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Abstract

In many applications we find data corresponding to variables that are highly correlated, one of them being 
able to explain the behavior of the others. This happens in particular with the performance in mathematics 
and critical reading given in the tests SABER11. The theory of copula functions arises as an alternative to 
measure the dependence of random variables with given marginal distributions, allowing to apply different 
measures of association and different estimation methods. In this article we show how to build a bivariate 
model under the context of the Copula functions for data coming from the aforementioned variables. The 
properties of the adjusted models were verified and different estimation methods were compared such as 
Kendall’s Tau, Spearman’s Rho, Pseudo Maximum Likelihood and Maximum Likelihood using the Copula 
package and VineCopula of the R software in order to verify the quality of the built model. Simulated data 
were used to carry out this process and the models were applied to real data on performance in critical 
reading and mathematics for students between 14 and 24 years who presented the tests SABER 11 in 2016 
in the Department of Tolima.
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En muchas aplicaciones encontramos datos correspondientes a variables que están altamente correlacionadas 
pudiendo una de ellas explicar el comportamiento de las otras. Esto sucede en particular con el rendimiento 
en matemáticas y la lectura crítica dados en las pruebas saber 11. La teoría de las funciones cópula surgen 
como una alternativa para medir la dependencia de variables aleatorias con distribuciones marginales 
dadas, permitiendo estimar diferentes medidas de asociación y diferentes métodos de estimación. En este 
artículo se muestra cómo construir un Modelo Bivariado bajo el contexto de las funciones Cópula para 
datos provenientes de las variables mencionadas. Se verificaron las propiedades de los modelos ajustados y 
se compararon diferentes métodos de estimación tales como el Tau de Kendall, el Rho de Spearman, Pseudo 
Máxima Verosimilitud y Máxima Verosimilitud usando el paquete Cópula y VineCopula del software R con 
el fin de verificar la calidad del modelo construido. Se usaron datos simulados para realizar este proceso y 
se aplicaron los modelos a datos reales de rendimiento en lectura crítica y matemáticas en estudiantes que 
presentaron las pruebas saber 11 en el año 2016 en el Departamento del Tolima.

Palabras clave: Modelos bivariados, funciones cópula, dependencia entre variables aleatorias

1.	 INTRODUCTION

The presence of correlated variables is very 
frequent in studies of applications in different 
areas of knowledge. For example: in actuarial 
sciences, they are used to model mortality and 
dependent losses; in finance, they are used in the 
allocation of assets, modeling and administration 
of risk levels, and credit rating; in biomedical 
studies, they are used for the modeling of 
correlated data and competitive risk models or 
survival models; in engineering, they are used 
to model the control of multivariate processes 
and hydrological studies; in education, they are 
used to analyze the quality of education (Bustos 
and Guerrero, 2011, Cepeda-Cuervo and Nuñez-
Antón, 2013). Ignoring this dependence on the 
adjustment of the data can lead to erroneous and 
unreliable inferences. This is the reason why it 
becomes important to know alternative methods 
to study the lack of independence between 
random variables.

Copula functions are a tool for modeling 
and measuring the dependence between random 
variables with given marginal distributions, 
allowing the modeling of association measures by 
different methods (Erley, 2009). The underlying 
idea behind the copula is that, once the joint 
distribution of certain variables X and Y is known, 
it becomes unnecessary to use any artificial unit to 
describe each of the variables. In this way, copulas 
are useful tools to model and simulate random 
variables that have some type of dependence.

The main objective of this article is to 
illustrate how a copula can be used to model 

the dependence of two random variables, so the 
article has statistical interest mainly. However, we 
wanted to support our construct with the use of 
real variables that were of practical interest. The 
data of the SABER11 test were appropriate for 
our purposes by offering two variables of great 
interest in learning: the scores in Mathematics 
and Critical Reading, for students between 14 and 
24 years who presented the afore- mentioned test 
in the Department of Tolima.

We believe that one of the epistemological 
obstacles in the learning of mathematics is the 
difficulty in handling a language that allows to 
understand mathematical concepts. Part of the 
lack of language management is based on the 
lack of a rich vocabulary and poor reading habits. 
For this reason, we believe that standing out the 
high dependency between these two variables, we 
are contributing to stand out the need to promote 
good reading habits.

Therefore, our process of construction of a 
copula uses as marginal variables those already 
mentioned: scores in reading and mathematics. 
Initially we tried to model these marginals through 
a beta regression, so we transformed them to a 
scale in the interval (0,1). Later we observed that 
the transformed variables could be considered 
as truncated normal and, even more, in spite of 
the truncation they could be adjusted by normal 
distributions in a high degree. For this reason the 
article ends up constructing copulas by means of 
normal marginals.

Different algorithms provided by the R 
software were tested and finally we selected 
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the one that gave us the lowest AIC. It was 
the bivariate Gaussian algorithm . Using this 
algorithm we simulate data to compare the results 
with those obtained in the construction with the 
real variables. This step was taken as a verification 
of the quality of the built joint distribution.

2.	 THEORETICAL FOUNDATION

2.1	 Copula functions

The theory of copula functions has become 
a very powerful tool in many fields, especially 
when multivariate dependence is of great interest 
(Nelsen , 1999, Cepeda-Cuervo et al., 2012).

Definition: A copula, C, is a multivariate 
distribution function whose marginal distributions 
are uniform in [0, 1]. In the bivariate case, C(u, v) 
= p[U ≤ u,V ≤ v] is a bivariate function defined in 
[0, 1]2 → [0, 1] that verifies the following three 
properties.

i.	 C(u, v) is an increasing function for each 
component.

ii.	 C(u, 1) = u, C(1, v) = v and C = (u, 0) = 0 
=C(0, u).

iii.	 C is 2−increasing, in the sense that, Ɐu1 ≤ u2 
and v1 ≤ v2, C (u1, v1) + C (u2, v2) − C (u1, v2) 
−C (u2, v1) ≥ 0.

Sklar’s Theorem (1959): For any n− dimensional 
distribution function with marginals F1, . . . , Fn, 
there is an n−dimensional copula C such that

H(x1, x2, . . . , xn) = (F1(x1), F2(x2), . . . , Fn(xn))

ⱯX ∊ Rn,	 (1)

According to this result, when we have, 
for example, H(x, y) = C(FX(x), FY(y)), the 
joint probability is shared between marginals 
and a copula, so that the latter only represents 
the association between X and Y. The copula 
separates the marginal behavior (represented 
by the Fi) of the set, unlike what happens in the 
usual representation of joint probabilities via the 
distribution function. For this reason, copulas are 
called dependency functions.

If the marginal distributions are continuous, 
the copula C is unique. If not, C is determined on 
Ran(FX) × Ran(FY). Therefore, using copulas, it 
is possible to create bivariate distributions with 
defined marginal distributions. In this way, if C is 
a copula and FX, FY are two marginal distributions, 
C(FX(x), FY(y)) is a bivariate distribution.

The choice of the copula is determined by the 
data’s nature, due to the different types of copula 
functions and the difficulty for finding a clear 
classification of them. There are, for example, 
elliptic copulas, Normal (gaussian) copulas, 
Student and Archimedean copulas , among others.

For example, a Gaussian copula is defined as 
follows: Let Φ be a standard uni−dimensional 
normal distribution function, and let Φ n

Σ be the 
standard normal n-dimensional cumulative 
distribution function with positive definite 
correlation matrix Σ. Then the Gaussian n− 
dimensional copula C Φ

Σ is defined as:

C Φ
Σ (u1,..., un) = Φ n

Σ (Φ
−1 (u1),..., Φ

−1 (un))

for all (u1, u2,..., un) ∊ [0, 1]n.

In this way, a bivariate copula (n = 2) would 
be defined as:

,      (2)

with (u1, u2) ∊ [0, 1]2. In this case θ12 = ρ12 
represents the coefficient of association in the 
bivariate standard normal distribution.

Another suitable copula function for studying 
the dependence between two random variables is 
the one that is based on the family of distributions, 
so called Farlie-Gumbel-Morgenstern (FGM). 
This function is determined as:

C(u1, u2; θ ) = u1u2[1 + θ (1 −u1)(1 −u2)],      (3)

where θ is a measure of dependence between 
marginal distributions with −1 ≤ θ ≤ 1.
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To interpret the dependency of the parameter 
θ, we can examine the possible relation between 
the parameter and some association coefficients, 
such as, Kendall’s Tau(τ) and Spearman’s Rho(ρ) 
(Cepeda-Cuervo et al, 2012).

2.1.1	Nonparametric measures of dependence

Here we can see the copulas role in the 
study of dependence and the relationship with 
nonparametric dependence coefficients such 
as Spearman’s rho and Kendall’s tau. The form 
of dependence provided by these coefficients 
is based on the definition of concordance. The 
most important property of the two measures is 
that they remain invariant by means of strictly 
increasing applications that act on the random 
variables (Cepeda-Cuervo et al, 2012).

Kendall’s Tau
Let (X1,Y1) and (X2,Y2) be continuous 

and independent random vectors with joint 
distributions H1XY(x, y) and H2XY(x, y) respectively 
and common marginals FX and FY. Let C1 and C2 
be the copulas of (X1,Y1) and (X2,Y2) respectively, 
then Q is the difference between the concordance 
probability and discordance probability. That is:

Q =P[(X1 −X2)(Y1 −Y2) > 0]

−P[(X1 −X2)(Y1 −Y2) < 0].	 (4)

Then

(5)

Let X and Y be continuous random variables 
whose copula is C. Then the population version 
of Kendall ‘s Tau coefficient for X and Y is given 
by:

(6)

Spearman’s Rho
Let X and Y be continuous random variables 

whose copula is C. Then the population version 
of the Spearman rho coefficient for X and Y is 
given by:

	 (7)

Where the two last equalities are obtained by 
applying that Q is symmetric with respect to both 
variables.

3.	 MATERIALS AND METHODS

3.1	 Description of the data

Since 2010, a second process of 
reconceptualization and alignment of State 
exams, Saber 11◦ and Saber Pro, has started, 
which culminated in the application of a new 
Saber 11 state test in the second half of 2014. 
The objectives of This test is summarized in the 
following: a) Select students for higher education, 
b) monitor the quality of training offered by 
secondary education establishments, and c) 
produce information for the estimation of the 
added value of higher education. Currently, the 
Saber 11 state examination consists of five tests: 
critical reading, math, social studies, science and 
English (http://www.icfes.gov.co).

In this article, we studied the dependence 
between the performance in the math and critical 
reading tests for the students between 14 and 
24 years old who completed the exam in 2016, 
with a sample of size 17210 after debugging the 
original database. The measures of association 
to study dependence were Spearman’s rho and 
Kendall’s tau.

The variables scores in math and critical 
reading are bounded in the interval (a, b), where 
a, b are known scores with a < b. To adapt the 
obtained data to an interval (0, 1), which is our 
study objective, we use  instead of Y 
directly. However, this linear transformation can 
take the extreme values 0 and 1. We avoid this, 
carrying out the transformation,  
proposed by Smithson and Verkuilen (2006) 
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where n is the sample size. So, the scores are 
defined at a scale in the open interval (0, 1).

This work is developed in essence by 
following the next two methodological steps:

1.	 The construction of two variables Y1 and Y2 
(score in mathematics and critical reading 
score) over a bounded interval. As it was said 
before, this was done thinking about using 
the beta distribution, although finally it was 
decided to use normal truncated distributions 
approximated by a general normal.

2.	 Construction of an appropriate bivariate 
copula function, in our case it was the normal 
(Gaussian).

3.2	 Copula selection

The normal character of the marginal functions 
allows to use several methods of construction of 
the copulas. In particular, the different methods 
presented by the VineCopula package of R. 
The different methods were tested and the one 
that provided the lowest value for the Akaike 
Information Criterion was selected.

3.3	 Simulated data

As a verification of the quality of the results 
obtained in the previous stage, a data simulation 
was made using the parameters obtained in the 
construction process. 17210 data were simulated 
for the bivariate copula. Normal marginals were 
assumed for each variable of the multivariate 
distribution. The estimations of the parameters 
obtained by the real data were used: (θ̂ = 0.72) 
for association and the parameters of the marginal 
ones: (µ̂ = 0.4411, σ̂ = 0.1679) for critical reading 
and (µ̂ = 0.4634, σ̂ = 0.1640) for mathematics. 
The copula software package R was used in the 
estimation process.

3.4	 Estimation methods

To estimate the parameters of the simulated 
copula and its marginals, we used 4 estimation 
methods provided by the software R which are 
briefly described below:

•	 Itau: It is the inverse of Kendall’s tau 
estimator. The data can be in [0, 1]d, (either 
they be the true data or pseudo-observations of 
the underlying copula to be estimated) or in the 
d−dimensional space.

•	 Irho: It is like the “itau” method, but it uses 
Spearman’s rho instead of Kendall’s tau.

•	 Mpl: Pseudo-maximum likelihood estimator, 
which is based on “pseudo-observations” in [0, 
1]d, typically obtained through pobs( ) function.

•	 Ml: It is similar to the “mpl” method but uses a 
different variance estimator. The data must be 
assumed as observations of the true underlying 
copula whose parameter must be estimated.

4.	 RESULTS

To interpret the dependency of the parameter 
θ, we can examine the possible relationship 
that exists between the parameter θ, and some 
association coefficients, such as Kendall’s tau (τ) 
and Spearman’s rho (ρ). Figures 1 and 2 show 
the existence of an association relationship that 
is positive.

Figure 1 shows that there is a high positive 
association between the scores in mathematics 
and critical reading. This fact can be verified 
numerically by the following association 
measures: Kendall’s tau (τ=0.5470) and 
Spearman’s rho (ρ* = 0.7287).

Figure 1. Scatterplot for the variables math score and 
critical reading score.

Figure 2 shows that histograms are apparently 
normal-shaped, so the best fit could be achieved 
by means of Gaussian copulas.
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Figure 2. Scatterplot for variable score in mathematics and 
critical reading score.

The results of the 17210 simulated data show 
a dependence very similar to the original data 
with a value of 0.71 (see Figure 3), and it also has 
a Gaussian form, as is also observed in the real 
data (see Figure 4).

Different methods of estimation through 
simulation studies produce the results of the 
Table 1. Table 1 shows that the estimation method 
that generated the closest estimate to the true 
value of the parameter (0.7201) is the maximum 
likelihood method (ml). In the same way, this 
method generated the lowest standard error 
(0.0029). Even more: the estimated confidence 
interval is more accurate. For this reason, we have 
chosen this method to analyze the parameters of 
the bivariate copula using normal marginals.

Figure 3. Pairplot for simulated dependence between 
variables X and Y .

Figure 4. Density function (red color), distribution function 
(blue color) and their respective level curves for bivariate 

copula.

Table 1. Estimation of the dependency parameter by 
means of the different estimation methods. *EE refers 

to the Standard Error.

Estimation 
method

Estimation of
θ and (EE*)

95 % confidence 
interval

Itau
Irho
Mpl
Ml

0.7219 (0.0038)
0.7224 (0.0040)
0.7204 (0.0036)
0.7201 (0.0029)

(0.7143, 0.7296)
(0.7145, 0.7302)
(0.7133, 0.7275)
(0.7119, 0.7237)

When assuming normal marginals for each 
variable of the bivariate distribution we observe 
(Figure 5 and Figure 6) that the dependence 
remains very similar to that of the real data.

Regarding the association, it is obtained: 
Kendall’s tau (τ = 0. 5090) and Spearman’s rho (ρ* 

= 0. 7003). This does not indicate a discrepancy 
since the one is a transformation of the other.

Table 2 shows the estimations of means and 
variances for each marginal and for the dependency 
parameter, very similar to the original ones.

Table 2. Estimation of the parameters of the bivariate 
copula using the ml method. *EE refers to the 

Standard Error.

Marginals Estimation of (EE*) 95 % confidence
interval

Marginal 1 µ̂ = 0.4422 (0.001)
σ̂ =0.1670 (0.001)

(0.4397, 0.4446)
(0.1652, 0.1681)

Marginal 2 µ̂ = 0.4340 (0.001)
σ̂ =0.1622 (0.001)

(0.4316, 0.4364)
(0.1605, 0.1639)

Dependence 
parameter θ̂ =0.7150 (0.0041) (0.7076, 0.7222)



175

Yuri Marcela García Saavedra et. al.

Figure 5. Pairplot for the dependency between the 
simulated variables X and Y using normal marginals.

Finally, we compare simulated with original 
data under the assumptions of normal marginals 
and the dependency structure. As can be seen in 
Figure 7, the normal copula leads to results very 
close to the real observations. There are few 
extreme values comparing with real data; so we 
can conclude that this copula adequately models 
the data.

5.	 CONCLUSIONS

5.1	 In this article we have showed that copula 
functions are extremely useful when we have 
a joint model of random variables with some 
kind of dependence, since they are functions 
that approximate this structure from their 
individual (marginal) tendencies, and the 
distributions that those marginals present.

Figure 6. Density function (red color), distribution function 
(blue color) and their respective level curves for bivariate 

copula.

Figure 7. Comparison between the real data ( blue color) 
and the simulated data (Red color).

5.2	 The bivariate Gaussian copula function 
allowed capturing the dependency 
relationship between the variables involved 
in the study. When comparing real data with 
the simulated observations, it was observed 
that the behaviors are quite approximate.

5.3	 Although initially the work had been planned 
to perform copulas with beta distributions 
and Generalized Linear Models, the excellent 
approximation of the variables Y1 y Y2 with 
Gaussian distributions allowed us to choose 
a Gaussian model-very close to what was 
proposed-and for which the processes of 
estimation are more expedited, given the 
ease of applying existing software.

6.	 RECOMMENDATIONS

	 Possible future extensions of this work could 
be:

6.1	 Search in the SABER11 test scores, other 
variables that are highly correlated in order 
to explain their conjoint behavior. This may 
allow implementing programs to improve the 
overall performance of Saber 11 tests.

6.2	 Use other copula functions such as Gumbel, 
Joe or Clayton and see which one gives the 
best results.

6.3	 Apply a regression model to real data that not 
only have dependency between variables, but 
also temporal dependence.
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