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Hyperspectral response of cape gooseberry (Physalis 
peruviana L.) plants inoculated with Fusarium oxysporum 
f. sp. physali for vascular wilt detection

Respuesta hiperespectral de plantas de uchuva (Physalis 
peruviana L.), inoculadas con Fusarium oxysporum f. sp. 
physali, para la detección del marchitamiento vascular
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ABSTRACT
This study used greenhouse conditions to determine the hyperspectral responses of cape gooseberry (Physalis 
peruviana L.) plants inoculated with different Fusarium oxysporum f. sp. physali densities because the causal 
agent of vascular wilt generates great economic losses for farmers. A completely randomized design with 
four replicates was established. The evaluated treatments were inoculum densities 0.0, 1.0·103 and 1.0·106 
conidia/mL of the pathogen. The inoculation was done with immersion of roots in conidia suspensions. The 
spectral response was directly measured on the plant leaves with a spectroradiometer. Non-invasive detec-
tion in the P. peruviana - F. oxysporum pathosystem with reflectance values was used with different spectral 
indices related to the visible and Red Edge, which were calculated and correlated with the disease variables. 
The treatments showed significant differences in the visible spectrum starting 14 days after inoculation with 
higher reflectance values. The chlorophyll index at the red edge (ChRE), the modified chlorophyll absorption 
index (MCARI), the simple ratio index (SR) and the Zarco & Miller index (ZM) showed highly significant 
correlations with the area under the disease progress curve for leaves (AUDPCL), leaf area and fresh weight 
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The cultivation of cape gooseberry (Physalis peruvi-
ana L.) is of great economic importance for Colom-
bia since this species is the third most exported fruit, 
with a production of 16,109 t on 1,312 ha in 2018 
(Agronet, 2020). This fruit is desirable because of 
its nutritional and medicinal characteristics, which 
make it an exotic fruit (Fischer and Melgarejo, 2020). 
Although most cape gooseberry crops belong to small 
farmers, export companies have decided to plant their 
own crops to obtain constant production to meet the 
market demands of this fruit (Fischer et al., 2014). 

Fusarium oxysporum is the causal agent of vascular 
wilt in plants, and, in cape gooseberries, the incidence 
of this disease, caused by F. oxysporum f. sp. physali 
(Simbaqueba et al., 2018), generates great economic 
losses for farmers. Therefore, new pathogen-free ar-
eas are required (Villarreal-Navarrete et al., 2017). 
In 2014, F. oxysporum caused the greatest amount of 

economic damage to several agricultural crops when 
compared to other plant pathogens because of its 
large spatial distribution in Europe, the Middle East, 
North Africa (Shabani et al., 2014), the United States, 
Canada, Australia, Thailand, China, Colombia, Ecua-
dor, Costa Rica, Panama, Brazil, Peru, and Argentina, 
especially in banana (Musa acuminata), tomato (So-
lanum lycopersicum) (McGovern, 2015), onion (Allium 
cepa) (Southwood et al., 2015) and ornamental crops 
(Gullino et al., 2015; Lecomte et al., 2016).

In Colombia, the planted area for cape gooseberry 
was 1,087 ha by 2009, with a yield of 17.78 t ha-1; 
however, in 2010, there was a decrease of 342.1 ha 
(Agronet, 2020) because of inadequate crop manage-
ment, which generated a greater incidence and se-
verity of vascular wilt caused by F. oxysporum f. sp. 
physali. F. oxysporum can survive up to 30 years under 
adverse conditions because of its particular survival 

of the aerial part of the plants. This study showed the potential of spectral patterns for the detection and study of 
Fusarium wilt in P. peruviana.

Additional keywords: reflectance; spectral indices; phytopathological response; vascular wilt.

RESUMEN
El objetivo de este estudio fue determinar en condiciones de invernadero la respuesta hiperespectral de las plantas 
de uchuva (Physalis peruviana L.), inoculadas con diferentes densidades de Fusarium oxysporum f. sp. physali, agente 
causal del marchitamiento vascular que genera grandes pérdidas económicas para los agricultores. Se estableció un 
diseño completamente al azar con cuatro repeticiones. Los tratamientos evaluados fueron densidades de inóculo 
0.0, 1.0·103 y 1.0·106 conidios/mL del patógeno. La inoculación se realizó por inmersión de raíces en la suspensión de 
conidios. Para la evaluación de la respuesta espectral, se usó un espectroradiómetro midiendo directamente las hojas 
de la planta. Para la detección no invasiva en el patosistema P. peruviana - F. oxysporum, con los valores de reflectancia 
se calcularon diferentes índices espectrales relacionados con el Red Edge y se correlacionaron con las variables de la 
enfermedad. Los tratamientos mostraron diferencias significativas en el espectro visible a partir de 14 días después 
de la inoculación con los mayores valores de reflectancia. El índice de clorofila en el Red Edge (ChRE), el índice de 
absorción de clorofila modificado (MCARI), el índice de relación simple (SR) y el índice de Zarco and Miller (ZM) 
mostraron correlaciones altamente significativas con el área bajo de la curva del progreso de la enfermedad (AU-
DPCL), el peso fresco de la parte aérea de la planta y el área foliar. El estudio mostró el potencial de las respuestas 
espectrales para la detección y el estudio del marchitamiento vascular por Fusarium en P. peruviana.

Palabras clave adicionales: reflectancia; índices espectrales; respuesta fitopatológica; marchitez vascular.

Received for publication: 29-04-2020  Accepted for publication: 23-11-2020

INTRODUCTION

302 GIRALDO-BETANCOURT / VELANDIA-SÁNCHEZ / FISCHER / GÓMEZ-CARO / MARTÍNEZ

Rev. Colomb. Cienc. Hortic.



structures known as chlamydospores. These struc-
tures germinate when in contact with the roots of 
plants, generating an appressorium that penetrates 
root cells and develops mycelium that reaches the 
vascular system (Cruz et al., 2012; Sharma et al., 
2018; Zhang et al. 2018a). The mycelium spreads fast 
via xylem, producing microconidia that can rapidly 
invade the plant, generating vascular obstructions 
caused by hyphae that block the flow of water and 
nutrients (Ownley and Trigiano, 2016). In addition, 
the biotic stress caused by the pathogen infection 
impairs the plant physiology of diseased plants (Vil-
larreal-Navarrete et al., 2017; Chaves-Gómez et al., 
2020b). As a result, the visual alterations caused by 
the disease are chlorosis of the basal leaves, affecting 
later stages in the entire plant, followed by moderate 
to severe defoliation, and finally necrosis and death 
of the plant (Robles Carrión et al., 2014). Moreover, 
the relationship between inoculum density, early 
symptom appearance and disease severity has been 
found in other similar pathosystems (Hao et al., 2009; 
Caligiore et al., 2014).

Recent research has indicated that the use of optical 
sensors generates information for disease identifica-
tion (Zhao et al., 2014; Sterling and Melgarejo, 2020), 
nutritional status of plants (Martínez and Ramos, 
2015; Martínez, 2017) and specific site management 
of crops (Peng and Gitelson, 2011). Hyperspectral 
data can be used to identify stress symptoms at an 
early stage and can be correlated with plant charac-
teristics to support timely decision-making processes 
in crop management (Lowe et al., 2017). Traditional 
methods to determine diseases require time to ob-
tain results, which limits adequate decision-making 
in the field (Brizuela-Amador et al., 2007). On the 
other hand, spectroradiometric techniques are non-
destructive and are based on the measurement of the 
spectral response of plants, which depends on fac-
tors such as phenological status, agronomic manage-
ment and plant physiological parameters (Martínez, 
2017; Thenkabail et al., 2000). A spectroradiometer 
measures reflectance at different wavelengths and 
provides information on the nutritional, health and 
water status of a crop, which can improve decision-
making and management practices (Zarco-Tejada et 
al., 2004).

For plant diseases, mainly vascular wilts, the spec-
tral responses of infected plants have been gener-
ated for only a low number of pathosystems, such 
as Capsicum annuum and Verticillium dahliae (Sanogo 
et al., 2008; Bauriegel and Herppich, 2014), Capsicum 

annuum – Fusarium spp. (Karadağ et al., 2019) and 
Solanum lycopersicum and F. oxysporum (Marín-Ortiz 
et al., 2020). Fusarium-diseased pepper (C. annuum) 
plants were detected with spectral reflections from 
leaves before symptoms became visible according to 
Karadağ et al. (2019). The potential to discriminate 
healthy from diseased plants before visible symptoms 
was also demonstrated in tomatoes by Marín-Ortiz 
et al. (2020), based on their spectral response at sev-
eral wavelengths. Calderón et al. (2105) outlined an 
automatic procedure to classify plants infected by 
Verticillium dahliae in olive crops for large scale early 
detection. These studies contribute to the early detec-
tion of plant diseases caused by vascular pathogens. 
Nevertheless, crops, including the cape gooseberry, 
require new methods that adequately establish the 
presence of the pathogen that causes vascular wilt in 
the initial stages. 

It was hypothesized that hyperspectral responses al-
low the detection of cape gooseberry plants affected 
by Fusarium vascular wilt independent of the inocu-
lum density of the pathogen. Therefore, the objec-
tive of this study was to determine the hyperspectral 
responses of cape gooseberry plants inoculated with 
different F. oxysporum f. sp. physali propagule densities 
as the first step for evaluating the potential of non-
invasive methods for the detection of disease under a 
variable inoculum pressure.

MATERIALS AND METHODS

Plant material and location

This experiment was carried out in 2016 with 
2-month-old ‘Colombia’ ecotype cape gooseberry 
plants, which is the most cultivated plant material 
in the country (Álvarez-Herrera et al., 2019), acquired 
from the nursery at the Biosystems Center of the 
Jorge Tadeo Lozano University in Chia (Cundina-
marca, Colombia). These plants were maintained in 
a nursery with daily drip irrigation and fertilization 
with a Hoagland solution.

The plants were moved to a plastic greenhouse in Bo-
gota (2,556 m a.s.l., at 4°35’56’’ N and 74°4’51’’ W), 
with an average temperature of 18±8°C, relative 
humidity of 60-95% and a natural photoperiod of 
12 h (with a light intensity of 66,694±10,981 Lux 
at full noon radiation); when the substrate mois-
ture fell below field capacity, irrigation was applied 
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approximately every 2 d for 3 weeks. Twenty-two 
days later, the plants were transplanted in 2.0-L pots 
that were previously disinfected with 2% NaClO, us-
ing a mixture of soil and rice husk at a 3:1 ratio (v/v) 
for the substrate. To ensure that the substrate was 
free of pathogens, it was autoclaved at a temperature 
of 121°C for 45 min based on the method proposed 
by Lagos et al. (2007). The plants were irrigated every 
2 d with a nutrient solution at a concentration of 5 
mL L-1 using the commercial product Nutriponic® (ni-
trogen 3.75% (nitric N 3.42%, ammoniacal N 0.34%); 
phosphorus 1.73%; potassium 4.29%; calcium 2.44%; 
magnesium 0.966%; sulfur 0.085%; iron 0.095%; 
manganese 0.009%; copper 0.001%; zinc 0.002%; bo-
ron 0.009%; molybdenum 0.0001%; cobalt 0.00003%; 
pH 5.8) (Walco S.A., Bogota, Colombia).

Experiment design and sampling

A completely randomized design with four replicates 
was used, where the treatments consisted of three 
F. oxysporum f. sp. physali inoculum densities (0.0, 
1.0·103 and 1.0·106 conidia/mL). From each repeti-
tion, a plant was sampled by taking two leaves, one 
from the canopy and another from the lower part of 
the plant; the reflectance was measured at these two 
plant levels at 7, 14, 21 and 28 days after inoculation 
(DAI). On the same dates, samples were collected 
from four plants per treatment, in which the fresh 
weight was determined, and the leaf area was mea-
sured using a Li 3000A portable leaf area meter (LI-
COR, Lincoln, NE).

Inoculation

For the inoculation of the cape gooseberry plants, 
the pathogenic isolate Map5 of Fusarium oxysporum 

f. sp. physali, which belongs to the fungal collection 
of the Molecular Microbiology Laboratory of Agro-
savia (Mosquera, Colombia), was used as the source 
of inoculum. The Map5 isolate was cultured in 250 
mL liquid medium of potato dextrose broth (Oxoid®) 
with constant agitation in an orbital shaker (Heido-
lph Instruments, Schwabach, Germany) at 125 rpm 
for 5 d at room temperature (25°C) under dark con-
ditions. The plants were inoculated by root dipping 
(Gardner, 1989; Haglund, 1989) in 50 mL of the inoc-
ulum suspension for 10 min; the roots of the control 
plants were immersed in sterile distilled water. 

Monitoring vascular wilt in cape gooseberry 
plants

To follow up on symptom development in each treat-
ment, visual evaluations of plants were conducted at 
0, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, 33 and 35 
DAI. The disease severity in the plants was assessed 
using the six-level scale proposed by Enciso-Rodrí-
guez et al. (2013) that includes all possible disease 
expressions, ranging from level 0 for no symptoms 
to level 5 indicating plants with total turgor loss and 
dead plants. In addition, a scale was proposed to as-
sess the disease in leaves (Fig. 1), taking into account 
the description of symptoms reported by Enciso-Ro-
dríguez et al. (2013). 

The intensity of the disease in each treatment was 
estimated by calculating the area under the disease 
progress curve (AUDPC) with the trapezoidal inte-
gration method (Campbell and Madden, 1990; Alves 
et al., 2017) using equation 1. In this study, the dis-
ease in the plants (AUDPC) and the leaves (AUDPCL) 
was determined considering the degree of severity 

0 1 2 3 4 

No visible symptoms Mild chlorosis, discolo-
ration to pale green and 
wilting on the edge of 
the leaf

Moderate chlorosis, pale 
green or slightly yellow 
and loss of turgor

Severe chlorosis, and/or 
premature defoliation, and 
loss of turgor

Severe chlorosis, “burned” 
edges, dead leaves, 
severe defoliation, and 
total loss of turgor

Figure 1. 	Proposed severity scale for the identification of leaf chlorosis caused by the vascular wilt produced by F. oxysporum 
f. sp. physali in cape gooseberry (P. peruviana) plants, adapted from Enciso-Rodríguez et al. (2013).
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that each plant and leaf showed during the evalua-
tion time:

	 AUDPC = ∑ [(Xi + 1 + Xi) / 2] × [Ti + 1 - Ti]	 (1)

where, i = 1, Ti = number of days between the inocu-
lation and the sampling date, Xi = the classification 
using the symptom scale and [Ti + 1 - Ti] = time in 
days between two readings. 

In addition, cross sections and isolates of the patho-
gen from the stems and root necks of the inoculated 
and control plants were performed at 7, 14, 21 and 28 
DAI to confirm the presence or absence of the patho-
gen. Tissue samples were first washed with run-
ning water until all visible impurities were removed. 
Then, they were subjected to a disinfection process 
in 2% sodium hypochlorite for 45 s, immersion in 
70% ethanol for 45 s, and finally washed three times 
in sterile distilled water. Subsequently, the samples 
were dried with sterile absorbent paper and cultured 
in potato dextrose agar medium (PDA) (Oxoid®) (In-
oue et al., 2002; Leslie and Summerell, 2006). After 
incubation for 7 d at 25°C, the presence of mycelial 
growth and typical colonies of F. oxysporum f. sp. phy-
sali were evaluated to confirm the pathogen infection 
in each treatment. 

Measurement of the hyperspectral response

In each replicate, two leaves per plant were sam-
pled, one from the canopy and the other from the 

lower part of the plant. The reflectance of each leaf 
was measured with the leaf clip of the FieldSpec 4® 
spectroradiometer (Malvern Panalytical, Malvern, 
UK), which registers readings between 350 and 2,500 
nm with spectral resolutions of 1.4 nm from 350 to 
1,050 nm and 2 nm from 1,050 to 2,500 nm. The leaf 
clip was used with the plant probe to collect spec-
tra on live vegetation; it has a gentle trigger lock/re-
lease gripping system for holding the target sample 
in position without removing the leaf or inflicting 
damage. It uses an internal broad-spectrum halogen 
light source. Before reading the reflectance, the spec-
troradiometer was standardized to a white reference 
standard (Spectralon, Labsphere, North Sutton, NH) 
(ASD, 2012). Four scans were averaged per reflec-
tance spectrum.

Based on the reflectance measurements, the spectral 
indices shown in table 1 were calculated. These indi-
ces were selected because they have performed well 
in previous studies, showing correlation with plant 
physiological parameters. 

The physiology data and spectral indices were ana-
lyzed transversely for each sampled date and tested 
for normality with the Shapiro-Wilk test; some hy-
perspectral indices were transformed with Ln to fit 
a normal distribution. An ANOVA was performed to 
evaluate the effects of the treatments, and a Tukey 
test with a significance level of 0.05 was carried out. 
Pearson’s correlation analysis was used to establish 
the relationships between the physiological variables 
and spectral indices. Statistical analyses were carried 

Table 1. 	 Evaluated spectral indices and red edge positions caused by vascular wilt in the leaves, produced by F. oxysporum  
f. sp. physali, of cape gooseberry (P. peruviana) plants.

In
di

ce
s Normalized Differen-

ce Vegetation Index 
(NDVI)

Chlorophyll  
Red-Edge (ChRE)

Modified Chlorophyll 
Absorption Ratio 
Index (MCARI)

Blue/Green Index 
(BGI)

Simple Ratio (SR)
Zarco and Miller 
(ZM)

De
sc

rip
tio

n

Good indicator of 
nitrogen content, 
chlorophyll, biomass, 
LAI and yield. Also 
provides a medium 
estimate of plant 
water content

A very sensitive 
indicator of the red 
edge position and 
directly related to 
foliar chlorophyll 
concentration. The 
established index 
for non-invasive 
in-vivo chlorophyll 
determination

Generally, reflectan-
ce of 705 and 750 
nm is more suitable 
for a chlorophyll 
content estimation; 
developed for 
chlorophyll content 
variations. A better 
indicator of LAI, 
when LAI < 6

This index has very 
good relationships 
with the chlorophyll 
a and b contents 
(Cab), which are an 
indicator of plant 
stress and growth

This index was 
developed for 
chlorophyll content 
(Chl) assessments 
because (R550)-1 is 
directly proportional 
to Chl and enable 
Chl estimations in 
dark-green to yellow 
leaves

Has linear relations-
hips with chlorophyll 
a (Ca), chlorophyll b 
(Cb), and Cab (indi-
cator of plant stress 
and growth)

Re
fe

re
nc

e

Katsoulas et al. 
(2016)

Gitelson et al. 
(1996)

Wu et al. (2008)
Zarco-Tejada et al. 
(2005)

Gitelson and  
Merzlyak (1997)

Zarco-Tejada et al. 
(2005)
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out with IBM SPSS STATISTICS 23 (International 
Business Machines Corporation, Armonk, NY).

RESULTS AND DISCUSSION 

The results of this experiment were analyzed but 
only the data obtained in the evaluations done at 7, 
14 and 21 DAI are shown because, after 18 DAI, the 
cape gooseberry plants had already expressed severe 
visual symptoms of the disease.

Monitoring vascular wilt in cape gooseberry 
plants inoculated with Fusarium oxysporum

At 7 DAI, there were no symptoms of the disease in 
any of the treatments (Fig. 2). The evaluation of the 
disease indicated that, with the high inoculum den-
sity (1.0·106 conidia/mL), wilt symptoms appeared 
faster than in the other treatments; at 14 DAI, the 
plants of this treatment had a higher degree of dis-
ease severity, grade 1, characterized by mild chlorosis, 
dark green to light green leaves, interveinal chlorosis 
of leaves, slight turgor loss and more than 10% dam-
age in the plant. 

The assessment of the pathogen colonization in 
stems and root necks of inoculated and control plants 
in PDA culture medium confirmed the presence of 
the pathogen in the sampled tissue of the inoculated 
plants. In this case, typical F. oxysporum colonies were 
obtained from the inoculated plants. No F. oxysporum 
colonies were isolated from the control plants at any 
of the conducted evaluations. 

At 21 DAI, the treatment with 1·106 conidia/mL 
reached disease severity grade 4, and, at 26 DAI, 
mortality for most of the plants was observed. The 
inoculum density of 1.0·103 conidia/mL showed se-
verity grade 1 starting at 17 DAI, and, at 21 DAI, 
the AUDPC value was 7.83 for the treatment under 
1.0·103 conidia/mL. In contrast, the treatment with 
1.0·106 conidia/mL had values of 29.16, which were 
significantly higher than the other treatments (Fig. 
3a). Similar results were found by Villarreal-Navarre-
te et al. (2017) who reported that symptomatology 
was visually evident at 18 DAI in plants inoculated 
with F. oxysporum and subjected to a flood period.

When evaluating the severity of each of the leaves, 
the degree of the disease was verified with the sever-
ity scale established for the experiment (Fig. 1). The 

1.0·106 conidia/mL treatment showed significant dif-
ferences from the other treatments starting at 7 DAI 
(Fig. 3B), with values of 26.06 for the AUDPCL at 
21 DAI. Symptoms of the disease indicated a higher 
degree of the disease in the treatments with a high 
inoculum density, showing a severity grade of 2 at 17 
DAI, which corresponded to mild chlorosis and loss 
of turgor. The treatments with a low conidial density 
had a AUDPCL value of 6.76 at 31 DAI. Although low 
chlorosis values were registered in the control plants 
(0.0 and 0.15) with the scale, this symptom was re-
lated to a greenery loss in lower leaves, due to the fact 
that no presence of F. oxysporum f. sp. physalis was 
confirmed in control plants in the laboratory test as 
mentioned before. 

0 1·103 1∙106

7 
DA

I
14

 D
AI

21
 D

AI

Figure 2. 	Development of vascular wilt severity in cape 
gooseberry (Physalis peruviana) ‘Colombia’ eco-
type plants inoculated with three Fusarium oxy-
sporum f. sp. physali densities: 0, 1·103, 1·106 
conidia/mL and kept under greenhouse conditions. 
DAI: days after inoculation.
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Spectral response in cape gooseberry plants 
inoculated with Fusarium oxysporum

The reflectance of the leaves at 14 and 21 DAI showed 
differences over a large part of the spectrum (Fig. 4A). 
At 14 DAI, in the visible spectrum (400-700 nm) (Fig. 
4B), the reflectance had values between 0.1 for the 
treatments with a low pathogen density and with-
out the pathogen and 0.32 for the treatment with 
1.0·106 conidia/mL. This indicated that the energy 
that reaches the surface of leaves in this range of the 
spectrum is reflected in a higher proportion in plants 
inoculated with a high-density of inoculum. This ef-
fect is caused by physiological parameters that alter 
the absorption of light in cells (Taiz et al., 2015) as a 
result of pathogen infection in plants, which reduces 
the uptake of nutrients and water. Pathogens can in-
duce physiological stresses and physical changes in 
plants, such as chlorosis, necrosis, abnormal growth, 
and dwarfism, among other alterations (Nutter and 
Gaunt, 1996; Ghaemi et al., 2011; Chávez-Arias et al., 
2019; Cháves-Gómez et al., 2020a). These changes 
can alter the reflectance properties of plants (Qin et 
al., 2009; Mahlein et al., 2010; Karadağ et al., 2019; 
Marín-Ortiz et al., 2020). Naidu et al. (2009) found 
that grapevine cultivars affected by a leafroll-asso-
ciated virus showed maximum difference in reflec-
tance between healthy and diseased plants at 550 
and 680 nm, and MacDonald et al. (2016) that the 
use of hyperspectral imaging is useful for mapping 

diseased vines. Prabhakar et al. (2013) indicated that 
an increase in mosaic disease severity in black beans 
(Vigna mungo) caused a decrease in the relative chlo-
rophyll content and the percentage of foliar nitrogen.

At 14 DAI, the plants inoculated with 1.0·106 conidia/
mL had higher reflectance between 500 and 733 nm, 
with a peak at 551 nm, and a value of 0.31, while the 
other treatments had an average reflectance value of 
0.14 (Fig. 4B). Bauriegel and Herppich (2014) found 
that, for a different disease, 550 to 560 nm is the opti-
mal range for detecting fusariosis in spikes of Triticum 
sativum, while Bauriegel et al. (2011) indicated that 
this range lies between 665 and 675 nm. The reduc-
tion of the chlorophyll content in cells reduces the 
potential of the processes of remission and reabsorp-
tion of internal photons in the relevant wavelength 
range, causing photosynthetic processes that lead to a 
change in the red edge position (Zhang et al., 2018b).

The differences in the reflectance values, the near in-
frared (NIR), the visible range and the red edge at 14 
DAI can be associated with stress caused by diseases 
in the plants between the control and the treatments 
that were inoculated with F. oxysporum f. sp. physali 
(Fig. 4A). Similar results have been reported in other 
soil plant pathogens, such as basal stipe rot, caused 
by the basidiomycete fungus Ganoderma boninense Pat 
in oil palm (Shafri et al., 2011; Ahmadi et al., 2017). 
Additionally, in a contrasting pathosystem, such as 
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Figure 3. 	Disease severity of cape gooseberry (P. peruviana) plants inoculated with F. oxysporum f. sp. physali for a period of 21 
DAI according to an adapted Enciso-Rodríguez et al. (2013) severity scale. A, plants and B, leaves. The values next to 
the figure legend represent the area under the disease curve (A. AUDPC and B. AUDPCL) until 21 DAI for each treat-
ment. Bars indicate the standard error. Means with different letters indicate significant differences according to the 
Tukey test (P≤0.05).
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Figure 4. 	Average spectral response of cape gooseberry ‘Colombia’ ecotype plants inoculated with F. oxysporum f. sp. physali. 
A, range from 350 to 2,500 nm and B, range from 350 to 2,500 nm 14 and 21 DAI. n = 8 samples per treatment.

Table 2. 	 Correlation coefficients established for spectral indices in cape gooseberry plants inoculated with F. oxysporum f. sp. 
physali 14 days after inoculation. * P≤0.05, ** P≤0.01.

Variables Leaf area Fresh weight aerial part AUDPC1 AUDPCL2

Leaf area 1

Fresh weight aerial part 0.756 1

AUDPC -0.910* -0.505 1

AUDPCL -0.950** -0.714 0.946** 1

NDVI 0.860* 0.982** -0.624 -0.798

ChRE 0.906* 0.945** -0.742 -0.883*

MCARI 0.900* 0.942** -0.737 -0.882*

SR 0.895* 0.951** -0.734 -0.886*

ZM 0.897* 0.949** -0.728 -0.880*

AUDPC, Area Under the Disease Progress Curve; AUDPCL, Area Under the Disease Progress Curve on Leaves; NDVI, Normalized Difference Vegetation Index; ChRE, 
Chlorophyll Index at the Edge of Red; MCARI, Modified Chlorophyll Absorption Index; SR, Simple ratio; ZM, Index of Zarco and Miller.

Re
fle

ct
an

ce

0 conidia/mL (21 DAI)
1·10 3 conidia/mL (21 DAI)
1·10 6 conidia/mL (21 DAI)

0 conidia/mL (14 DAI)
1·10 3 conidia/mL (14 DAI)
1·10 6 conidia/mL (14 DAI)

A

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

350 500 650 800 950 1,100 1,250 1,400 1,550 1,700 1,850 2,000 2,150 2,300 2,450

Re
fle

ct
an

ce

Wavelength (nm)

B

450 470 490 510 530 550 570 590 610 630 650 670
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

308 GIRALDO-BETANCOURT / VELANDIA-SÁNCHEZ / FISCHER / GÓMEZ-CARO / MARTÍNEZ

Rev. Colomb. Cienc. Hortic.



Fusarium culmorum infecting wheat spikes, Kang and 
Buchenauer (2000) stated that stress associated with 
the disease generates a rapid and irreversible degrada-
tion of chlorophyll as a result of the destruction of 
chloroplasts and gradual decomposition of organelles 
in plant cells.

At 21 DAI, the plants inoculated with 1.0·106 co-
nidia/mL had higher reflectance than the other treat-
ments between 500 and 1300 nm, and the effect of 
the 1.0·103 conidia/mL on reflectance was less intense 

(Fig. 4). The spectral indices were calculated with the 
reflectance data (Tab. 1). The indices that had a great-
er relationship with the AUDPC, for the follow-up 
of the vascular wilting and the growth of the plants, 
included SR, ZM, ChRE, NDVI and MCARI.

Although the SR and ZM indices showed a similar 
trend over time for all treatments (Fig. 5), significant 
differences were observed at 21 DAI, with values of 
2.12 for SR and 1.09 for ZM in the high-density F. 
oxysporum f. sp. physali inoculum treatment (1·106 

Figure 5. 	Spectral indices in cape gooseberry (P. peruviana) plants inoculated with different inoculum densities of F. oxysporum 
f. sp. physali 14 days after inoculation (DAI). A, simple ratio; B, Zarco and Miller; C, Normalized Difference Vegeta-
tion Index; D, Chlorophyll Index Red Edge and E, Modified Chlorophyll Absorption Index. Bars indicate the standard 
error. Means with different letters at each sampling point indicate significant differences according to the Tukey test 
(P≤0.05).
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conidia/mL). These values were the lowest, followed 
by the low-density treatment of F. oxysporum f. sp. 
physali (1·103 conidia/mL), whose values were 4.07 
and 2.01 for SR and ZM, respectively. On the other 
hand, the results of NDVI, ChRE and MCARI showed 
significant differences between the treatments, with 
values of 0.33, 1.99, 0.59, respectively, at 14 DAI (Fig. 
5). These results confirmed that spectral vegetation 
indices are useful for the indirect detection of plant 
diseases, as reported by Mahlein et al. (2013) and Lu 
et al. (2017). 

The indices described above were proposed to esti-
mate the absorption of light by chlorophyll, which 
is most noticeable in the red spectrum (670 nm) (Li-
chtenthaler et al., 1996); in turn, Zhao et al. (2005) 
indicated that the nitrogen content in tissues is pro-
portional to the reflectance in the near infrared region 
(NIR). Therefore, crops that are in better nutritional 
conditions, particularly nitrogen, will exhibit a higher 
content of this element in their leaves and will reflect 
higher values of the spectrum in this region. 

Gitelson et al. (1996) found a strong relationship be-
tween the chlorophyll concentration of leaves and 
the reflectance coefficients (R750/R695 and R750/
R700), which belong to the near infrared; this ex-
plains the behavior of this region of the spectrum 
during the development of the experiment because, 
the higher the radiation reflected in the NIR re-
gion, the higher the nitrogen contents in the plant 
are and the higher the index values are (Mistele and 
Schmidhalter, 2007). On the other hand, Sanogo et al. 
(2008) indicated that, in C. annuum plants affected 
by V. dahliae and subjected to flooding, an analysis 
of variance revealed significant main and interactive 
effects for the photochemical reactive index (PRI) 
and the AUDPC for plants under the two stresses. In 
this study, the spectral response of cape gooseberry 
plants ‘Colombia’ ecotype to vascular wilt caused by 
F. oxysporum f. sp. physali was obtained but additional 
studies are needed to characterize spectral responses 
to factors involved in water stress in order to differ-
entiate pathogen-induced wilt from drought-induced 
wilt. Nevertheless, the indices calculated in the cur-
rent study had a correlation >0.7 with the AUDPC 
and >0.8 with the AUDPCL, caused by F. oxysporum f. 
sp. physali (Tab. 2), indicating that indices evaluated 
from spectral responses can be used for the detection 
of this disease. 

CONCLUSIONS

This research showed the potential of spectral re-
sponses in the study of the P. peruviana - F. oxyspo-
rum pathosystem and vascular wilt detection in cape 
gooseberry plants. The factor pathogen inoculum 
density showed significant differences between the 
treatments in the severity of the disease and the 
physiological and spectral response of the plants 
from the second sampling (14 DAI) as a result of the 
aggressiveness of the pathogen and susceptibility of 
the evaluated cape gooseberry ecotype. The spectral 
responses of the plants inoculated with F. oxysporum 
f. sp. physali registered significant differences from 
those in the control plants. These differences were 
mainly detected in the visible region of the spectrum, 
becoming more evident with time and according to 
the high inoculum densities to which the plants were 
exposed. The NDVI, ChRE, MCARI, SR and ZM 
spectral indices differentiated healthy plants from 
plants inoculated with the pathogen; in addition, 
they showed the highest correlation coefficients for 
the disease severity in the leaves and the physiologi-
cal variables 14 days after inoculation.
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