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ABSTRACT
Under tropical conditions, Hass avocado irrigation is a controversial issue due to insufficient scientific evi-
dence. The rapid progression of technological advances and its incorporation in agriculture have expanded 
options to improve the irrigation scheduling (IS) of Hass avocado. The concept featuring those technological 
advances in agriculture is digital agriculture (DA). Here, we present a mixture of well-known studies in the 
Hass avocado irrigation focused on proximal sensing (PS) technologies and recent studies emphasizing the 
potential of remote sensing (RS), and application technologies to schedule the irrigation. PS takes advantage 
of the soil or trees’ proximity to output reliable measurements with a high temporal resolution, while RS 
provides a broad set of spectral data in continuous and large areas that can be transformed into crop-rela-
ted biophysical variables. Applications – a term grouping mobile (smartphone) apps, desktop programs, and 
web-based platforms – offers portability, high precision, and graphic visualization of variables obtained or 
estimated by sensors. Integrating RS and PS technologies through user-friendly applications can represent a 
suitable option to improve Hass avocado irrigation in developing countries. Our review is presented in the 
following sections: general introduction, DA approach definition, use of proximal sensing, use of remote 
sensing, and scheduling irrigation applications.

Additional key words: new technologies; agriculture 4.0; proximal sensing; remote sensing;  
mobile and web Apps.
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Avocado (Persea americana Mill.) cv. Hass is one of the 
most profitable fruits traded in international mar-
kets (FAO, 2021; International Trade Centre, 2021). 
This fruit is produced in countries with tropical and 
subtropical climates (Schaffer et al., 2013), many of 
them with emergent economies, such as Colombia. 
This country is the tenth largest global exporter of 
Hass avocados (FAO, 2021), and its production has 
increased exponentially in recent years (Ramírez-Gil 
et al., 2018a). Unfortunately, such production has 
been conducted without technology, which has ex-
tended the agronomic knowledge gap (Ramírez-Gil et 
al., 2018a; Builes and Duque, 2020). Hass avocado in 
Colombia can be considered a rainfed crop because 
most farmers irrigate empirically once a week only 
when trees manifest water deficit signs or do not ir-
rigate, but recently studies demonstrated that under 
tropical condition irrigation can be necessary in a few 
months a year (Erazo-Mesa et al., 2021). Therefore, 
Colombian Hass avocado farmers who adopt incipi-
ent or state of the art irrigation techniques can save 
water and mitigate the negative consequences of wa-
ter scarcity and climate change on their agriculture 
production system in the future.

Water scarcity and climate change will modify the wa-
ter use in agriculture in the forthcoming years (FAO, 
2020), including some avocado-producing areas, 
where changes in temperature and precipitation are 
projected with impacts on water balances (Ramírez-
Gil et al., 2019). In addition, climatic variability under 
tropical conditions presents many adverse effects on 
crops as avocado (Ramírez-Gil et al., 2020; Erazo-
Mesa et al., 2021). Climate variability is associated 
with seasonal and non-seasonal phenomena such as 
the Intertropical Convergence Zone (ITCZ) (Byrne et 
al., 2018; Mamalakis and Foufoula-Georgiou, 2018), 
and ENSO (El Niño Southern Oscillation) phenom-
ena, respectively (McPhaden et al., 2006; McCabe and 
Wolock, 2013). Both phenomena have a high impact 
on the availability of water for crops.

Aiming to identify the volume of water and the 
moment to irrigate the crop (Ali, 2010), irrigation 
scheduling (IS) is the first step to fill the water man-
agement gap in Hass avocado in Colombia. Although 
other methods have been used to schedule irrigation 
(Yohannes et al., 2019), the most common IS meth-
ods include: soil water balance (SWB), the use of soil 
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or plant indicators, and simulation models (Gu et 
al., 2020). These demand a vast amount of historical 
or near real-time data and specialized knowledge to 
perform the irrigation scheduling (Fernández et al., 
2020). The factors that contribute to the reduction 
of the IS accuracy include the high variability of the 
soil, terrain, and microclimates; the changing trees’ 
physiology and reseeding requirements; the differen-
tial gene expression; the rootstock variability in the 
nursery stage; and heterogeneous agronomic tasks 
within plots (Ali, 2010).

Currently, the concept of digital agriculture (DA), 
part of the revolution 4.0 concept, is being explored 
emphasizing the use of different technologies in 
agriculture (Ramírez-Gil et al., 2021) such as infor-
mation and communication systems, remote and 
proximal sensing, modeling, programming, robotics, 
cloud computing, the internet of things (IoT), big 
data analysis, among others (Kamilaris et al., 2017; 
El-Gayar and Ofori, 2020). The main objective of this 
new approach in agriculture is the management of 
information for a correct, fast, and accurate decision 
making. From the DA approach, technologies that 
suit the Hass avocado IS (Ćulibrk et al., 2014) can be 
classified into three categories: proximal sensing (PS), 
remote sensing (RS), and mobile or web applications. 
Studies have reported the benefits of using IS in avo-
cado orchards (Holzapfel et al., 2017; Moreno-Ortega 
et al., 2019; Silber et al., 2019), highlighting a reduc-
tion in crop water consumption and yield, and fruit 
quality improvement.

In the following chapters, an exhaustive review will 
be made when aspects associated with the definition 
of DA, the use of remote and proximity sensors, new 
analysis technologies, and smart devices and web 
pages were used for the determination, program-
ming, and management of irrigation on agricultural 
systems with an emphasis on the Hass avocado crop.

DIGITAL AGRICULTURE APPROACH: 
GENERAL CONSIDERATIONS

In recent years, the need for new technologies in 
agricultural systems has been characterized by a con-
tinuous search for sustainable solutions to face global 
challenges, highlighting the technological tools that 
improve the analysis of information and the under-
standing of biological phenomena. New technolo-
gies have allowed a better understanding of plant 

interactions with biotic and abiotic actors, generat-
ing criteria for the optimization of processes, conser-
vation of biodiversity, efficient use of resources, mass 
yields, and management of phytosanitary problems 
(Fig. 1).

This new trend in agriculture has been named digi-
tal agriculture (DA), smart agriculture, or agriculture 
4.0, all these related to the same concept (Rose and 
Chilvers, 2018; Sharma et al., 2020). The main objec-
tive of this new era in agriculture is the management 
of information for correct decision-making and the 
search to massify the yields with a lower economic 
and environmental cost. This revolution implies the 
use of technologies such as information and commu-
nication systems, remote and proximity sensors, bio-
modeling, programming, robotics, the cloud, IoT, big 
data analysis, artificial intelligence, machine learn-
ing, blockchain, mobile applications, and electronic 
devices (Karmas et al., 2016; Kamilaris et al., 2017; 
Kamilaris and Prenafeta-Boldú, 2018; Ramírez-Gil 
et al., 2018b; Smith, 2018; El-Gayar and Ofori, 2020; 
Sharma et al., 2020).

The DA approach presents multiple challenges to 
achieve a high impact on a diversity of producers, 
farm sizes, production systems, cultures, and social 
aspects. These challenges are associated with: (i) the 
need for reliable, fast, and accurate information as 
possible; (ii) design of flexible tools; low-cost solu-
tions; (iii) easy-to-implement and friendly-interface 
alternatives to users, (iv) open-source technologies; 
and (v) responsible innovation (Ramírez-Gil et al., 
2018; Rose and Chilvers, 2018; Rijswijk et al., 2019).

The practical application of the DA approach in dif-
ferent parts of the value chain of agricultural systems 
has multiple cooperative advantages (Smith, 2018; 
Sharma et al., 2020). In this work, we suggest that 
the design and practical applications of technological 
developments associated with DA have the following 
aspects: (i) objective and problem to be solved; (ii) 
correct use of the principles and theoretical concep-
tualization of algorithms, processes, and tools used; 
(iii) resources necessary for its implementation under 
field conditions; (iv) products generated, correct in-
terpretation, and their limitations; and (v) economic 
viability.

In figure 1, we present the main objective, some tools, 
and the potential products of the DA approach. The 
implementation of DA tools has contributed to a bet-
ter land use; more sustainable agronomic practices; 
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less environmental impact; greater conservation of 
species; indirect detection of pests; harvest forecasts 
and planning; irrigation management, fertilization 
and sanitary problems stand out; and climate predic-
tion (Chevalier et al., 2012; Kamilaris et al., 2017; Ka-
milaris and Prenafeta-Boldú, 2018; Ramírez-Gil et al., 
2018b; Rijswijk et al., 2019; Sharma et al., 2020).

Our results suggest that the practical application of 
AD tools in avocado production systems is not wide-
spread worldwide. This situation indicates the great 
potential that this type of technology can generate 
throughout the value chain. It also indicates the great 
challenge that it means for the sector to be able to 
incorporate the new developments associated with 
AD and its application as a basis for evidence-based 
decision-making.

THE USE OF PROXIMAL SENSING

Soil-based Sensors

A broad set of soil-based sensor technologies to 
schedule avocado irrigation have been reported 
(Crowley and Escalera, 2013). These imply monitor-
ing the soil water content (SWC) with time-domain 
reflectometry (TDR) probes, capacitance sensors, 

or reflectometry probes, or the soil matric potential 
(SMP) with tensiometers or granular matrix sensors 
(Scanlon et al., 2002). However, most irrigation stud-
ies in the Hass and other avocado cultivars have used 
SMP devices to schedule irrigation (Tab. 1). SMP is 
the amount of energy exerted by the soil particles 
to retain water (Miyazaki, 2005), which does not 
depend on the texture and other soil-related factors. 
Therefore, SMP measurements take advantage of 
SWC readings because SMP permits standardizing 
thresholds to initiate and stop the irrigation (Da-
bach et al., 2016). Some reporters considered the used 
of tensiometers as essential in avocado orchards to 
avoid over and subirrigation (Goodall, 1986; du Ples-
sis, 1991).

Early experiences in the use of tensiometers to irri-
gate avocados were reported in several studies. Incipi-
ent knowledge about SMP thresholds to irrigate the 
crop led to select −1000 KPa (a value close to perma-
nent wilting point) as one of the irrigation-triggering 
treatments. Due to tensiometer readings not falling 
below −80 KPa, the authors used resistance blocks to 
reach this value and consequently activate the irriga-
tion. After this treatment was applied, the tree trunk 
diameter growth significantly reduced (Richards et 
al., 1962). Other authors reported an operational ba-
sis to schedule the avocado irrigation using tensiome-
ters in drip irrigation systems in the United States 

Figure 1.  General outline of the concept, needs, and practical solutions of digital agriculture.

• Weather monitoring
• Crop health monitoring in real time 

using prosimal and remote sensing
• Mobile and web applications for data 

collection
• Electronic device to field data collection
• Digitalization of information using the 

cloud
• Spatial-temporal data analysis
• Real-time data analysis in the cloud
• Softwareapplication
• Telematics position system
• Communication systems
• Artifical inteligence
• IoT
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• Decision-making in real time
• Risk maps for pets
• Stress detection
• Irrigation optimization
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(Gustafson et al., 1979). In addition, one of the first in 
establishing rationale thresholds to irrigate avocados 
was reported using water potential dynamic of the 
soil-plant-atmosphere continuum (Bower, 1979). He 
stated the total stomatal closure occurred at approxi-
mately −55 kPa and recommended maintaining the 
SMP between −25 KPa and −60 KPa and starting the 
irrigation when the soil reaches −50 KPa.

In a long-term irrigation experiment carried out be-
tween 1968-1974 and 1974-1980 (Tab. 1), assessed 
the effect of 7, 14, 21, and 28-d irrigation intervals 
(thresholds to start the irrigation ranged from −20 
to < −80 KPa) on tree parameters of Ettinger, and 
Fuerte avocado cultivars. The application of the 21-d 
irrigation interval (corresponding to the irrigation 
trigger of −40 KPa) saved 24.9% of water (compared 
with the 7-d irrigation interval) while evidencing no 
significant reduction in trunk diameter, tree canopy 
volume, and yield. However, this produced a cumula-
tive water deficit in deep soil layers throughout the 
irrigation season (Kalmar and Lahav, 1977; Lahav and 
Kalmar, 1977, 1983).

SMP devices must be buried permanently in the soil 
according to the highest avocado tree’s root density 
depth (Lahav and Kalmar, 1983), which is usually 
no deeper than 0.60 m (du Plessis, 1991). The most 

appropriate SMP devices installation location cor-
responds to the permanently moist soil area, where 
the active or feeder roots are found (Fig. 2) (Good-
all, 1986). In addition, it is recommended installing 
several in-depth (Fig. 2) and spatially distributed ten-
siometers in the field to counteract the high soil spa-
tial variability (Crowley and Escalera, 2013), which 
is one of the critical limitations of soil-based sensors 
(Van Pelt and Wierenga, 2001). Once installed, ten-
siometer and granular matrix sensor measurements 
must be read manually and stored in data loggers or 
on the cloud, respectively. Although manufacturers’ 
technical sheets state that current tensiometers and 
granular matrix sensors can read SMP in the ranges of 
0, −100 KPa, and from 0, −200 KPa, respectively, in 
practice, these ranges can oscillate in either direction.

Irrigation scheduling using these devices consists 
of identifying the appropriate moment to start and 
stop the irrigation event and establishing the lowest 
and the highest SMP limits, respectively. An irriga-
tion event is triggered when the SMP falls below the 
lowest limit, and this event ends when the water re-
plenishing within the root zone rises the SMP back 
to its highest limit. After a comprehensive review of 
those SMP thresholds as presented in table 1, it can 
be affirmed that although the most used lowest SMP 
limit is −50 KPa, an accurate selection of this limit 

Potencial matric sensor

Soil temperature sensor

0.30 m

Data logger

0.75 to 1 m
Irrigation pipe

Dripper

Soil surface

Avocado tree

Figure 2.  Representation of a soil potential matric sensor location (left) and 15 and 30-cm-depth soil potential matric sensors 
installed in a Hass avocado orchard (right).
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Table 1.  Studies reporting soil potential matric (SMP) thresholds to trigger irrigation.

Author(s) Region Avocado 
cultivar

Crop 
age 

(years)

Sensor 
depth  
(m)

Soil 
texture 

Irrigation 
system

SMP 
treatments 

(KPa)

SMP to start irrigation 
(KPa)2

Richards et al. 
(1962)

Riverside, 
United States

Hass NR1 0.30 Coarse Sprinkler
-50, 100,  
and 1000

-50 (The best treatment)

Bower (1979)
Natal,  

South Africa
Fuerte 9

0.30 and 
0.50

NR Draglines NR -50

Lahav and 
Kalmar (1983)

Acre, Israel
Hass, 

Ettinger, 
and Fuerte

11 0.30
60-63% 

Clay
Sprinkler -25 and -40 -40

Bower (1985) South Africa Fuerte 5 0.30 Clay Microjet
-80, -55,  
and -35

-55 (the best treatment)

Goodall (1986) United States NR NR
0.30 and 

0.60

Sprinkler, 
micro-

sprinklers, 
and drip

NR
40-50 for sprinkler,  

30-40 for micro-sprinklers, 
and 20-30 for drip

du Plessis 
(1991)

NR NR NR 0.30
Sandy 
and 

Clayey
NR NR

-30 (sandy) and  
-50 (clayey soils)

Whiley (1994)
Queensland, 

Australia
Hass NR

0.30 and 
0.75

Clay 
Loam

Mini-
sprinklers

NR
-40 (0.30 m depth),  
-50 (0.75 m depth)

Vuthapanich et 
al. (1995)

Queensland, 
Australia

Hass 7 0.30 NR
Micro-

sprinklers
-20, -40,  
and -70

-20 (the best treatment)

Hoffman and 
du Plessis 
(1999)

Nelspruit, 
South Africa

Fuerte and 
Hass

NR
0.30 and 

0.60
Clay

Micro 
irrigation

-30 and -60
-30, -60, and -30  

(by season)

Román-Paoli  
et al. (2009)

Isabella, 
Puerto Rico

Simmonds 8
0.30 and 

0.45
Coarse

Micro-
sprinklers

10-15 and 
40-45

40-45

Doupis et al. 
(2017)

Greece
Fuerte and 

Hass
2 0.20

Sandy 
Loam

Manual NR
-30 (used as the  

well-watered treatment)

Silber et al. 
(2019)

Western 
Galilee, Israel

Hass 5 0.40
60% 
Clay

Drip NR -20 (used)

Tzatzani et al. 
(2020)

Greece
Fuerte and 

Hass
2 0.20

Sandy 
Loam

NR NR
-30 (used as the  

well-watered treatment)
1 Suggested, used, or determined after the SMP treatments application.
2 NR, not reported. 

depends on the irrigation system and the soil texture. 
According to Goodall’s recommendation (Goodall, 
1986) (Tab. 1), high-frequent systems require the 
lowest threshold close to field capacity (FC), while 
low-frequent systems require an SMP threshold far 
from FC. Due to water in sandy soils moving faster 
than in those clayey soils, the lowest SMP threshold 
in sandy soils must be close to FC, as this must be 
far from FC in clayey soils (see du Plessis’ recommen-
dation in Tab. 1). Although this was not detailed in 
most of the studies of table 1, it can be inferred that 
the highest SMP limit used to stop the irrigation was 
−10 KPa (FC). When two SMP devices are installed 

in the field, it is recommended to use the shallowest 
readings as the lowest SMP threshold, and the deep-
est readings as the highest SMP threshold (Goodall, 
1986).

Plant-based sensors

Plants are living systems that take a small amount of 
water transported by energy gradients through the 
continuum soil-plant-atmosphere (Kramer, 1983). An 
imbalance among the soil water availability, water 
used by plant-water-related processes, and the evapo-
rative demand causes plants to endure water deficit 
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stress (Taiz and Zeiger, 2002). It is noted that plants 
reveal water stress through the water and energy 
status, electrical potential, flux of related fluids, pres-
sure, or size variation of the trunk, stems, leaves, tis-
sues, and other vegetative organs (Fernández, 2017). 
The consequences of water stress in some plants 
can be temporary (i.e., reversible) due to their stress 
adaptation mechanisms or permanent, modifying 
their life cycle (Silber et al., 2013). In this sense, the 
plant-based irrigation approach takes advantage of 
detectable water-deficit-stress plant signals to estab-
lish reasonable limits to trigger the irrigation (Jones, 
2004).

The most common plant-based variables tested as 
potential triggering-irrigation parameters in Hass 
avocado crop are the maximum daily trunk-diame-
ter variation (MTDV), trunk diameter growth rate 
(TGR), trunk diameter shrinkage (TDS), stem and 
leaf water potential (SWP and LWP), leaf stomatal 
conductance (gs), fruit diameter variation, leaf volt-
age differences, and photosynthesis rate (Turner et 
al., 2001; Winer and Zachs, 2007; Gil et al., 2011; Sil-
ber et al., 2013, 2019). A detailed list of water stress 
indicators in tree orchards is provided (Fernández, 
2017). Furthermore, some authors had been classi-
fied in non-automated and automated the methods 
to measure plant-based variables (Fernández, 2017). 
Porometers, infrared gas analyzers, portable photo-
synthesis systems, and Scholander chambers are part 
of the first group. In the second group sap flow sen-
sors, magnetic leaf patch-clamp pressure probes and 
TDR probes are included.

Despite their potential benefits as described in detail 
(Jones, 2004), the following limitations restrict in-
field usage of plant-based methods to the wise irriga-
tion management of avocado orchards (Jones, 2004; 
Silber et al., 2013; Fernández, 2017):

• The variability of in-field LWP measurements is 
equal to or greater than the lowest threshold (−2 
MPa), making it challenging to recognize the ri-
ght time when the plant has reached the LWP 
threshold. 

• Specific processes of avocado tree flushes could in-
duce physiological parameters and water demand 
changes, resulting in a lack of precise indicators of 
plant-based thresholds. 

• The tree growth rate of some woody crops such as 
the avocado, depends on alternate bearing years, 

and this involves relative trunk diameter measure-
ments in on-crop and off-crop years. 

• Most plant-based water stress indicators exhibit a 
recurring-diurnal behavior, which means they de-
crease at midday and increase at night, reaching a 
peak in the early mornings. 

• Plant-based sensors can be calibrated to identify 
the plant’s water-stress condition and, consequent-
ly, trigger the irrigation. However, these sensors ne-
glect how much water needs to be applied and the 
right moment to stop irrigation. 

A few studies have attempted to establish rationale 
irrigation indices for the Hass avocado crop. In an ex-
periment the authors tested triggering the irrigation 
when gs fell below 25% (by arbitrary criterium), ob-
taining a reduction of 33% in the water applied and 
of 30 fruits per tree, as compared to the 120% pan 
evaporation triggering irrigation treatment (Turner et 
al., 2001). In addition, Winer and Zachs (2007) pro-
posed a method to remove the water-stress cumula-
tive effect when the soil water was depleting from 
the MTDV, joining successive MTDV peaks through 
a reference line. The authors affirmed this could im-
prove water irrigation management decisions for 
avocado orchards. On the other hand (Oyarce and 
Gurovich, 2010), measured in laboratory conditions 
a significant electrical potential falling of 7.10 ± 1.56 
mV in the trunk (recorded at 25 cm above the ground) 
of 2-year trees when the irrigation was applied.

Silber et al. (2012) and Silber et al. (2013) delved into 
the response of irrigation treatments to IS plant-
based parameters of Hass avocado trees, consider-
ing the effect of environmental variables on these 
parameters. Additionally, has been reported a poor 
hourly correlation between the tree’s water uptake, 
the applied water volume, and the trunk diameter 
growth. As the hourly water uptake rate peak oc-
curred around midday (12 L h−1 / tree), the trunk 
diameter growth decreased (the 0.1-mm peak was 
identified in the early morning, around 6 AM) (Silber 
et al., 2012). The daily course of the trunk diameter 
growth responds to a circadian-cycle behavior. In this 
same study, the authors determined that TGR was 
inversely correlated to the hourly vapor pressure defi-
cit. TGR reached negative values (i.e., a shrinkage) in 
the early afternoon but returned to zero or positive 
values at night. Therefore, it can be affirmed that 
differential irrigation strategies significantly influ-
ence plant-based parameters of avocado trees at the 
end of the season. However, no apparent effects were 
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found on the daily dynamics, which is an indispens-
able condition required for effective IS. Furthermore, 
any plant based IS strategy must be calibrated using 
the actual crop water requirement (Gu et al., 2020).

THE USE OF REMOTE SENSING

RS fundamentals

Remote sensing is a term that gathers a broad set of 
non-contact platformed-based sensors, techniques, 
models, communication protocols, and applications 
providing electromagnetic spectrum, geometrical and 
biophysical data from the earth’s surface and atmo-
sphere (Tempfli et al., 2009). Based on the acquisition-
data distance above the earth’s surface, sensors can be 
classified into the following categories: ground-based, 
(i.e., systems articulated to terrestrial vehicles and 
hand-held sensors); aerials, which include platforms 
on airplanes and unmanned aerial systems (UAVs); 
and space-based, as integrated by satellite constella-
tions (Sishodia et al., 2020). From reduced spectral 
datasets in the 1970s (Madry, 2017), the RS concept 
became an integrated related products’ collection 
boosted through the internet of things (IoT) and ar-
tificial intelligence (AI) (Jung et al., 2021). Stored in 
a proper location and warranting their accessibility 
and ease to interpreting, RS data could be regarded 
as a common heritage of humankind that provides 
factual evidence of historical and current changes of 
the earth (Pelton et al., 2017).

Platform-based remote sensors measure the amount, 
quality or surface-sensor traveling time of the ener-
gy emitted or reflected by the objects’ surface on the 
earth or the atmosphere’s particles. Active sensors 
emit their energy over the target’s surface and mea-
sure the resulting reflected energy, and passive sen-
sors measure the reflected energy primarily sourced 
by the sun (Reddy, 2018). Target’s surface properties 
such as scattering, absorbance, and the signal’s angle, 
direction, and polarization are measured by remote 
sensors (Tempfli et al., 2009). Sensors capture the 
energy in some wavelength ranges of interest. The 
most common to agricultural applications are the 
so-called visible (0.38-0.75 μm), infrared (0.7-1 μm), 
short-wavelength infrared (1.5-3 μm), thermal in-
frared (3-15 μm), and microwaves (1 mm-1 m). The 
number of pixels with which the surface is rebuilt, 
revisiting days, and wavelengths captured by these 
sensors correspond to the spatial, time, and spectral 

resolution (Sishodia et al., 2020). RS measurements 
become biophysical variables through empirical and 
theoretical models, which must be calibrated with 
field readings (Tab. 2) (Huang et al., 2018). Ponder-
ing the shortage of RS concepts presented above, an 
extended background is thoroughly described by dif-
ferent studies (Schowengerdt, 2007; Tempfli et al., 
2009; Pelton et al., 2017).

Since Google Earth Engine’s (GEE) arrival in 2010, the 
use and application development of the satellite RS 
have massified enormously (Tamiminia et al., 2020). 
GEE is a cloud-based petabyte platform that provides 
a refined way of acceding, visualizing, downloading, 
and processing publicly accessible, near-real-time, 
and historical satellite RS datasets (Gorelick et al., 
2017). In its robust platform, GEE hosts earth’s ob-
servations from Landsat, Sentinel, and MODIS proj-
ects; high-resolution imagery from Planet SkySat and 
The National Agriculture Imagery Program (NAIP); 
biophysical (DEMs, landforms, lithology, and vegeta-
tion coverages); environmental (ecoregions, defores-
tation, emissions, and forest); and climate-weather 
(surface temperature, LAI, rainfall, water vapor, and 
droughts indices) datasets (Google Inc., 2021). Sig-
nificant disparities are presented in the coverage, 
processing level temporal, and spatial resolution, and 
quality of these datasets by which users are aimed to 
understand the specific features of the dataset of in-
terest. Functionalities such as ready-to-use datasets, 
parallel processing, machine learning, image and spe-
cialized packages, and object-oriented programming 
(Tamiminia et al., 2020), allow users to convert RS 
datasets into excellent end products.

RS applications in agriculture: Irrigation traits

Even though there is a broad range of approaches 
to classify RS applications in agriculture (Weiss et 
al., 2020), the most integral, suitable-for-farmers, 
and challenging must be based on agricultural tasks 
(Sishodia et al., 2020). Taking advantage of recent 
IoT and AI advances in agriculture (Singh et al., 
2021), an ideal task-based approach could consist of: 
acceding RS data stored on the cloud or download-
ing data from in-field RS platforms; processing data 
using theoretical, empirical or AI models by agrono-
mists and RS experts (Huang et al., 2018); uploading 
the modeling results on the cloud to the end-user; 
accessing those modeling results through a smart-
phone app; and deciding how to improve the task 
of interest comparing the modeling results with 
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field observations (Fig. 3). The usage of RS in new 
scouting areas, soil survey, land designing and pre-
paring, seeding, irrigation (Tab. 2), drainage, fertil-
ization, weed and pest management, and harvesting 
has been appropriately documented (Sishodia et al., 
2020; Weiss et al., 2020).

Delving into the irrigation studies using RS products, 
it can be inferred that most of them computed in-
stantaneous evapotranspiration (ET) and the basal 
crop coefficient (Kcb) from optical satellite imagery 
to manage the irrigation. In such studies (Tab. 2), ET 
was estimated through surface energy balance mod-
els (ALEXI, Dis-ALEXI, SEBAL, TSEB, and METRIC) 
and Kcb was estimated by correlating vegetation in-
dices (NDVI) with theoretical or field Kcb measure-
ments. Furthermore, table 2 helps to identify, as a 
first step, the suitable RS platform for several irriga-
tion traits. A study described a web-GIS-based deci-
sion support systems required to schedule irrigation 
based on ET and Kcb (Calera et al., 2017). One of these 
is IrriSAT (Hornbuckle et al., 2016), a web platform 
that uses Landsat and Sentinel optical satellite imag-
ery to estimate Kcb from NDVI values.

Despite the resolution-related advances described 
previously, most notably in the tropics, the following 
factors hinder practical applications of RS-based IS 
in crops: the high-resolution RS datasets required to 
schedule irrigation at a plot scale (Calera et al., 2017) 
do not have a high-frequent revisiting time needed to 
daily track the soil water depletion (Li and Roy, 2017); 
the high-cloud coverage in the tropical hillslope areas 
evidenced for most of the year (Prudente et al., 2020), 
does not provide cloud-free time series pixels to com-
pute the irrigation parameters; although most stud-
ies in table 3 did not include precipitation in water 
balance, it has a critical influence on the soil water 
balance (SWB) throughout the year (Richter, 2016); 
and some RS models required to compute ET such as 
METRIC (Olmedo and de la Fuente-Saiz, 2018), must 
be calibrated with hourly climate data corresponding 
to the area of interest.

Soil moisture retrieval from SAR images

The soil moisture content (SMC) plays a role in 
the hydrologic processes that control the water 

Figure 3.  Some remote sensing components and their application in agriculture.
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availability for life on earth (Salas et al., 2014). Plants 
can fulfill their growth cycle thanks to the water 
regulation capacity exerted by soils. Measuring SMC 
to schedule irrigation allows for the direct detection 
of cumulative and instantaneous water changes in 
the soil (Gu et al., 2020), and no other variable or IS 
approach offers such flexibility. The lack of a wide 
spatial influence of proximal sensors’ punctual SMC 
readings (Rodríguez et al., 2018) is outperformed by 
the global coverage offered by remote sensors (Gore-
lick et al., 2017). Moreover, the soil moisture can be 
retrieved through optical and radar satellite images 
(Calera et al., 2017). As the optical images acquisition 
process is hampered by the high cloud coverage in the 

tropics (Prudente et al., 2020) and highly conditioned 
by target-surface-reflectance properties (Dorigo et 
al., 2015), radar sensors can work 24 h a day while 
not being affected by the atmospheric scattering and 
while controlling the energy emitted to the target 
surface (Tempfli et al., 2009).

Spaceborne radar platforms can be passive or active. 
Passive platforms receive naturally emitted energy by 
objects on the earth’s surface, while active platforms 
emit energy pulses and collect radiometric and geo-
metrical properties of objects upon the earth’s surface 
in wavelengths from 1 cm to 1 m in distinct bands 
of interest (Reddy, 2018). Such bands are labeled 

Table 2. Remote sensing platforms, characteristics, and models used in irrigation traits.

Platform Bands / B. 
Variables

Resolution
Trait Model name  

(References)1Spatial  
(m)

Temporal 
(d)

Landsat L5, 
L7, and L8

RGB, NIR, 
SWIR, TIR

L5
RGB-NIR-TIR: 

30
L7 and L8
RGB-NIR- 
SWIR: 30
TIR: 100

L5, L7,  
and L8: 16

Evapotranspiration
ALEXI, Dis-ALEXI (Knipper et al., 2019);  
pySEBAL, SEBS, and METRIC (Xue et al., 2020)

Variable rate irrigation
TSEB (Barker et al., 2018; Bhatti et al., 2020); 
NDVI –Kc (Mendes et al., 2019)

Crop water stress CWSI (Veysi et al., 2017)

Monitoring irrigation 
water use

Kc – vegetation indices (Bretreger et al., 2020)

Irrigation efficiency Evapotranspiration-SEBAL (Awada et al., 2019)

Crop water consumption Evapotranspiration-SEBAL (Costa et al., 2019)

Groundwater NDVI-Evapotranspiration (Nhamo et al., 2020)

MODIS

TIR 1000 1 Soil moisture content DISPATCH (SMOS) (Fontanet et al., 2018)

NR 500, 1000 8 Evapotranspiration ASEBAL (Silva et al., 2019)

Albedo, LST 5600 1 Irrigated areas detection Irrigation map (Zohaib et al., 2019)

SR 1-7, 
Albedo, LST

250-500, 
1000, 1000

1, 8, 1 Irrigation efficiency Evapotranspiration-SEBS (Ma et al., 2018)

Sentinel-1 C-Band 10 6 Soil moisture content ML (Datta et al., 2020)

Irrigation events 
detection

IED (Bazzi et al., 2020)

Sentinel-2 R, NIR 10 2-3 Evapotranspiration LAI-WDVI (Schulz et al., 2021)

G, R, NIR, 
SWIR

10-20 5
Monitoring irrigation 

water use
HidroMap (Piedelobo et al., 2018)

AMSR2 Soil Moisture ~25 km 1 Irrigation water use SM2RAIN (Jalilvand et al., 2019)

UAVs TIR NR2 6 Crop water stress CWSI (Quebrajo et al., 2018)

Ground-based 
vehicles

RGB, RE, and 
NIR

~0.06 22 Crop water stress Vegetation indices (Ranjan et al., 2019)

TIR NR 1 Transpiration 3T (Asher et al., 2013)
1 Most of models use two or more sub-models and RS platforms.

2 NR, not reported.
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with capital letters P, L, S, C, X, K, Q, V, and W, from 
the shortest to largest wavelength (Schowengerdt, 
2007). Bidirectional emitted and reflected energy 
pulses (according to the electromagnetic theory) are 
decomposed into horizontal (H) and vertical (V) vec-
tors, producing a set of co-polarized (VV or HH) and 
cross-polarized (VH or HV) microwave bands (Parikh 
et al., 2020). Multi-polarization sensors (e.g., Radar-
sat-2) can retrieve several polarized bands (Sinha et 
al., 2018), and others do this in single bands.

By advancing the sensed surface exposition time, syn-
thetic aperture radar (SAR) technology has enhanced 
the spatial resolution of images (Tempfli et al., 2009). 
Singhroy (2017) described current and future radar 
satellite platforms’ characteristics and affirmed that 
some publicly available SAR satellite projects like 
Sentinel-1 by ESA, AMSR-E, SMAP, and SMOS by 
NASA, among others, have been used for SMC esti-
mation (Sishodia et al., 2020). According to Peng et al. 
(2021), Sentinel-1 is currently the most sophisticated 
SAR platform to estimate SMC. In orbit since April 
2014 and aimed to map the planet, this mission pro-
vides radiometric data in C-band. Its revisiting time 
in the tropics is 12 d with a spatial resolution of 20 
m (ESA, 2021). The Ground Range Detected (GRD) 
Level 1 Sentinel-1 dataset is available on GEE and can 
be fully accessed with name collection ‘COPERNI-
CUS/S1_GRD’ (Google Inc., 2021).

The energy intensity captured by radar platforms de-
pends on sensor-related factors (e.g., polarization and 
wavelength), the platform pathway (e.g., incidence 
angle and the trajectory direction), and the large-and-
short-scale surface properties (Tempfli et al., 2009). 
Surface properties at large scales lead to terrain dis-
tortions in the capturing process, which must be cor-
rected to effectively interpret on-ground observations 
(Vollrath et al., 2020). On a short scale, the roughness 
and dielectric properties and the surface coverage 
type (bare soil or vegetation) define the noise of the 
signal (Reddy, 2018). To retrieve SMC, this noise is 
theoretically or empirically analyzed through back-
scattering models (BM) (Hoeben et al., 1997). More-
over, machine learning (ML) and AI approaches are 
faster and simpler alternatives to conventional mod-
els (Datta et al., 2020). Notably, the radar estimated 
SMC represents the amount of water in the first 10 
cm of the soil profile, which is perhaps its main limi-
tation (Peng et al., 2021). On bare soils, the integral 
equation method (IEM), advanced integral equation 
model (AIEM), Dubois, and Oh are the most used BM 
(Choker et al., 2017). The semi-empirical water cloud 

model is the most reported in vegetation-covered 
soils (Kweon and Oh, 2015). A comprehensive review 
of BM for retrieving SMC is found in Karthikeyan et 
al. (Karthikeyan et al., 2017).

Low spatial and temporal resolutions hinder practi-
cal applications of SAR images in agriculture (Peng 
et al., 2021). Considering irrigators who require near-
real-time data availability to trigger, for instance, 
irrigation events and finer spatial resolution (com-
pared to the unit management) to differentiate the 
water amount and timing by plot, radar images must 
be carefully used. However, studies in irrigation de-
tection and water volume estimation have been 
reported. Brocca et al. (2018) used SMAP, SMOS, 
ASCAT, and AMSR2 radar mission data (~12.5 km 
for the finer spatial resolution and a daily revisiting 
frequency being the most common) to estimate the 
irrigation water amount through the SM2RAIN al-
gorithm. They validated their results in nine areas of 
the United States, Europe, Australia, and Africa and 
found a good correlation between the monthly irriga-
tion amount radar estimates and field measurements. 
In this regard, Jalilvand et al. (2019) retrieved SMC 
from AMSR2 data (daily revisiting time and ~25 km 
of spatial resolution) by using the SM2RAIN algo-
rithm in the Miandoab Plain (Iran). The radar SMC 
estimates performed by authors followed the tempo-
ral soil water dynamics, overestimating the amount 
of water needed for irrigation.

On the other hand, Le Page et al. (2020) successfully 
detected irrigation timing in six maize plots (south-
west France), analyzing direction changes of the SMC 
time series retrieved through Sentinel-1 observations. 
They recommended using SAR images with revisit-
ing times of 2 to 4 days (d) to manage the irrigation. 
Consistent with the study above, Bazzi et al. (2020) 
retrieved SMC from Sentinel-1 data using the irriga-
tion detection BM (IDM) to detect near-real-time ir-
rigation events in 46 intensively irrigated grassland 
plots in Crau Plain (France). The novel IDM operates 
at grid (10 x 10 km) and plot scales to discriminate 
changes in the Sentinel-1 backscattering coefficient 
σ0 due to precipitation and irrigation, respectively. 
Irrigation events were accurately detected by this 
method. In addition, Lawston et al. (2017) compared 
the efficiency of five low-spatial-resolution SMC 
products (SMAP at 1 km and 9 km, SMOS at 1 km, 
ASCAT at 12.5 km, and Sentinel-1 at 1 km of spa-
tial resolution) to discriminate irrigation from rain-
fed crops in north-eastern Spain. SMOS and SMAP 
were the most relevant datasets in detecting irrigated 
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areas. Other studies combined optical and radar plat-
form data to boost former images in irrigation traits 
(Bousbih et al., 2018; Fontanet et al., 2018; Datta et 
al., 2020; Lozac et al., 2020; Dari et al., 2021).

IRRIGATION SCHEDULING APPLICATIONS

Applications comparison

Although it is demonstrated that using precision irri-
gation technologies significantly improves irrigation 
management (Abioye et al., 2020), most irrigators, 
instead of scheduling irrigation using these technolo-
gies (Khabba et al., 2013; Vellidis et al., 2016), irrigat-
ing empirically based on external variables such as 
water and personnel and infrastructure availability, 
crop water deficit signs, and commercial trends. Mul-
tiple causes explain why irrigators do not implement 
new irrigation technologies (Abdullah and Samah, 
2013; Mottaleb, 2018). Irrigation scheduling deci-
sion-support applications such as smartphone apps, 
web-based platforms, and desktop programs bridge 
the existing timing and water-related knowledge gap 
in irrigation methods (Migliaccio et al., 2016). Thou-
sands of valuable irrigation-related data can currently 
be retrieved in a publicly available and near-real-time 
manner through online applications. Unfortunately, 
the poor internet connection in worldwide rural 
zones impedes their use (Chiaraviglio et al., 2017).

An extended and diverse ecosystem of applications to 
schedule irrigation is found on the web, as intended 
for various crops, farming organizations, commercial 
and research interests, output targets, available input 
data, and development levels. A small sample is char-
acterized in table 3, taken from studies (in journal 
indexes) that reported their use and irrigation com-
panies’ catalogs on the web. According to the listed 
IS applications developers, primary motivations to 
build these are set out to provide farmers with an 
easy-to-use tool to support irrigation management 
decisions, saving water irrigation, and optimizing 
the water productivity of selected crops. IS applica-
tions are structured into the core engine, where the 
IS model is allocated; the database, where input, an-
cillary, and output data are hosted; and the graphical 
interface, where users interact with the application.

Apps boast user-friendly, geo-location, graphical, 
intuitive, free-access, and tactile front ends, but 
lack robust-IS-model back-ends. Many of them are 

developed for both iPhone (iOS) and Android oper-
ating systems. Web-based platforms, as depicted in 
table 3, are designed to store and accede to available 
(e.g., remote sensing RS) data on the cloud (as sym-
bolized in the available data and IS approach columns 
in table 3 with ), which can be processed, retrieved, 
and interpreted easily by farmers. These platforms 
run on web browsers where users must always log 
in to access their services thus avoiding inter-opera-
tive system obstacles. Desktop programs are boosted 
by the robustness, stability, and offline advantages 
of desktop computers to implement SWB complex 
models. However, the high and specialized knowl-
edge required to operate them commonly exceeds 
farmers’ abilities, and thus these programs must be 
managed by agronomists, who as a result occasion-
ally assist farmers in the field. As a result, desktop 
programs lack enough portability to support farmers’ 
in-field decisions.

The main strength of multi-platform applications is 
their responsive web design, which easily overcomes 
the agronomist-farmer problem described previously. 
Moreover, users with administrator, agronomist, or 
farmer roles can monitor real-time PS devices and feed 
these applications with data. A flaw associated with 
apps, web-based, and multi-platforms is their online 
dependency since rural zones lack a stable internet 
connection. Being state-of-art and portable and offer-
ing client support, commercial applications are more 
beneficial than free access applications (symbolized 
in table 3 with ). Farmers who need to choose the 
right IS application undertake a complex task because 
of the enormous number of variables to consider.

Apps

First attempts to deal with irrigation traits through 
mobile appliances were made through PDA and PC 
pockets (Hornbuckle et al., 2006; Molina-Martínez 
and Ruiz-Canales, 2009), equipped with a GPS sen-
sor, a tactile screen, a camera, and an operating sys-
tem. The irrigation software was then externally 
programmed in LabView, Visual Basic, Java or C, and 
installed on these devices. Early efforts to remotely 
control the irrigation through smartphones were 
accomplished by wiring PS devices in the field to a 
central unit, processing PS readings, and triggering ir-
rigation event once the SMP threshold was reached 
(Fernández et al., 2008). All these strives were made 
in parallel with Android and iOS projects launched 
between 2005-2009 (Islam and Want, 2014), and the 
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mobile applications were trending in the agriculture 
field in this same period. Regarding the studies men-
tioned above, the most limiting factors to achieving 
a whole operative irrigation system via the available 
smartphone apps were the lack of operational wire-
less PS infield networks, which made it challeng-
ing to monitor broad areas; the limited battery life, 
memory, and storage resources; and the expensive 
implementation.

Between 2010 and 2019, various studies demonstrat-
ed how apps were used and evaluated in-field prac-
tices, highlighting their valuable support to farmers 
(Hamad et al., 2018). Authors as Dehnen-Schmutz 
et al. (2016) reported that although most farmers 

owned a smartphone, more than one-third of those 
interviewed did not use any agriculture app. In ad-
dition, Pongnumkul et al. (2015) described the use 
of apps in agriculture in 2010-2014, underlining GPS 
and cameras as the most-used smartphone sensors 
for various agricultural tasks. Meanwhile, Kaewmard 
and Saiyod (Kaewmard and Saiyod, 2014) designed 
an automatic irrigation system and tested its start-
stop irrigation signal transmission’s accuracy, finding 
an accuracy greater than 95%. Taking advantage of 
available real-time data from weather networks in 
Georgia and Florida, the United States, Migliaccio et 
al. (2016) developed irrigation scheduling smartphone 
apps for avocado, citrus, cotton (called Cotton App), 
peanut, strawberry, and vegetable crops, grouped by 

Table 3.  Characteristics of some mobile, web, desktop, and multiplatform IS apps.

Platform Name Reference Newest 
Version

Operating 
System

Free 
Access

IS 
Approach2

Available 
input data?

App

Smartirrigation (Migliaccio et al., 2016) 1.1.2 iOS, Android  SWB 

SoilWaterApp (Freebairn et al., 2018) 8.0.3 iOS  SWB X

Irrigator Pro (Sigua et al., 2017) 2.0.3 iOS, Android  SWB, PS 

Chloe (LP Laboratories, 2019) 1.1 Android  PS, RS 

IrriMobile (Ferreira et al., 2020) 1.0.2 Android  SWB X

VegApp (Miller et al., 2018) 4.3.2 Android  SWB 

Crop Water (UNL, 2019) 2.0 iOS, Android  PS 

SWAMP Farmer (Sales et al., 2020) 2.4.0 Android  SWB, PS X

Web-based

CIMIS (Kisi, 2011) NR1 Web  SWB 

IRRISAT (Hornbuckle et al., 2016) NR Web  RS 

AQUAMAN (Chauhan et al., 2013) NR Web X SWB 

IRROcloud (Irrometer, 2021) NR Web X PS X

IRRIX (Domínguez-Niño et al., 2020) NR Web X PS X

EO4Water (IVFL, 2021) NR Web  RS 

Desktop 
program

CROPWAT (Smith, 1992) 8.0 Win  SWB 

PROBE-w (Chopart et al., 2009) 1.0 Win  SWB X

DIDAS (Friedman et al., 2016) 1.1.1 Win  SWB X

AquaCrop (Linker and Sylaios, 2016) 6.1 Win  SWB X

IMIS (Ng Cheong and Teeluck, 2018) 1.0 Win X SWB X

FIS-DSS (Yang et al., 2017) 1.0 Win X SWB X

BUDGET (Raes, 2002) 5.0 Win  SWB X

Multi-platform

IrriMAX (Sentek, 2019) 10.1 Win, Android X PS X

HidroMap (Piedelobo et al., 2018) NR Win, Web  RS 

IrrigaSys (Simionesei et al., 2020) NR Web, Android  SWB 

Lynks App (Lynks Ingeniería, 2016) 1.2.4 Win, Android  PS X
1 NR Not reported. 2 SWB: Soil Water Balance; PS: Proximal Sensing; RS: Remote Sensing.
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the name Smartirrigation Apps (Tab. 3). When com-
pared to other IS methods, Vellidis and others (Velli-
dis et al., 2016) found that after using Cotton App to 
schedule irrigation, the cotton yield was significantly 
higher in the 2013 and 2014 seasons and higher in the 
2015 season, and the water use efficiency (WUE) was 
higher in the 2013 and 2014 seasons.

The IS smartphone app used by the avocado growers 
detailed above goes by the name Smartirrigation Avo-
cado and can be found in the Google Play and Apple 
App Stores (Migliaccio et al., 2016). This app requires 
input parameters such as the irrigation system, the 
crop, the soil type, and IS characteristics to output 
the accumulated precipitation for the seven previous 
days, the applied irrigation events timing, and the 
reached moisture depth. Each day, Smartirrigation 
Avocado shows the irrigation events required for the 
next 15 d, based on the five-previous-day crop evapo-
transpiration, as computed using nearby-station 
weather data from the Florida Automated Weather 
Network. Irrigation doses change throughout the 
crop seasons according to Kc of 0.6, 0.8, 0.7, 1.0, and 
0.7 to dormancy, flower bud development, flowering 
and fruit set, fruit growth, and after harvest. Mba-
bazi et al. (2017) compared the IS provided by this 
app with SWB field observations and found that the 
drainage, irrigation depth, and wetted area simulated 
errors were not significant. Mbabazi et al. (2017) de-
termined that using Smartirrigation Avocado could 
reduce the irrigation water used for the crop between 
62 to 67% moistening the first 12.7 mm of the soil 
depth by any given event, compared with irrigating 
three times per week.

Recently, other IS apps have been developed for toma-
to (Miller et al., 2018) and grains crops (Freebairn et 
al., 2018), exploiting artificial intelligence techniques 
(Ferreira et al., 2020), reading soil matric potential 
devices (UNL, 2019), and integrating IS data to IoT 
environments (Sales et al., 2020). After validating in 
field conditions, authors of the three first apps men-
tioned above concluded IS apps do reliably estimate 
the soil water dynamic and positively impact WUE. 
Moreover, other authors compared IS apps features 
and found the most common were Map View, farm 
divisions (plots), and irrigation planning (Sales et al., 
2020). In line with the agriculture 4.0 concept, IoT 
and smartphones will lead the progressive transfor-
mation of irrigation technology toward irrigation 4.0 
as the direct connection between farmers and irriga-
tion systems (Nawandar and Satpute, 2019; da Silva 
et al., 2020; Li et al., 2020). Therefore, there is enough 

sustained evidence to affirmatively respond the ques-
tion put forward of whether crops can be watered by 
our phones (Puértolas et al., 2019).

CONCLUSIONS

Traditional irrigation scheduling methods have been 
invariantly reported in Hass avocado irrigation dedi-
cated studies for decades. Soil water balance and 
soil-based sensors such as tensiometers and granular 
matrix sensors are the most mature methods. Fortu-
nately, new digital agriculture technologies are chang-
ing how such methods and their data are controlled 
in the field and handled, respectively, boosting the 
decision-making process toward increasing water use 
efficiency and the fruit quality parameters and reduc-
ing the amount of water used for Hass avocado crop. 
Although remote sensing technologies are no being 
widely used in the Hass avocado crop irrigation, radar 
images stand out above optical images because the 
surface soil moisture, their specific product to sched-
ule irrigation, can be retrieved in acceptable periods, 
avoiding the high cloud coverage problem presented 
by optical images in tropics. Avocado dedicated ap-
plications represent a trustful tool for Hass avocado 
growers to irrigate their orchards technically.  Inte-
grating remote and proximal sensing technologies 
through user-friendly applications can represent a 
suitable option to improve Hass avocado irrigation in 
developing countries.
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