

h
,

=
k−1

∑
j=0

(
k
j

)
f j(x) lim

h→0

fk− j(h)
h

,

and given that fk(0) = E[Mk
0] = 0, for all k ∈ Z+,

then

fk(x) =
∫ x

0
f
′
k(s)ds

=
k−1

∑
j=0

(
k
j

) (
lim
h→0

fk− j(h)
h

) ∫ x

0
f j(s)ds.

Lemma 14.

lim
h→0+

E [Mh]

h
=

λ0 +λ1

λ0
,

and for k = 2,3, . . . , lim
h→0+

E
[
Mk

h

]
h

=
k!λ1

λ k
0

.

Proof . Given that Pr {Z0 = 1}= 1, so let X1 repre-
sents this first sojourn time in state 1, and X0 repre-
sents this first sojourn time in state 0. So if h > 0,
then

E
[
Mk

h

]
= E

[
Mk

h ·
(
I[{X1>h}

⋃
{X1≤h}]

)]
= E

[
Mk

h · I{X1>h}

]
+E

[
Mk

h · I{X1≤h}

]
= E

[
Mk

h · I{X1>h}

]
+E

[
Mk

h · I[{X1≤h}
⋂
{X0+X1>h}]

]
+E

[
Mk

h · I[{X1≤h}
⋂
{X0+X1≤h}]

]
= E

[
Mk

h · I{X1>h}

]
+E

[
Mk

h · I{X1≤h,X0+X1>h}

]
+E

[
Mk

h · I{X0+X1≤h}

]
. (35)

Now, if the first working sojourn time of the system
X1 > h, then, Mh = h. Thus,

E
[
Mk

h · I{X1>h}

]
= hk Pr (X1 > h) = hk e−λ1h. (36)

Also, if X1+X0 ≤ h, then Mh = X1+X0+Mh−X1 and
so,

E
[
Mk

h · I{X0+X1≤h}

]
=∫ h

0

∫ h−x1

0

∫
∞

x0+x1

tk
λ0 e−λ0x0 λ1 e−λ1x1 dFMh(t)dx0 dx1

=
∫ h

0

∫ h−x1

0

∫
∞

0

(
x0 + x1 + y

)k
λ0 e−λ0x0

·λ1 e−λ1x1 dFMh−x1
(y)dx0 dx1

≤
∫ h

0

∫ h−x1

0

∫
∞

0

(
h+ t

)k
λ0 e−λ0x0

·λ1 e−λ1x1 dFMh(t)dx0 dx1

=
∫ h

0

∫ h−x1

0
E
[(

h+Mh)
k
]

λ0 e−λ0x0 λ1 e−λ1x1 dx0 dx1

= E
[(

h+Mh)
k
]
·Pr
(
X1 +X0 ≤ h

)
= o(h), (37)

since Pr
(
X1 +X0 ≤ h

)
= o(h) and by the dominated

convergence theorem,

lim
h→0+

E
[(

h+Mh)
k
]
= 0.
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Besides, if X1 ≤ h and X0 + X1 > h, then Mh =

X1 +X0 +Mh−X1 and so,

E
[
Mk

h · I{X1≤h,X1+X0>h}

]
=∫ h

0

∫
∞

h−x1

∫
∞

0
tk

λ0 e−λ0x0 λ1 e−λ1x1 dFMh(t)dx0 dx1

=
∫ h

0

∫
∞

h−x1

E
[
Mk

h

∣∣X1 = x1, X0 = x0

]
· λ0 e−λ0x0 λ1 e−λ1x1 dx0 dx1

=
∫ h

0

∫
∞

h−x1

E
[(

x0 + x1 +Mh−x1

)k
]

· λ0 e−λ0x0 λ1 e−λ1x1 dx0 dx1

=
∫ h

0

∫
∞

h−x1

k

∑
j=0

(
k
j

)
E
[(

x1 +Mh−x1

) j
]

· xk− j
0 λ0 e−λ0x0 λ1 e−λ1x1 dx0 dx1

=
∫ h

0

k

∑
j=0

(
k
j

)
E
[(

x1 +Mh−x1

) j
]

·
[∫

∞

h−x1

xk− j
0 λ0 e−λ0x0 dx0

]
λ1 e−λ1x1 dx1

=
∫ h

0

k

∑
j=0

(
k
j

)
E
[(

x1 +Mh−x1

) j
]

·
[∫

∞

0
(y+h− x1)

k− j
λ0 e−λ0(y+h−x1) dy

]
·λ1 e−λ1x1 dx1

=
∫ h

0

k

∑
j=0

(
k
j

)
E
[(

x1 +Mh−x1

) j
]

·
[∫

∞

0
(y+h− x1)

k− j
λ0 e−λ0y dy

]
· e−λ0(h−x1)λ1 e−λ1x1 dx1

=
∫ h

0

k

∑
j=0

(
k
j

)
E
[(

x1 +Mh−x1

) j
]

E
[
(X0 +h− x1)

k− j
]

· e−λ0(h−x1)λ1 e−λ1x1 dx1,

and substituting z = h− x1, =∫ h

0

k

∑
j=0

(
k
j

)
E
[(

h− z+Mz
) j
]

e−λ0z

·E
[
(X0 + z)k− j

]
λ1 e−λ1(h−z) dz

=
∫ h

0

k

∑
j=0

(
k
j

) j

∑
i=0

(
j
i

)
hi E

[(
Mz− z

) j−i
]

e−λ0z

· E
[
(X0 + z)k− j

]
· λ1 e−λ1(h−z) dz =

k

∑
j=0

j

∑
i=0

(
k
j

)(
j
i

)
hi

λ1 e−λ1h
∫ h

0
E
[(

Mz− z
) j−i

]
· e−(λ0−λ1)z · E

[
(X0 + z)k− j

]
dz. (38)

Now, if i < j then,∣∣∣∫ h

0
E
[(

Mz− z
) j−i

]
e−(λ0−λ1)z E

[
(X0 + z)k− j

]
dz
∣∣∣

≤
∫ h

0
E
[
M j−i

h

]
e−(λ0−λ1)z E

[
(X0 +h)k− j

]
dz

≤
∫ h

0
E
[
M j−i

h

]
e−(λ0−λ1)z E

[
(2h)k− j

]
dz

= E
[
M j−i

h

][
λ1

λ0

(
1− e−λ0h)](2h)k− j

≤ mh j−i
[

λ1

λ0

(
1− e−λ0h)](2h)k− j,

for some m ∈ Z+, and so,

lim
h→0+

1
h

∫ h

0
E
[(

Mz− z
) j−i

]
· e−(λ0−λ1)z E

[
(X0 + z)k− j

]
dz = 0, (39)

but if i = j then,∫ h

0
e−(λ0−λ1)z E

[
(X0 + z)k− j

]
dz

=
∫ h

0
e−(λ0−λ1)z

∫
∞

0
(x0 + z)k− j

λ0 e−λ0 x0 dx0 dz,

and set y = x0 + z,

=
∫ h

0
eλ1z

∫
∞

z
λ0 e−λ0y yk− j dydz. (40)

But,∫
∞

z
λ0 e−λ0y yk− j dy =∫
∞

0
λ0 e−λ0y yk− j dy−

∫ z

0
λ0 e−λ0y yk− j dy =

E
[
Xk− j

0

]
−

∞

∑
n=0

(−1)n λ
n+1
0 zk− j+n+1

n!(k− j+n+1)
.

taking an =
(−1)n λ

n+1
0

n!(k− j+n+1) , and by using (40),

∫ h

0
e−(λ0−λ1)z E

[
(X0 + z)k− j

]
dz =∫ h

0
eλ1z

[
E
[
Xk− j

0

]
−

∞

∑
n=0

an zk− j+n+1

]
dz =

E
[
Xk− j

0

] eλ1h−1
λ1

−o(h),
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thus,

lim
h→0+

1
h

∫ h

0
e−(λ0−λ1)z E

[
(X0 + z)k− j

]
dz =

E
[
Xk− j

0

]
=

(k− j)!

λ
k− j
0

. (41)

Then by (38), (39) and (41), it is obtained,

lim
h→0+

1
h

E
[
Mk

h · I{X1≤h,X1+X0>h}

]
=

k!λ1

λ k
0

. (42)

Then, if k = 1, by (36),

lim
h→0+

1
h

E
[
Mh · I{X1>h}

]
= lim

h→0+

1
h

he−λ1h = 1,

by (42),

lim
h→0+

1
h

E
[
Mh · I{X1≤h,X1+X0>h}

]
=

λ1

λ0
,

and combining these two latest results with (37), it
is obtained that,

lim
h→0+

1
h

E [Mh] = 1+
λ1

λ0
=

λ0 +λ1

λ0
.

Now, if k≥ 2, by using (36), (37) and (42), it results
that

lim
h→0+

1
h

E
[
Mk

h

]
=

k!λ1

λ k
0

.

Theorem 15. For all x > 0, it is true the next recur-
rent formula:

E
[
Mx
]
=

(
λ0 +λ1

λ0

)
x,

and for k = 2,3, . . .,

E
[
Mk

x
]
=

k−2

∑
j=0

(
k
j

)[
(k− j)!λ1

λ
k− j
0

] ∫ x

0
E
[
M j

s
]

ds

+ k
[

λ0 +λ1

λ0

] ∫ x

0
E
[
Mk−1

s
]

ds.

Proof . The proof follows from the Lemma 13 and
Lemma 14.

Example 16. Using Theorem 15, we have

E
[
Mx
]
=

λ0 +λ1

λ0
x, and

E
[
M2

x
]
=

2λ1

λ 2
0

∫ x

0
E
[
M0

s
]

ds+2
λ0 +λ1

λ0

∫ x

0
E
[
Ms
]

sds =

2λ1

λ 2
0

x+2
λ0 +λ1

λ0

∫ x

0

[
λ0 +λ1

λ0

]
sds =

2λ1

λ 2
0

x+
(

λ0 +λ1

λ0

)2

x2,

and so,

Var
[
Mx
]
= E

[
M2

x
]
−E

[
Mx
]2

=
2λ1

λ 2
0

x.

These are the same results that in Theorem 8.

Corollary 17. For all k ∈ Z+, and x > 0, E
[
Mk

x
]

is
a polynomial of degree k, more precisely

E
[
Mk

x
]
=

k

∑
i=0

cki xi,

for some ck0, ck1, . . . ,ckk ∈ R, where

ckk =

(
λ0 +λ1

λ0

)k

.

Proof . By induction: In Example 16, it was seen
the cases for k = 1 and k = 2. Let n ∈ {2,3, . . .} and
suppose that for j = 0,1, . . . , n, E

[
M j

x
]
= ∑

j
i=0 c ji xi,

for some c ji ∈ R, where c j j =
(

λ0+λ1
λ0

) j
. Then, by

Theorem 15,

E
[
Mn+1

x ] =
n−1

∑
j=0

(
n+1

j

) [
(n+1− j)!λ1

λ
n+1− j
0

]

×
∫ x

0
E
[
M j

s
]

ds+ (n+1)
(

λ0 +λ1

λ0

)∫ x

0
E
[
Mn

s
]

ds

=
n−1

∑
j=0

(
n+1

j

) [
(n+1− j)!λ1

λ
n+1− j
0

]∫ x

0

j

∑
i=0

c ji si ds

+ (n+1)
(

λ0 +λ1

λ0

)∫ x

0

n

∑
i=0

cni si ds

=
n−1

∑
j=0

(
n+1

j

) [
(n+1− j)!λ1

λ
n+1− j
0

]
j

∑
i=0

c ji

i+1
xi+1

+ (n+1)
(

λ0 +λ1

λ0

) n

∑
i=0

cni

i+1
xi+1

= q(x)+(n+1)
(

λ0 +λ1

λ0

)
cni

n+1
xn+1,

= q(x)+
(

λ0 +λ1

λ0

)n+1

cni xn+1,

where q(x) is a polynomial of degree n.
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Corollary 18. For all k ∈ Z+,

lim
x→∞

E
[
Mk

x
]

xk =

[
λ0 +λ1

λ0

]k

.

Proof . If k ∈ Z+, then by Corollary 17,

lim
x→∞

E
[
Mk

x
]

xk = lim
x→∞

p(x)+
(

λ0+λ1
λ0

)k
xk

xk ,

where p(x) is a polynomial of degree k− 1, (see
[12]),

= lim
x→∞

 p(x)
xk +

(
λ0+λ1

λ0

)k
xk

xk

=

(
λ0 +λ1

λ0

)k

,

which coincides with the asymptotic results in Corol-
lary 9.

3.1. The Moment Generating Function of Mx

We now give an another approach to derive the
moments for the mission time E

[
Mk

x
]
, for x ≥ 0,

using the fact that the process has the independent in-
crements, the distribution of Mx is fully represented.
Let us take U1 the random time that the system is
working for the first time, and D1 be the random time
that the system is down immediately after a time U1.
In general, Ui is the random time at which the sys-
tem is working, and Di is the random time at which
the system is down immediately after a time Ui, for
i = 1,2, . . .. Note that both Ui’s and Di are indepen-
dent and identically distributed exponential random
variables with parameters λ1 and λ0 respectively. We
now define

X1 =U1,

Xi =Di−1 +Ui, i = 2,3, . . . ,

Let Tn = X1 + X2 + · · ·+ Xn, for n = 1,2 . . ., then
{Tn;n = 1,2, . . .} is a delayed renewal process and
its counting process {NT (t); t ≥ 0}, represents the
number of times the systems failed during the time
interval [0, t]. Let Sn = U1 +U2 + · · ·+Un, for n =

1,2 . . ., then {Sn;n = 1,2, . . .} be an renewal process,
which represents the times at which after each failure
and the subsequent replacement by a new compo-
nent. The counting process for {Sn;n = 1,2, . . .} is
denoted by {N(t); t ≥ 0}. Thus, for x≥ 0 fixed time

and Mx is the random mission time, and if we sub-
tract Mx from D1 + · · ·+DNT (Mx) (the times at which
the system is not working until Mx), we get

NT (Mx) = N(x), almost everywhere (ae),

this is due to the fact that

U1 +(D1 +U2)+ · · ·+
(

DNT (Mx)−1 +UNT (Mx)

)
+[

DNT (Mx)+

(
x−

NT (Mx)

∑
i=1

Ui

)]
ae
= Mx,

so that,

x+
N(x)

∑
i=1

Di
ae
= Mx.

Now, by using the Wald’s equation, we obtain:

E [Mx ] = x+E [N(x) ] ·E [D1 ]

= x+[λ1 x ] ·
[

1
λ0

]
=

(
1+

λ1

λ0

)
x.

If φX(t) represents the moment generating function
of a random variable X , i.e,

φX(t) = E
[
etX] ,

then,

φMx(t) = E
[
etMx

]
= E

[
et
(

x+∑
N(x)
i=1 Di

)]
= etxE

[
N(x)

∏
i=1

etDi

]

= etx
∞

∑
n=0

E

[
N(x)

∏
i=1

etDi

∣∣∣N(x) = n

]
·Pr
(
N(x) = n

)
= etx

∞

∑
n=0

E

[
n

∏
i=1

etDi

]
·
(

e−λ1x (λ1x)n

n!

)
= etx−λ1x

∞

∑
n=0

(
E
[
etD1

]
λ1x
)n

n!

= etx−λ1xeφD1 (t)λ1x

= exp

(
x

[
t−λ1 +

[
1− t

λ0

]−1

λ1

])
.

Then,

φ
′
Mx
(t) = x ·φMx(t) ·

λ0λ1 +(t−λ0)
2

(t−λ0)2 , and so,

φ
′
Mx
(0) = E [Mx] =

λ0 +λ1

λ0
x.
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And

φ
′′
Mx (t) = x ·φMx (t) ·

x
(
(t−λ0)

2 +λ0λ1
)2−2λ0λ1 (t−λ0)

(t−λ0)4 ,

thus,

φ
′′
Mx (0) = E

[
M2

x
]
=

2λ1x
λ 2

0
+

(
λ0 +λ1

λ0

)2

x2,

which coincides with the results in Theorem 8.

Remark 19. It is known that as x→ ∞,

Mx

x
→ λ0 +λ1

λ0

almost surely, which is true because

lim
x→∞

x
Mx

= lim
t→∞

1
t

∫ t

0
I{Z(s)=1} ds

where both limits represent the long-run fraction of
time the environment process Z is in state 1. Clearly
the limit on the right-hand-side of this equality con-
verges almost surely to λ0/(λ0 +λ1) since Z is both
irreducible and positive.

Remark 20. In [8], the Laplace transform (with res-
pect to x) of E[Mk

x ] is computed, and asymptotic
(as x → ∞) are derived for both the first and se-
cond moments of Mx. In fact, if the state space S of
{Z(t); t ≥ 0} is an arbitrary finite state space, with
Ct satisfying

Ct =
∫ t

0
∑
i∈S

Vi I{Zh=i} dh

and Mx defined in the same way and it is assumed
that Vi > 0 for all i, however, in this paper the
case where V1 > 0,V0 = 0 is considered. By think
studying a more general CTMC {Z(t); t ≥ 0} whose
state space S is finite, and can be decomposed as
S = S+∪S0, where

S+ = {i ∈ S : Vi > 0}, S0 = {i ∈ S : Vi = 0}.

This is more general than the model considered in
[8], and it should be possible to study the moments of
Mx by using the results of this Section. These same
ideas could possibly be used to study the moments
of Mx when S+ contains two or more elements as
well. Furthermore, considering cases where S0 con-
tains many elements would correspond to downtimes
that are phase-type distributed, and this is interes-
ting from a reliability perspective since it allows us
to model downtimes that are not well-described by
exponential random variables.

4. Numerical Illustration

In this section, we analyze, through illustrations,
what happens to the expected value and variance
of the mission time Mx, when we choose different
lengths of the mission x and different values for λ0

and λ1.

Since our interest is to analyze the overall beha-
vior of these measures, we interpret the random va-
riable Mx, the expected value E[Mx] and the variance
Var[Mx] as functions of the length of the mission x
with the following functions:
y(x) = µx, y1(x) = µx±σx, y2(x) = µx±2σx and
y3(x) = µx± 3σx, where µx = m1(x) = E[Mx] and

σx =
√

Var
[
Mx
]
.

The purpose of defining the above functions is
to observe what happens to the behavior of the ran-
dom variable Mx, for each value of x ≥ 0. In fact,
we observe how the intervals (µx − σx,µx + σx),
(µx − 2σx,µx + 2σx) and (µx − 3σx,µx + 3σx) be-
have, because it is known that at these intervals most
of the information about Mx is concentrated. In each
of the Figures 1 to 9, we show the graphs of y(x),
y1(x), y2(x) and y3(x), but in each graph, a different
analysis is performed according to the variation of
the parameters λ0 and λ1.
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Figure 1. λ0 = 5.0, λ1 = 1.0.
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Figure 2. λ0 = 2.0, λ1 = 1.0.
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Figure 3. λ0 = 1.0, λ1 = 1.0.

−5 0 5 10 15 20 25 30
−10

0

10

20

30

40

50

60

x

y

 

 
  y = y(x)
  y = y

1
(x)

  y = y
2
(x)

  y = y
3
(x)

Figure 4. λ0 = 0.5, λ1 = 1.0.
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Figure 5. λ0 = 0.1, λ1 = 1.0.

In Figures 1 to 5, we are illustrating the situa-
tion by means of five graphs, in which λ1 = 1.0 is
fixed and in each graph λ0 value is varied from high
to low. It is noted that for each fixed value of x, if
the λ0 parameter value decreases, then both m1(x)
values and the standard deviations of Mx, increase.
In addition it is noted that in each of graphs, if x is
increasing then both m1(x) values and the standard
deviations of Mx also increase.

In Figures 6, 7, 3, 8 and 9, there are five graphs
in which λ0 = 1.0 is fixed and in each graph we have
varied λ1 value from low to high. It is noted that for
each fixed value of x, if λ1 value increases, then both
µx and σx, increase. In addition it is noted that in
each of graphs, if x is increasing then both µx and σx

also increase.
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Figure 6. λ0 = 1.0, λ1 = 0.1.

−5 0 5 10 15 20 25 30
−10

0

10

20

30

40

50

60

x

y

 

 
  y = y(x)
  y = y

1
(x)

  y = y
2
(x)

  y = y
3
(x)

Figure 7. λ0 = 1.0, λ1 = 0.5.

Cases with large standard deviations happen if
either λ0 values are small or λ1 values are large. In
any case, the most critical situations are observed for
small values of x, since the coefficients of variation
(CV (x) = σx/µx) are very large. In Figures 4 and 5,
we observe that the above affirmation is true. For
values of x close to 0, the standard deviation is very
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large in proportion to µx. In Figures 8 and 9, we
realize that for large values of x, the standard devia-
tions are very small in proportion to µx, that is, the
coefficients of variation are very small.

From these analyses we conclude that the predic-
tion obtained by estimation of E[Mx] is quite useful,
especially because the length of the mission x re-
quired in real situations, is not small. It is also noted
that the results obtained are better for large values of
λ0 and small values of λ1.
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Figure 8. λ0 = 1.0, λ1 = 2.0.
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Figure 9. λ0 = 1.0, λ1 = 5.0.

5. Conclusion

With the increasing complexity and automation
related to systems encountered in the modern in-
dustries, the random mission time analysis is being
recognized as the suitable reliability method for stu-
dying system availability. The novelty of this article
is to obtain the distribution of the random mission
time and its transient and asymptotic moments by
two different approaches. In the first approach, the
problem was modeled by using the theory of the
link travel time and the second approach, we have
proposed an alternative direct method to calculate

moments of random mission time drifting from the
classical theory of probability. An example is pre-
sented to evaluate the expected value and variance
of the mission time for the system.
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