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How does the physiological activity and growth of tomato 
plants react to the use of a soil-mineral compound?

¿Cómo reacciona la actividad fisiológica y el crecimiento de 
las plantas de tomate al uso de un compuesto suelo-mineral?
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ABSTRACT
The tomato crop has a high productive potential that can be depleted by biotic and abiotic stresses. Increased 
plant resilience to stress conditions has been reported with foliar applications of soil-mineral compounds; 
however, it is necessary to better understand how plants react to the use of this compound. Thus, this 
study evaluated the effect of foliar applications of a soil-mineral compound on the physiological and growth 
attributes of tomato plants. This experiment was carried out in Lagoa Formosa/MG during 2016. Different 
rates of the soil-mineral compound were used during the crop cycle, forming four distinct managements. 
The management consisted of different doses of the mineral compound in four stages after transplanting the 
tomato seedlings. The experiment design used randomized blocks. The following physiological evaluations 
were performed: total soluble protein, hydrogen peroxide, nitrate reductase enzyme activity, urease, supe-
roxide dismutase (SOD), peroxidase, phenylalanine ammonia lyase, and lipid peroxidation (LP). The growth 
assessments were plant biomass and yield. Foliar applications of the soil-mineral compound increased the 
activity of the SOD enzyme by 4.17 and 6.25%. The use of the soil-mineral compound also increased the LP 
activity and reduced the antioxidant enzyme activity. The foliar application of the soil-mineral compost at 
doses of 0.5, 0.750, 1.0 and 1.0 kg ha-1 at 15, 25, 40 and 60 days after transplanting, respectively, increased the 
yield of the table tomatoes by 20%.
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The tomato (Solanum lycopersicum L.) is one of the 
most consumed vegetables globally, mainly because 
of its high nutritional value and antioxidant poten-
tial (Du et al., 2017). Overall tomato production 
increased from 27.6 million tons in 1960 to 177 mil-
lion tons in 2016 (FAOSTAT, 2016). In Brazil, table 
tomato cultivation stands out because of its socio-
economic importance, as it generates jobs, improv-
ing the income of rural workers and growers (Silva 
et al., 2013). Many factors can lead to a reduction in 
crop productivity, affecting the quality of the final 
product, which include problems caused by pests and 
diseases (Zaidi et al., 2018).

Disease management has become a challenge in agri-
culture as it requires pesticides, often with high tox-
icity (Carrascosa et al., 2015). Chemical pesticides, 
particularly soil fumigants, have been severely re-
stricted in recent decades because of the environmen-
tal consequences (Van Bruggen and Finckh, 2016), 
the residual effects on soil and the long period nec-
essary for degradation. In addition, the use of pesti-
cides in the environment impacts human health, and 
resistance is acquired by pathogens for the chemical 
groups. The use of pesticides should be minimized 

and rationalized to promote more sustainable agri-
culture (Lamichhane et al., 2015).

Phytosanitary management needs to be improved to 
minimize or mitigate its impact on the environment 
(Dayan et al., 2009). Plants have mechanisms to re-
spond to different types of stress, whether abiotic 
(Shah et al., 2014) or biotic (Shah and Zeier, 2013). 
These natural defense mechanisms remain inactive 
or latent until activated after exposure and/or con-
tact with inducing agents (Mandal, 2010). 

The defense mechanisms of a plant are genetically 
controlled, depending on the expression after contact 
with the host. So, plants can activate the defense 
mechanism in several ways, including through oxida-
tive activities (Teixeira et al., 2017; Xue and Yi, 2017), 
enzymes involved in the phenylpropanoid route 
(Sangeetha and Sarada, 2015), and enzymes involved 
in lipid peroxidation, among other forms. The use 
of resistance-inducing products for different crops is 
increasing, for example on vine (Xue and Yi, 2017), 
wheat (Moya-Elizondo and Jacobsen, 2016), pepper 
(Siddiqui and Meon, 2009), and peach (Jiao et al., 
2018), mainly.

RESUMEN
El cultivo de tomate presenta un alto potencial productivo pero puede afectarse debido al estrés biótico y abiótico. 
Se ha informado un aumento de la resistencia de la planta a las condiciones de estrés con la aplicación foliar de 
compuestos minerales del suelo, sin embargo, aún es necesario comprender mejor cómo reacciona la planta al uso 
de este compuesto. Por lo tanto, este estudio evaluó el efecto de la aplicación foliar del compuesto mineral del suelo 
sobre los atributos fisiológicos y de crecimiento de las plantas de tomate. Este experimento se llevó a cabo en Lagoa 
Formosa / MG durante 2016. Se usaron diferentes tasas del compuesto mineral del suelo durante el ciclo del cultivo, 
lo que constituye cuatro manejos distintos. El manejo consistió en diferentes dosis del compuesto mineral en cuatro 
etapas después del trasplante de las plántulas de tomate. El diseño experimental utilizado fue de bloques al azar. 
Se realizaron las siguientes evaluaciones fisiológicas: proteína soluble total, peróxido de hidrógeno, actividad de la 
enzima nitrato reductasa, ureasa, superóxido dismutasa (SOD), peroxidasa, fenilalanina amoniaco liasa y peroxi-
dación lipídica (LP). Las evaluaciones de crecimiento fueron biomasa vegetal y rendimiento. La aplicación foliar del 
compuesto mineral del suelo aumentó la actividad de la enzima SOD en 4,17 y 6,25%. El uso del compuesto mineral 
del suelo también aumentó la actividad de LP y redujo la actividad de las enzimas antioxidantes. La aplicación foliar 
de compost mineral del suelo a dosis de 0,5; 0,750; 1,0 y 1.0 kg ha-1 a los 15, 25, 40 y 60 días después del trasplante, 
respectivamente, aumentó el rendimiento de tomates de mesa al 20%.

Palabras clave adicionales: inductores de resistencia; metabolismo oxidativo; productividad; fertilizantes.
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When plants recognize the resistance inducers ap-
plied, the intracellular signal transduction pathways 
are activated (Shah et al., 2014). Perception occurs 
when the molecules of the inducing agent bind to 
receptor molecules that are probably located in the 
plasma membrane of the plant cell; this reaction trig-
gers the activation of various defense mechanisms, 
culminating in protection against pathogens (Gra-
ham and Myers, 2011). These inductions alter the 
physiology of the plant and can interfere directly 
with productivity.

Application of resistance inductors that have Silicon 
(Si) is a potentially sustainable option to improve bi-
otic and abiotic stresses in several plants (Zhu and 
Gong, 2014; Liang et al., 2015; Cooke and Leishman, 
2016; Etesami, 2018).

Despite the importance of the use of these products, 
there are few studies on resistance inductors based 
on silicon oxide and aluminum in the tomato to ta-
ble culture. One source of these nutrients available 
to growers is through soil-mineral compost. Thus, 
this study evaluated the effect of foliar applications 
of a soil-mineral compound on the physiological and 
growth attributes of tomato plants.

MATERIAL AND METHODS

This experiment was conducted in the 2016 grow-
ing season in the commercial area of Lagoa Formosa, 
Minas Gerais, Brazil (18°30’01.6” S and  46°30’48.2” 
W) in the first crop of the year. The cultivar “Domi-
nador” was used, which has an indeterminate growth 
habit, high vigor, average cycle duration of 120 d and 
fruits with an aptitude for salads. The seedlings were 
produced in trays and transplanted to the field when 
they had two leaves, 28 d after sowing.

Cultural management including fungicides, insec-
ticides and herbicides was carried out in all treat-
ments. Each plot was composed of five rows, with 
a 6 m length, 2 m row spacing, and 0.6 m between 
plants. The useful area of each plot consisted of the 
three central lines, discarding 0.5 m at each border. 
The plants were irrigated with a central pivot and 
received fertirrigation according to the nutritional 
needs of the crop.

The experiment design used a randomized block 
with four treatments and five replications. The treat-
ments consisted of four management types of the 

soil-mineral compound during the crop cycle: man-
agement 1 was the control; management 2 consisted 
of foliar applications at the dose of 0.75 kg ha-1 per 
application at 15, 25, 40 and 60 days after transplant-
ing (DAT); management 3 consisted of foliar appli-
cations of 0.5 kg ha-1 at 15 DAT, 0.750 kg ha-1 at 25 
DAT, 1.0 kg ha-1 at 40 DAT, and again at 60 DAT; and 
management 4 consisted of foliar applications of 1.0 
kg ha-1 per application at 15, 25, and 40 DAT. 

The soil-mineral compound was a fine, balanced 
powder, prepared by milling, micronization and stan-
dardization of special clays that are commercially dis-
tributed in Brazil. The soil-mineral compound was a 
fine powder composed of Al2O3 (20.6%), SiO2 (17.4%), 
S (9.8%), CaO (1.3%), TiO2 (0.34%), MgO (0.18%), 
Fe2O3 (0.16%), and P2O5 (0.10). The doses were as in-
dicated in the commercial product (Rocksil®).

The foliar applications were done with costal spray-
ing with a CO2 injection. The bar contained a fan-
type nozzle, with a constant pressure of 2.0 bar.

Biochemical evaluations

Leaf samples for the nitrate reductase determinations 
were performed at 8, 26, 40, 47 and 73 DAT, and, for 
the other analyses, they were taken only at 73 DAT. 
Completely expanded leaves were collected from the 
middle third of the plants.

The activity of the enzymes nitrate reductase, urease, 
lipid peroxidation, peroxidase enzymes, superoxide 
dismutase, phenylalanine ammonia-lyase, hydrogen 
peroxide, and total proteins were determined.

The NR analysis was performed according to the 
method proposed by Mulder et al. (1959). The urease 
was evaluated throughout extraction, and the analy-
sis of the plant material was done according to the 
methodology adapted from Hogan et al. (1983).

Samples of 200 mg of fresh biomass of leaves were 
macerated with 4.0 mL of 0.1 mol L-1 potassium phos-
phate buffer pH 6.8. Then, the samples were trans-
ferred to Eppendorf flasks and centrifuged at 10,000 
rpm for 30 min at 4ºC (Kar and Mishra, 1976). Then, 
the samples were stored at -20°C until determina-
tion of the total protein content of the leaf (Brad-
ford, 1976), superoxide dismutase activity (SOD) 
(Beuchamp and Fridovich, 1971), peroxidase activity 
(POD) (Teisseire and Guy, 2000), and phenylalanine 
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ammonia-lyase activity (PAL) (Umesha, 2006). With 
the fresh leaf biomass the hydrogen peroxide content 
(H2O2) (Alexieva et al., 2001) and lipid peroxidation 
(LP) (Heath and Packer, 1968) were also evaluated.

Biomass attributes

One plant per replicate was harvested at 47 and 83 
DAT for determination of the root, stem and leaf 
biomass. The samples were dried in a forced-air oven 
at 65°C for 48 h before the determination of the dry 
biomass. Productivity harvests were also performed 
at 73, 81, 92, 102, 110, 119, 124, 130 DAT.

Statistical analysis

The data were evaluated for normality and homoge-
neity using Levene and Shapiro-Wilk tests, both at 
the 5% significance level. A variance analysis was 
performed, and, when significant, the Tukey test 
was applied at the 5% level of significance. For some 
analyses, regression analysis was also performed. The 
analyses were performed using statistical software 
Genes (Cruz, 2013).

RESULTS AND DISCUSSION

For the nitrate reductase variable, the variance analy-
sis presented significance only for the management; 
there was no effect from the harvesting times or in-
teraction. The other attributes of nitrogen metabo-
lism and the activity of antioxidant enzymes had no 
effect from the management. There was a difference 
in the productivity attributes.

The nitrate reductase enzyme did not present a sig-
nificant difference during the evaluation periods al-
though some management showed a tendency for 
increasing (Fig. 1). The nitrate reductase enzyme acts 
on nitrogen assimilation in plants and reduces nitrate 
to nitrite through NADPH (nicotinamide adenine 
dinucleotide phosphate hydrogen) energy. Thus, the 
increase in this enzyme activity contributes to the 
increase of the assimilation of nitrogen (N) and the 
growth and development of the plant (Taiz et al., 
2016).

Resistance induction represents an extra energy ex-
penditure for plant defense and reduces nitrate re-
ductase metabolism and consequently plant growth. 

Thus, we verified that the foliar applications of the 
soil-mineral compound may not have activated re-
sistance mechanisms related to the nitrogen metabo-
lism enzymes.

According to Lawlor (2002), the role of nitrogen in 
the production of dry phytomass and, consequently, 
remobilization to reserve organs is directly related 
to photosynthesis. Photon energy is converted into 
chemical energy and stored in ATP (Adenosine tri-
phosphate) and secondary metabolites, primarily 
NADH, which is used in the synthesis of carbon and 
nitrogen assimilates, particularly amino acids (Law-
lor, 2002).

It was found that the activity of nitrate reductase re-
duces during harvests, more accentuated after flower-
ing. We hypothesize that the fruiting drain competes 
for the N present in the plant, which explains this 
reduction in enzyme activity.

The protein content and the activity of the urease en-
zyme did not differ between the management types; 
however, it was noted that treatments 2, 3 and 4 in-
creased the total protein content (Fig. 2A).

The quantification of the protein content in the leaf 
during the reproductive growth evidences the redis-
tribution of amino acids from leaves to reproductive 
growth. A higher protein content in the leaves may 
be an indicator of greater assimilation of atmospheric 
CO2 because the main enzyme of photosynthesis is 
composed of N, the ribulose-1.5-bisphosphate car-
boxylase/oxygenase (Rubisco) (Taiz et al., 2016).
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Figure 1. 	Activity of the enzyme nitrate reductase when 
submitted to different managements for foliar ap-
plications of the soil-mineral compound. Nitrate 
reductase (µg N-NO2/g leaf). The vertical bars indi-
cate ± standard error.
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Oxidative metabolism

The managements 2, 3 and 4 presented higher levels 
of hydrogen peroxide than management 1 (control), 
without significant differences (Fig. 3A). Manage-
ment 4 presented, on average, values of hydrogen 
peroxide production that were approximately 56% 
higher than treatment 1 (control), which demon-
strated that the resistance inducer activated the 
oxidative metabolism in some signal transduction 
pathways in the plant tissue.

The increase of this free radical indicates that the de-
fense signaling of the plants probably activated genes 
related to pathogenesis. Thus, the increase in the syn-
thesis of hydrogen peroxide does not always result 
in negative effects in plants, such as destruction of 
membranes, because this molecule can function as a 
signal agent in plants, which includes responses to 
pathogen elicitors, stomatal closure, acquired sys-
temic resistance, and programmed cell death (Chen 
and Gallie, 2005).

For the enzyme POD, there was a positive trend in 
managements 2, 3 and 4, without statistical signif-
icance (Fig. 3B). The increase in the activity of the 
POD enzyme as well as the increase in H2O2 content 
was a protective measure to degrade the reactive oxy-
gen species (ROS) in the plants (Barbosa et al., 2014). 
PODs are related to the synthesis of lignin and su-
berin, which increase the hardness of tissues and the 
production of quinones and active oxygen, which 
have antibiotic activities (Stout et al., 1994). 

The activity of the SOD enzyme was reduced in 
managements 3, 4 and 2, in relation to treatment 1 
(control) (Fig. 3C). This enzyme is responsible for the 
degradation of superoxide ERO in hydrogen perox-
ide, so it is later degraded by CAT and POD enzymes 
(Mittler, 2002). An increased SOD and POD activity 
is directly related to plant tolerance to environmental 
stresses, such as saline stress (Koca et al., 2007). How-
ever, when the activity of the enzyme is saturated be-
fore reaching the maximum concentration of reactive 
oxygen species, lipid peroxidation may occur.

The activity of the PAL had a different behavior 
(Fig. 3D). This enzyme is responsible for catalyzing 
the conversion of phenylalanine to trans cinnamic 
acid, the first step for the biosynthesis of phenylpro-
panoids. This compound is the basis for the synthe-
sis pathway of secondary metabolites that exhibit 
antioxidant activity, such as flavonoids and tannins 
(Dias et al., 2015). A different behavior can be ex-
plained by a different route of action for defending 
plants against stress. Alternative products, such as 
chitosan and plant extracts, may increase the activity 
of phenylalanine-ammonia-lyase (PAL) (Lorencetti et 
al., 2015).

The levels of lipid peroxidation were similar among 
all treatments (Fig. 3E). Lipid peroxidation is used as 
a basis to measure the damage caused by the action 
of reactive oxygen species on the unsaturated lipids 
of cell membranes. This leads to membrane destruc-
tion, failure of cellular mechanisms and, in extreme 
cases, cell death (Lima and Abdalla, 2001). Therefore, 
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Figure 2. 	Protein content (A) and urease enzyme activity (B) in tomato leaves at 73 DAT when submitted to different manage-
ment types for foliar applications of the soil-mineral compound. The vertical bars indicate ± standard error.
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because there was no difference between the treat-
ments and the control, there was no cellular dam-
age from the foliar application of the soil-mineral 
compound.

Silicon increases the synthesis of phenolic compounds 
in plants and increases the activity of the following 
enzymes: polyphenol oxidase (PPO), peroxidases 
(POD) and phenylalanine ammonia-lyase (PAL) 
(Gomes et al., 2005). As a consequence, it tends to 
reduce the rate of pathogen growth and the incidence 

of pest insects. The application of Si increased the ac-
cumulation of phenolic compounds in walls of epi-
dermal cells of Triticum aestivum, and consequently, 
increased the resistance of plants infected by Blumeria 
graminis f. sp. tritici (Bélanger et al., 2003).

A PPO plays an important role in plants since it pro-
vides resistance to attack from pathogens and dis-
eases. It has also been reported that PPO may exert 
a direct relationship with photosynthesis since it 
assists in the maintenance of system homeostasis 
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Although the foliar applied soil-mineral compound 
had Si, no change in the activity of SOD and PAL en-
zymes was observed. The interaction of Si with these 
enzymes is probably more complex and depends on 
other factors, such as dose, culture, form of appli-
cation, and interaction with other nutrients in the 
application, among other factors, which needs more 
studies to be better understood. 

Biomass attributes 

About 95% of the dry mass accumulated by plants 
during their cycle is derived from the photosynthetic 
activity, and the rest comes from the soil (Benincasa, 
2004). The root dry and stem dry biomass did not dif-
fer between the management types (Fig. 4AB). There 
was a trend for a higher dry leaf biomass in manage-
ment 4, without significant differences (Fig. 4C). 

Si, after being absorbed, is translocated and deposited 
just below the cuticle, forming a double layer of sili-
con-cuticle. This contributes to protection from abi-
otic stresses, such as: elemental toxicity, salinity, and 
frost, among others; as well as protection from biotic 
stresses, such as pests and diseases (Ranganathan et 
al., 2006). The accumulation of Si makes leaves more 
upright and rigid and increases the interception of 
light and, consequently, photosynthetic efficiency 
(Gonçalves, 2009).

Productivity

All treatments with foliar applications of the soil-
mineral compost increased yield per plant and yield. 
The highest production per plant and productivity 
were obtained in management 3, with 3.11 kg/plant 
and 31,152 kg ha-1, respectively (Fig. 5, A and B). The 
use of the soil mineral compost increased tomato 
yield by 20% in management 3, a good option for in-
creasing crop productivity.

Si, applied in the form of aluminum silicate on vines 
(Vitis vinifera), contributes to the control of mildew 
(Plasmopara viticola) (Gomes et al., 2011). The use of a 
soil-mineral compost in guava (Psidium guajava) con-
tributes to the control of anthracnose (Colletotrichum 
gloeosporioides) and reduced the diameter of colleto-
tricum lesions (Colletotrichum gloesporioides) in fruits 
(Gomes et al., 2016). The aluminum oxide (Al2O3), 
silicon dioxide (SiO2) and sulfur (S) present in the 
soil-mineral compost inhibited in vitro tests on the 
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Figure 4. 	Root (A), stem (B), and leaf (C) biomass of tomato 
plants when submitted to different management 
types for foliar applications of the soil-mineral 
compound. The vertical bars indicate ± standard 
error.

(Boeckx et al., 2015). This enzyme performs the oxi-
dation of diphenol in quinone, a beneficial compound 
for the photosystem. In addition, during this process, 
PPO removes excess O2 from the system, avoiding the 
possible formation of superoxide radicals (Boeckx et 
al., 2015).
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mycelial growth of colletotrichum (Colletotrichum 
gloesporioides) (Gomes et al., 2016).

We hypothesize that foliar applications of aluminum 
oxides can trigger the production of reactive oxygen 
species in plants, which stimulates the production of 
antioxidant enzymes.

Si was identified as a resistance inducer in some 
monocotyledons, such as rice (Oriza sativa), corn 
(Zea mays L.) and wheat (Triticum aestivum L.), which 
actively absorb and accumulate large amounts of 
silicon (Liang et al., 2015). This was also observed in 
some dicotyledonous crops, such as cotton (Gossy-
pium hirsutum), soybean (Glycine max (L.) Merr.), and 
tomato (Solanum lycopersicum L.), and also in some cu-
curbitaceous species (Liang et al., 2015).

Si can favor the upright position of leaves, indirectly 
favors photosynthesis, and makes the opening and 
closing of stomata more efficient (Pereira et al., 2003). 
The productivity of sugarcane increased with the fo-
liar applications of Si (Elawad et al., 1982). Foliar ap-
plications of potassium silicate (K2SiO3) increase the 
chlorophyll content and growth of strawberry plants 
(Fragaria × ananassa) (Wang and Galletta, 1998). 

The effectiveness of the application of Si in the miti-
gation of stress depends on the species (Mitani and 
Ma, 2005) and the level of stress suffered by the 
plant (Hodson et al., 2005). In this experiment, the 
plants were not subjected to severe stress conditions, 
which may have contributed to the stress metabo-
lism not responding significantly to the soil-mineral 

compound treatments. Biochemical and molecular 
responses using Si occur when the plant is subject to 
stress conditions (Liang et al., 2015).

Although the treatments with foliar applications 
did not modify the activity of the evaluated en-
zymes, the increase in productivity showed that the 
management types with the compost soil mineral 
contributed in another way to an increased tomato 
productivity. We hypothesized that there may have 
been an increase in proteins, lignins, and efficiency 
of the photosynthetic activity, but more studies are 
required for a better understanding.

CONCLUSION 

The foliar applications of the soil-mineral compost at 
doses of 0.5, 0.75, 1.0 and 1.0 kg ha-1 at 15, 25, 40 and 
60 DAT, respectively, increased the yield of the table 
tomatoes.

No effect from the foliar applications of the soil-min-
eral compound was observed on the enzymes related 
to stress metabolism as a total protein, hydrogen 
peroxide, nitrate reductase enzyme activity, urease, 
superoxide dismutase, peroxidase, phenylalanine am-
monia lyase and lipid peroxidation under the condi-
tions of this study.
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Figure 5. 	Production per plant (A) and yield (B) of tomato plants when submitted to different management types of foliar appli-
cations of the soil-mineral compost. Means with different letters indicate a significant statistical differences accord-
ing to Tukey test (P≤0.05) (n=5) ± standard error.
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