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Calculation of the thermal units for 13 codes of the BBCH
scale of 12 progenies of quinoa in the growing conditions
of the Brazilian savanna

Calculo del tiempo térmico para 13 codigos de la escala BBCH
de 12 progenies de quinua en las condiciones de crecimiento
de la Sabana Brasilena
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Quinoa plant in the Brazilian savanna.
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ABSTRACT

The introduction of quinoa (Chenopodium quinoa Willd.) in the Brazilian savanna has been successful based on
the selection of progeny from valley types. Given the wide variation of environments, an alternative to define
the maturation cycle of the plant has been the use of accumulated thermal units (ATU). This measure allows
prediction of the plant cycle and supports the definition of phenology duration useful in crop management
and quinoa breeding. This study aimed at calculating the ATU for the 13 codes of the BBCH scale of quinoa
by evaluating 12 selected progenies grown in two sowing dates, at 15° 56’ S and 47° 55’ W, altitude of 1.100
m, Brasilia, DF, Brazil. Statistical differences were predominant from the beginning of the BBCH-50 repro-
ductive phases, classifying the progenies as early, mid-cycle and late. Early maturity progenies and respective
ATU for BBCH-89 are BRQ4 (1.676,8), BRQ1 (1,685), and AUR (1,691), contrasting with late BLA (2.239),
BRQ3 (1,929.1 GDD), and BRQ8 (1,895). The accumulated thermal units for BBCH-89 ranged from 1565.25
to 2381, with a difference between the earliest and latest genotypes of 815.75. Progenies selected from exis-
ting cultivars are different in thermal unit accumulation, ensuing efficiency in cultivar acquisition to stagger
quinoa cultivation. Accumulated thermal units explain the range of plant maturity cycles in selection. Addi-
tionally, the calculation of atu for BBCH scale codes is an effective tool for predicting the phenological cycle
of quinoa.
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RESUMEN

La introduccién de la quinua (Chenopodium quinoa Willd.) en la Sabana Brasilefia ha tenido éxito basada en la selec-
cién de progenies de los tipos de valle. Dada la amplia variacién de ambientes, una alternativa para definir el ciclo
de madurez de la planta ha sido el uso del tiempo térmico acumulado (TTA). Esta medida permite la prediccién del
ciclo de la planta y proporciona apoyo para definir la duracién de la fenologia, siendo Gtil en el manejo y mejora-
miento de los cultivos. Este estudio tuvo como objetivo calcular las unidades térmicas para 13 cédigos de la escala
BBCH de la quinua, mediante la evaluacién de 12 progenies seleccionadas y cultivadas en dos fechas de siembra, a
15°56’ Sy 47° 55’ O, altitud de 1.100 m, Brasilia, DE, Brasil. Las diferencias estadisticas fueron predominantes desde
el inicio de las fases reproductivas BBCH-50, clasificando las progenies como precoces, de ciclo medio y tardias. Las
progenies de madurez temprana y sus respectivos TTA para BBCH-89 son BRQ4 (1.676,8), BRQ1 (1.685) y AUR
(1.691), contrastando con las tardias BLA (2.239), BRQ3 (1.929,1 GDD) y BRQ8 (1.895). Las unidades térmicas
acumuladas para BBCH-89 oscilaron entre 1.565,25 y 2.381, con una diferencia entre los genotipos més precoces
y los més tardios de 815,75. Las progenies seleccionadas de los cultivares existentes son diferentes en cuanto a
la acumulacién de unidades térmicas, lo que implica la eficiencia en la adquisicién de cultivares para escalonar el
cultivo de quinua. Las unidades térmicas acumuladas explican el rango de ciclos de maduracién de las plantas en la
seleccién. Ademads, el calculo del TTA para los c6digos de la escala BBCH es una herramienta eficaz para predecir el

ciclo fenolégico de la quinua.

Palabras clave adicionales: Chenopodium quinoa Willd.; fenologia; seleccidn; manejo del cultivo, grados dia.
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Quinoa (Chenopodium quinoa Willd.), a novel crop to
the world, has been continuously selected in the An-
des of South America, characterizing its gradual ex-
pansion from around Titicaca Lake, between Bolivia
and Peru, the probable center of origin (Maughan et
al., 2004). The expansion of quinoa growth occurred
to the North (Ecuador, Colombia, and Venezuela)
and to the South (Argentina and Chile), from the
Andean Altiplano to the valleys and coastal regions.
The expansion of quinoa cultivation occurred slowly,
dispersing into environments of great climatic differ-
ences (Bertero et al., 2004).

Peru and Bolivia have been the major quinoa produc-
ers, followed by Ecuador and Argentina (Perez-Rea
and Antezana-Gomez, 2018). In Brazil, the interest
in quinoa cropping started in the 1990’s, as an op-
tion for diversification of cropping systems its excel-
lent food source. In addition, with the no-till system
evolution, it contributes biomass to protect the soil
in the dry season and uses low quantities of seeds in
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INTRODUCTION

sowing, a favorable factor to expand cultivation (Spe-
har et al., 2015a).

Thermal units, also known as growing degree days
and heat units, are a way of incorporating both tem-
perature and time into one measurement to quantify
the rate of plant growth in response to temperature.
Calculation of thermal units allows defining of the
accumulated thermal units (ATU) for each phase of
plant growth and development (Renato et al., 2013).
ATU has been successfully employed in agriculture,
particularly in phenological studies. The concept of
thermal time, first introduced in 1730 by R. A. E de
Reaumur, to predict phenological events more affect-
ed by location and sowing date, as an alternative for
the number of days, affected by the temperature of
location (McMaster and Wilhelm, 1997).

Employing or calculation of thermal units can be use-
ful in predicting the phases of plant growth and de-
velopment, such as seedling emergence, early growth,
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flower initiation, reproductive period, and its subdi-
visions. Thermal units can be a tool to determine the
sowing and harvest time of crops affected by climate
change. The rise in temperature speeds up the phases;
therefore, using the number of days alone has been
no longer valid to assess growth and development
phases (Sharma et al., 2021). Variations in air temper-
ature can anticipate the phenological phases, turning
the events of crop growth less unpredictable when
measured in the number of days (Souza et al., 2017).

In the calculation of thermal units, one must con-
sider the base temperature (BT), which is specific for
every plant crop species. In quinoa it has been report-
ed that BT seems to vary according to phenological
phase (Garcia-Parra et al., 2020a). Quinoa has shown
a high potential to adapt to different environments,
being exposed to variable temperatures, affecting the
length of plant phenology (Jojoa et al., 2021).

Clearly defined phenological stages are of great im-
portance for phenotype reproducibility. Several stud-
ies have investigated and described the phenological
stages of quinoa. These studies have provided valu-
able information on crop characterization (Stan-
schewski et al., 2021). Currently, the phenological
stages of quinoa are described using the Biologische
Bundesanstalt Bundessortenamt und Chemische
Industrie (BBCH) scale, presenting as main phases
germination (0), leaf development (1), formation
of lateral buds (secondary stems) (2), inflorescence
emergence (9), flowering (6), fruit development
(7), ripening (8), senescence (9) (Sosa-Zuniga et al.,
2017). Secondary phases are adapted to the changing

behavior of different cultivars, which are influenced
by environmental effects and their generic character
(Garcia-Parra et al., 2020Db).

Quinoa genotypes have shown variability in pheno-
logical phases as response to temperature (Anchico
et al., 2020). Studies using (ATU) to describe qui-
noa growth and development are scarce and do not
provide comprehensive information to predict the
phenological phases of the crop. The information
is essential to guide research on crop breeding and
management for efficient production. In view of this,
the study had the objective to calculate the thermal
units for 13 codes of the BBCH scale of quinoa from
the evaluation of 12 selected progenies grown in two
sowing dates in the Brazilian Savannah.

MATERIALS AND METHODS

Physiographic characteristics of location and solil
management

Two experiments (Season 1 - March / June 2018 and
Season 2 -May / August 2019) were conducted in
Agua Limpa Farm, University of Brasilia (UnB), Fed-
eral District, Brazﬂ coordinates of 15° 56’ S and 47°
55" W, at an altitude of 1,100 m. It is located in the
core of the Cerrado Region (Brazilian Savannah phys-
iognomy). The climate has been described according
to Kéeppen, as Aw, characterized by rainy period,
October to April, and dry period, May to September
(Kottek et al., 2006). Mean temperature during the
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experiments was 19.0 and 19.45°C, with maximum
mean temperature of 27.6 and 28,8°C, and minimum
mean temperature of 12.5 and 11.5°C. Rainfall was
451.7 mm and 141.5 mm, respectively for the two
sowing dates (Fig. 1).

Prior to setting experiments, the area was fertilized
according to the requirements of quinoa cropping
with N, P,Os;, and K,O sources in the proportion
of 12:90:48 kg ha, harrowed, leveled off, and rows
equally spaced by 0.5 m were opened (Spehar ez al.,
2015b). Thirty days after emergence, the plots re-
ceived N in the dose of 40 kg ha, band applied, and
were kept weed-free by hand hoeing. The experi-
ments were sprinkler irrigated when water tension
reached 40 kPa based on tensiometers installed in the
area. For the quinoa cycle, 350 mm of irrigation water
was required.

Quinoa genotypes and selected progenies

Progenies were obtained in Brazil and in Colombia
at altitudes of 1,100 e 1,800 m by individual plant
selection in existing cultivars (Anchico er al., 2020):
a) Progenies BRQ1, BRQ 2, BRQ 3, BRQ 4, BRQ 9,
BRQ 6, BRQ §, and BRQ 10, from cultivar BRS Sye-
tetuba (Brazil), of plant maturity cycle between 95
to 121 d and yield in the range of 1,500 and 2,200 kg
ha'; b) progeny from cultivar Aurora (AUR) (Colom-
bia) of 97 d to maturity and 2,121 kg ha' yield; c)
progeny from cultivar Blanca Dulce de Jerico (BLA)
(Colombia) 150 d to maturity and 1,500 kg ha! yield;
d) progeny of the cultivar Tunkahuan (TUN) origi-
nally from Ecuador and selected in Colombia, 118 d
to maturity and 1,300 kg ha yield e) cultivar Piartal
(PRI) originally from Ecuador and selected in Colom-
bia, 109 d to maturity and 1,500 kg ha yield.

Phenological evaluation

The first evaluations were made between March
and June 2018 and the second between May and
August 2019. The phenological stages of quinoa in
this research were classified according to the BBCH
scale, which are described below: BBCH-08 (Hypo-
cotyl with cotyledons growing towards soil surface,
BBCH-10 (Cotyledons fully emerged), BBCH-11
(First pair of leaves visible) , BBCH-12 (Second pair of
leaves visible), BBCH-13 (Third pair of leaves visible),
BBCH-20 (Visible lateral buds or expanded leaves
without lateral stems), BBCH-50 (Inflorescence pres-
ent but still enclosed by leaves), BBCH-51 (Leaves
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surrounding inflorescence separated, inflorescence
is visible from above), BBCH-59 (Inflorescence vis-
ible, but all the flowers are still closed), BBCH-69
(Complete anthesis: main inflorescence flowers with
senesced anthers), BBCH-81 (Milky grain, easily
crushed with fingernails, liquid content and green
pericarp), BBCH-85 (Thick grain, easily crushed with
fingernails, white pasty content, green, beige, red
or black pericarp), BBCH-89 (Ripe grain, difficult to
crush with fingernails, dry content, the grain has a
beige, red or black colour on its outside. Ready to har-
vest) (Sosa-Zuniga et al., 2017).

Determination of thermal units

Thermal units were determined for the thirteen phe-
nological phases of quinoa growth and development
of 12 progenies, on the basis of maximum and mini-
mum daily temperatures obtained in the meteorolog-
ical station of Agua Limpa Farm, UnB.

Calculation of accumulated thermal units (ATU) for
quinoa considered the base temperature of 3.1°C ac-
cording to (Bertero et al., 1999). This temperature is
the minimum at which the quinoa plant paralyzes
growth.

Accumulated thermal units (ATU) was estimated ac-
cording to the method proposed by Arnold (1959).
Two equations were used

MT —mt
2
where, TU was thermal units, /T the maximum dai-

ly temperature, m: the minimum daily temperature
and BT the base temperature.

TU = ~BT 1)

The thermal summation or (ATU), was calculated by
equation 2.

ATU=STU3TUD,n,=1 @)

where, n was number of days to reach each plant
growth and development phase.

Experimental design and statistical analysis

The experiments were conducted based on the ran-
domized complete block design. Each block was
consisted of eight progenies of selected individual
plants from cultivar BRS Syetetuba, recommended
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for cultivation in the Brazilian Savannah (Spehar et
al., 2011), in the period 2016-2018 and four prog-
enies, two from Colombian cultivars Blanca Dulce de
Jerico (BLA) and Aurora; and two from Ecuadorian
cultivars Tunkahuan and Piartal. The four progenies
were selected in 2017-2018. Altogether, each block
contained 12 plots corresponding to progenies on six
repetitions. The plot had four rows 2 m long, equally
spaced by 0.5 m, with a distance between plots of 1
m. The plant density on the row was 30 plants/m™.

An analysis of variance of the values of (ATU) for
phenological phases between genotypes and sow-
ing dates was carried out and compared by Tukey’s
test using SPSS software. Additionally, a hierarchical
analysis was performed to evaluate the relationship
between progenies and (ATU) values for phenologi-
cal phases and a dendogram was obtained, using the
Euclidean distance, for similarity grouping (Ward,
1963).

RESULTS AND DISCUSSION

Quinoa progenies had statistically significant F test
differences at P<0.01and P<0.05 of (ATU) for BBCH-
11 to BBCH-89. (Tab. 1). Comparisons were made by
ATU, standardizing the values independently of the
growing environment (Zapata et al., 2015). There-
fore, it is expected in this experiment that the geno-
type grown on the two sowing dates present similar
ATU values. This holds to other crops of different
base temperatures as soybeans (Spehar et al., 2015a).

The progenies studied here had variable ATU, turning
into a reference to compare adaptability to cropping
systems in environments different from quinoa’s An-
dean origin (Anchico et al., 2020). All progenies had
seedling emergence (BBCH-08) in 3 d in 2018 and
2019, with 56,98 and 50,66 ATU (Tab. 1), expressing
sensitivity to the temperature at this phase, as already
described experimentally in Argentina (Gonzalez
et al., 2017). This early phase of quinoa has shown
more sensitivity to temperature. For the remaining
phases, there were different values of ATU as related
to days, turning evident the effect of temperature in
plant development (Salazar-Gutiérrez et al., 2013). In
Cotyledons fully emerged (BBCH-10), there were no
statistical differences among progenies, with ATU of
112.55 in 2018 and 100.11 in 2019. In the BBCH-11
(first pair of leaves visible), there were statistical dif-
ferences in the 2018 experiment; progenies AUR and
PRI had less accumulated thermal units, 191.95, than

the other progenies of 232.53. In 2019 all progenies
had 202.17 ATU at BBCH-11. When progenies for
the two experiments were compared, three groups of
ATU were formed (Tab. 1).

At BBCH-12 progenies, PRI and BLA had different ac-
cumulated thermal units (ATU) at first sowing date
of 394.83 and 373.48, respectively. In the second ex-
periment, all progenies had an ATU of 305.75 for the
same phase (Tab. 1). At the BBCH-13, mean values
were ATU 405, with a smaller mean value in the sec-
ond year with a mean ATU of 364,17. Progeny with
higher ATU was BLA with 481.93. At BBCH-20, the
mean ATU was 505.81, while progenies in the sec-
ond year had smaller ATU, although BLA had 481.93.
These differences, although statistically significant,
are still acceptable to compare accumulated thermal
units (ATU) for progenies at each growth and devel-
opment phase in quinoa. Other uncontrolled environ-
mental factors such as rainfall, relative air moisture,
evapotranspiration, solar radiation could have influ-
ence in the plant vegetative and early reproductive
phases (Parra-Coronado ez al., 2015).

The statistical differences were more predominant
from BBCH-50, separating the progenies into early,
mid-cycle and late maturity. In the first experiment,
progenies with smaller ATU were AUR and BRQ 1,
with 933,34 and 910.24 respectively, while the largest
were BRQ 3 and BRQ 2 with 1063.52 and 1048.02
ATU (Tab 1). Differences are accentuated from the
beginning of the reproductive phase. A similar find-
ing was reported for Cucurbita moschata (Souza et
al., 2017). At BBCH-51, progenies had an ATU larger
mean value of 1,164.23; for the same phase mean
value was 843.72 in the second experiment, AUR
613.97 was the least thermal unit accumulator proge-
ny (Tab. 1). BBCH-50 and BBCH-51showed a similar
trend, with AUR (661.34), BRQ1 (676.48), and BRQ4
(747.11), early progenies having the least ATU, while
BRQ2 and BRQ6 were late (1,160.58). At BBCH-69,
significant differences were found among progenies
of early, mid-cycle, and late maturity grouping. Early
AUR (761.65) and BRQ 1 (777.24) contrasted with
late BRQ 6 (1292.09) and BRQ 2 (1270.19G) (Tab. 1).

In the second experiment, the progenies reduced
the number of days until the BBCH-59, which was
reflected in the accumulated thermal units. Tem-
perature fluctuations could have influenced these
variations at flowering reflecting in the following
phases (Regueraez al., 2018). The mean ATU between
BBCH-69 and BBCH-81 was 304.5 with the least
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CALCULATION OF THE THERMAL UNITS OF THE PHENOLOGY OF QUINOA 7

values for AUR*, BRQ1*, and BRQ4*, accumulating
1,066.83 heat units (Tab. 1). Progenies BRQ3 and BLA
accumulated 1,667.84 and 1,670.67 heat units. AUR
had the least ATU, confirming results obtained in
Colombia (Anchico et al., 2020; Montes-Rojas et al.,
2018). ATU at BBCH-85 showed the same trend for
AUR, BRQ1, and BRQ4 accumulating 1.346.81 ther-
mal units, while BRQ3 (1.983.83) and BLA (1.924.92)
were the latest. At BBCH-89, there were statistical
differences for progenies and sowing dates. The phe-
nological plant cycle, in days, for late maturity prog-
enies extended to 145 d, while early maturity AUR*,
BRQ1* and BRQ4* with respective ATU of 2,096.69,
2,099.23, and 2,381.00. The mean ATU difference
was 223.11, indicating a reduction in phenological
phases (Fig. 2).

Progenies selected from BRS Syetetuba had statistical
differences for BBCH-89, demonstrating ample vari-
ability, attained by possible segregation for the late-
ness in the cultivar originated from natural crosses
(Spehar er al., 2015b). The spread of progenies into
early, mid-cycle and late maturity has kept the rela-
tionship among them when tested in Colombia at
different altitudes and temperatures, althoughs kept
the relationship when tested in Colombia at differ-
ent altitudes and temperatures. However, the ATU
at BBCH-89 were not statistically different (Anchico
etal., 2020).

In this experiment, progenies were classified up to
BBCH-89, expressing potential adaptability relating
to the environment they were selected (Bois et al.,
2006). Progeny BLA of cultivar Blanca Dulce de Jerico
had the highest ATU (2.239) (Tab. 2), extending the
plant maturity cycle to180-214 d at environments
above 2,000 m a.s.l. and low temperature (Montes-
Rojas et al., 2018). This would be predicted by the
use of accumulated heath units in quinoa cultivation
instead of the number of days to maturity.

The use of ATU helped to describe the duration of
phenological phases of quinoa, which can be useful
to manage the crop in all phases best, guiding the
time for fertilization, plant protection, irrigation and
in genotype selection to originate different maturity
groupings (Anandhi, 2016). Moreover, predictability
ATU of phenological phases can direct selection in
quinoa to face climate changes (Sharma et a/., 2021).

When the two sowing dates are considered, progenies
accumulated less heat units in May/August 2019, al-
though the number of days was higher. This could
be explained by uncontrolled factors, as moisture
availability. The experiment conducted in March/
June 2018 received more water because, in addition
to irrigation, there was considerable rainfall in the
period, whereas in May/August experiment relied al-
most entirely on irrigation. Excess water in the first
experiment and lower temperatures in the second
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Figure 2. Accumulated thermal units (ATU) for the two growing periods for BBCH-08 (hypocotyl with cotyledons growing
towards soil surface), BBCH-10 (cotyledons fully emerged), BBCH-11 (first pair of visible leaves), BBCH-12 (second
pair of visible leaves), BBCH-13 (third pair of visible leaves), BBCH-20 (visible lateral buds), BBCH-50 (inflorescence
present but still enclosed by leaves), BBCH-51 (leaves surrounding inflorescence have separated,), BBCH-59 (inflores-
cence visible), BBCH-69 (complete anthesis), BBCH-81 (milky grain), BBCH-85 (thick grain), and BBCH-89 (ripe grain).
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CALCULATION OF THE THERMAL UNITS OF THE PHENOLOGY OF QUINOA 9

could help explaining differences in ATU and in days
to each phase (Tab. 1). Differences for ATU among
the phases, although were statistically different,
showed a similar pattern in the groupings (Tab.2).
Higher temperatures in the second experiment could
explain the anticipation of growth and development
phases in quinoa (Asseng et al., 2011; Parra-Coronado
et al., 2015).

In general, progenies accumulating lower thermal
units were BRQ4 (1.676,8), BRQ1 (1,685), and AUR
(1,691). The ones with higher ATU were BLA (2.239),
BRQ3 (1,929.1 GDD), and BRQ8 (1,895) (Tab. 2).
Late progenies were identified from BBCH-13 on-
wards, presenting higher ATU values, a characteristic
that was maintained until BBCH-89 (Tab. 2).

Between the beginning of the reproductive phase
BBCH-50 and the mature grain phase BBCH-89, an
ATU of 944.66 (Tab. 2) was presented, representing
51% of the total of the studied cycle.

Temperatures, higher than in Andean Valleys and in
Colombia, conditioned reduction in days to plant cy-
cle, accelerating enzymatic activities in the plant and
the phenological phases (Asseng et al., 2011; Souza et
al., 2017).

Euclidean distance of 5 was used for the 12 progenies
based on accumulated thermal units in the 13 codes
of the BBCH scale, according to (Hair et al., 2005).
Five hierarchical groups of similarity were defined

(Fig. 3).

Group I was formed by three progenies, two selected
from BRS Syetetuba (BRQ 1 and BRQ 4) and one Au-
rora (AUR). These progenies presented lower thermal
units, therefore they were the most precocious.

Grupo 1II contained five progenies, all selected from
BRS Syetetuba (BRQ2, BRQ6, BRQS5, BRQ8, BRQ10).
These differed from the preceding groups, with high-
er ATU.

Group III had two progenies, one from BRS Syete-
tuba (BRQ3) one from Piartal (PRI), dissimilar to the
group I.

Group IV is made up of one progeny of Tunkahuan
(TUN), dissimilar to preceding groups I, with higher
ATU.

Group V had one progeny of Blanca Dulce de Jerico
(BLA), being the highest thermal unit accumulator
and dissimilar to other groups.

Hierarchical clustering allowed determining the
similarity of genotypes in the accumulation of ther-
mal units, showing a significant difference between
genotypes in the first and fourth groups. This helped
to identify early, medium and late genotypes. The
grouping helped to visualize the relationship among
progenies and relate the plant maturity cycle to the
ATU. There were other factors differentiating the
experiments as excess water in the first sowing date
that could have caused a departure from expected re-
sults. Even though they were statistically different,
there was a similar trend, turning the predictable
definition of maturity groups based on ATU.
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Figure 3. Dendrogram for hierarchical grouping of 12 quinoa progenies using accumulated thermal units (ATU).
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CONCLUSION

The use of accumulated thermal units allows the pre-
diction of phenological events in quinoa of different
maturity groups. The BRQ4, BRQ1 and AUR prog-
enies were the earliest with the lowest Accumulated
Thermal Units (ATU) values, averaging 1676, 1685
and 1691, respectively. However, the progenies BLA
and BRQ 3 were the later with ATU values of 2239
and 1929, respectively. The accumulated thermal
units for BBCH-89 ranged from 1565.25 to 2381, with
a difference between the earliest and latest genotypes
of 815.75. Progenies selected from existing cultivars
are different in thermal unit accumulation, ensuing
efficiency in cultivar acquisition to stagger quinoa
cultivation. Accumulated thermal units explain the
range of plant maturity cycles in selection. The calcu-
lation of ATU for the BBCH scale codes is an efficient
tool to predict the phenological cycle of quinoa.
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