Methylene blue degradation over M-TiO2 photocatalysts (M= Au or Pt) / Degradación de azul de metileno sobre fotocatalizadores M-TiO2 (M = Au o Pt)

Autores/as

  • JULIE JOSEANE MURCIA MESA UNIVERSIDAD PEDAGÓGICA Y TECNOLÒGICA DE COLOMBIA http://orcid.org/0000-0002-6237-9517
  • Jhonatan Ricardo Guarín Romero
  • Ángela Carolina Cely Macías
  • Hugo Alfonso Rojas Sarmiento
  • Jairo Antonio Cubillos Lobo
  • José Antonio Navío Santos
  • María del Carmen Hidalgo López

DOI:

https://doi.org/10.19053/01217488.v8.n1.2017.5352

Palabras clave:

Methylene blue, photodegradation, M-TiO2, photocatalysts

Resumen

Abstract

In this study it was evaluated the methylene blue degradation over TiO2 modified by sulfation and Au or Pt addition. These materials were synthesized by photodeposition method and they were widely characterized by different techniques. In general, it was found that Au or Pt particles size distribution can be effectively controlled modifying the deposition time. It was also found that metal particle size and dye adsorption on TiO2 surface, are important factors influencing the methylene blue degradation rate.  The highest dye degradation was obtained on Au-TiO2 photocatalyst prepared by using 120 min of deposition time, the highest effectiveness of this material in the methylene blue degradation can be mainly due to a combined effect between the presence of gold nanoparticles acting as a sink for the electrons photogenerated during the catalytic reaction and the better adsorption of the dye over the TiO2 surface partially covered by gold particles with the largest sizes.

JEL Classification

Array

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

JULIE JOSEANE MURCIA MESA, UNIVERSIDAD PEDAGÓGICA Y TECNOLÒGICA DE COLOMBIA

Investigadora con amplia experiencia en el campo de la catálisis heterogénea aplicada a la producción de compuestos de química fina de alto valor agregado e interés industrial. Particular énfasis en procesos de descontaminación ambiental por fotocatálisis heterogénea. Las principales líneas de investigación abordadas han estado relacionadas con temas como: síntesis y caracterización de nanomateriales y nanocomposites; tratamiento de fuentes hídricas; eliminación de contaminantes orgánicos e inorgánicos en desechos líquidos;   tratamiento de atmósferas contaminadas con NOx y VOCs; aplicación de la fotocatálisis como alternativa para una química sostenible y para procesos medioambientales; catálisis convencional inducida por metales nobles y fenómenos   de  adsorción   y  desorción   de  compuestos   orgánicos   sobre  sistemas catalíticos. El trabajo de investigación desarrollado se encuentra documentado en más de 23 publicaciones en diferentes revistas científicas con alto índice de impacto y ha sido reconocido con un premio otorgado por la European Federation of Catalysis Societies.

 

Experiencia en formulación y desarrollo de proyectos de investigación, lo mismo que participación como co-investigadora en los mismos. Participación en actividades  de  apoyo  para la dirección  del  talento  humano  y para  la  ejecución  de recursos económicos aportados por diferentes entidades dedicadas a la financiación y promoción de la investigación en el orden nacional e internacional.

 

Amplio  conocimiento  del  fundamento  teórico  y  habilidad  en  el  manejo  y estandarización de un gran número de técnicas instrumentales de análisis y caracterización físico-química. Sólidos conocimientos en el estudio y seguimiento de reacciones químicas en fase líquida y fase gas, y experiencia en la puesta en marcha de diferentes tipos de reactores usados en sistemas de reacción específicos.

Referencias

M. E. Pérez, D. M. Ruiz, M. Schneider, J. C. Autino and G. Romanelli, “La química verde como fuente de nuevos compuestos para el control de plagas agrícolas”. Revista Ciencia en Desarrollo, vol, 4 no. 2, pp.83-91, 2013.

A.F. Cruz Pacheco, J. A. Gómez, “Síntesis y caracterización del sistema La0,8Sr0,2MnO3”. Revista Ciencia en Desarrollo, vol. 6 no. 2, pp. 133-139, 2015. DOI: https://doi.org/10.19053/01217488.3783

E. Muñoz, J. Palacios, C. Ruis, “Microwave and ultrasound activation effect on cationization of corn and potato starches”. Revista Ciencia en Desarrollo, vol. 4, no. 1, pp.151-173, 2012. DOI: https://doi.org/10.19053/01217488.483

M. Kharub, “Use of various technologies, methods and adsorbents for the removal of dye”, Journal of Environmental Research and Development, 6, pp.879 – 883, 2012.

A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J-M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water”, Applied Catalysis B, 31 pp.145–157, 2001. DOI: https://doi.org/10.1016/S0926-3373(00)00276-9

J.J. Murcia, M.C Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, “Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2”, Applied Catalysis B, 150–151, pp. 107– 115, 2014. DOI: https://doi.org/10.1016/j.apcatb.2013.12.010

S.S. Al-Shamali, “Photocatalytic Degradation of Methylene Blue in the Presence of TiO2 Catalyst Assisted Solar Radiation”, Australian Journal of Basic and Applied Sciences, 7(4), pp.172 – 176, 2013.

J.J. Murcia, M.C. Hidalgo, J.A. Navío, V. Vaiano, P. Ciambelli, D. Sannino, “Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis”, Catalysis Today. 196, pp. 101–109, 2012. DOI: https://doi.org/10.1016/j.cattod.2012.02.033

A.V. Vorontsov, E.N. Savinova, J. Zhensheng, “Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation”, Journal of Photochemistry and Photobiology A, 125 pp. 113–117, 1999. DOI: https://doi.org/10.1016/S1010-6030(99)00073-8

A.V. Vorontsov, I.V. Stoyanova, D.V. Kozlov, V.I. Simagina, E.N. Savinov, “Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide”, Journal of Catalysis, 189 pp. 360–369, 2000. DOI: https://doi.org/10.1006/jcat.1999.2717

W.Y Teoh, L. Mädler, R. Amal, “Inter-relationship between Pt oxidation states on TiO2 and the photocatalytic mineralisation of organic matters”, Journal of Catalysis, 251, pp. 271–280, 2007. DOI: https://doi.org/10.1016/j.jcat.2007.08.008

F. Denny, J. Scott, K. Chiang, W.Y. Teoh, R. Amal, “Insight towards the role of platinum in photocatalytic mineralisation of organic compounds”, Journal of Molecular Catalysis A: Chemistry, 263, pp.93–102, 2007. DOI: https://doi.org/10.1016/j.molcata.2006.08.031

C. Hu, Y. Tang, Z. Jiang, Z. Hao, H. Tang, P.K. Wong, “Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2”, Applied Catalysis A. 253, pp. 389–396, 2003. DOI: https://doi.org/10.1016/S0926-860X(03)00545-3

S. Cipagauta, J. R. Gómez, F.J Tzompantzi, A. Hernández, H. Rojas, “Síntesis Sol-gel de dióxido de titanio para el proceso de fotodegradación”. Revista Ciencia en Desarrollo, vol. 4, no. 1, pp. 187-202, 2012. DOI: https://doi.org/10.19053/01217488.485

J.J. Murcia, J.A. Navío, M.C. Hidalgo, “Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation”, Applied Catalysis B, 126, pp. 76–85, 2012. DOI: https://doi.org/10.1016/j.apcatb.2012.07.013

M.C. Hidalgo, J.A. Navío, J.J. Murcia, G. Colón, “Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation”, Applied Catalysis A, 397, pp. 112–120, 2011. DOI: https://doi.org/10.1016/j.apcata.2011.02.030

G. Colón, M.C. Hidalgo, J.A. Navío, “Photocatalytic behaviour of sulphated TiO2 for phenol degradation”, Applied Catalysis B, 45, pp. 39–50, 2003. DOI: https://doi.org/10.1016/S0926-3373(03)00125-5

K. Okazaki, Y. Morikawa, S. Tanaka, K. Tanaka, M. Kohyama, “Effects of stoichiometry on electronic states of Au and Pt supported on TiO2 (110)”, Journal of Materials Science, 40, pp. 3075–3080, 2005. DOI: https://doi.org/10.1007/s10853-005-2667-3

J. Chen, D.F. Ollis, W.H. Rulkens, H. Bruning, “Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): photocatalytic activity and pH influence”, Water Research, 33, pp. 661–668, 1999. DOI: https://doi.org/10.1016/S0043-1354(98)00261-9

J.C. Crittenden, J. Liu, D.W. Hand, D.L. Perram, “Photocatalytic oxidation of chlorinated hydrocarbons in water”, Water Research, 31, pp. 429–438, 1997. DOI: https://doi.org/10.1016/S0043-1354(96)00267-9

H.M. Coleman, K. Chiang, R. Amal, “Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water”, Chemical Engineering Journal, 113, pp. 65–72, 2005. DOI: https://doi.org/10.1016/j.cej.2005.07.014

I.K. Konstantinou, T.A. Albanis, “Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways”, Applied Catalysis B, 42, pp. 319–335, 2003. DOI: https://doi.org/10.1016/S0926-3373(02)00266-7

V.A. Sakkas, P. Calza, C. Medana, A.E. Villioti, C. Baiocchi, E. Pelizzetti, T. Albanis, “Heterogeneous photocatalytic degradation of the pharmaceutical agent salbutamol in aqueous titanium dioxide suspensions”, Applied Catalysis B, 77, pp. 135–144, 2007. DOI: https://doi.org/10.1016/j.apcatb.2007.07.017

Descargas

Publicado

2017-05-31

Cómo citar

MURCIA MESA, J. J., Guarín Romero, J. R., Cely Macías, Ángela C., Rojas Sarmiento, H. A., Cubillos Lobo, J. A., Navío Santos, J. A., & Hidalgo López, M. del C. (2017). Methylene blue degradation over M-TiO2 photocatalysts (M= Au or Pt) / Degradación de azul de metileno sobre fotocatalizadores M-TiO2 (M = Au o Pt). Ciencia En Desarrollo, 8(1), 109–117. https://doi.org/10.19053/01217488.v8.n1.2017.5352

Número

Sección

Artículos de investigación / Research papers

Métrica

Artículos más leídos del mismo autor/a

1 2 > >>