Skip to main navigation menu Skip to main content Skip to site footer

SSR-HRM molecular characterization of the Colombian cultivated germplasm of Capsicum chinense Jacq. (Solanaceae)

Habanero pepper fruits. Photo: L.L. Arias

Abstract

This study was the first evaluation of the genetic diversity of cultivated populations of habanero pepper (Capsicum chinense) in Colombia using SSR-HRM. Three habanero pepper lines were characterized with eight microsatellite markers using the High-Resolution Melt (HRM) technique. Twenty-seven individuals from the HL-original line and 30 individuals each from derived lines HL-70 and HL67 were genotyped. Three microsatellites were monomorphic, and five were polymorphic; however, a high allelic diversity was detected in the homozygous state in the 87 individuals. The Ng8 marker differentiated the HL-original and HL-67 lines from the HL-70 line with HRM profiles. The analysis of molecular variance (AMOVA) revelated that 52% of the genetic variation existed within lines. The HL-67 line was more similar to the HL-original line than to the HL-70 line. HL-70 recorded the highest genetic diversity for the derived lines and, therefore, could be used in a new breeding program. In contrast, the HL-67 line, because of its high genetic homogeneity, could potentially be used to evaluate different environmental conditions to find optimal conditions that increase productivity and pungency. Finally, comparing the HRM profiles with the monomorphic markers (Ng 33, Ng 18 and Ng 10) differentiated the C. chinense and C. frutescens species, which was difficult because of high morphologic similarity between these two species and is usually evaluated at the flowering stage, while HRM profiles can be done at any plant stage.

Keywords

Artificial selection, Crop species identification and discrimination, Crop genetic diversity, Usefulness of single nucleotide polymorphisms

PDF

References

  1. Barboza, G.E., C. Carrizo García, M. Scaldaferro, and L. Bohs. 2020. An amazing new Capsicum (Solanaceae) species from the Andean-Amazonian Piedmont. PhytoKeys 167, 13-29. Doi: https://doi.org/10.3897/phytokeys.167.57751
  2. Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32(3), 314-331.
  3. Contreras-Toledo, A.R., H. López-Sánchez, A. Santacruz-Varela, E. Valadez-Moctezuma, V.H. Aguilar-Rincón, T. Corona-Torres, and P.A. López. 2011. Diversidad genética en México de variedades nativas de chile ‘poblano’ mediante microsatélites. Rev. Fitotec. Mex. 34(4), 225-232. Doi: https://doi.org/10.35196/rfm.2011.4.225
  4. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19(1), 11-15. Doi: https://doi.org/10.1007/978-3-642-60441-6_4
  5. Estrada, S. and R. Baena. 2012. Mejoramiento de la productividad del ají, cultivares Cayena, Tabasco y Habanero, mediante la estabilización genética y fenotípica de un núcleo de semillas fundamental. Universidad Nacional de Colombia, Palmira, Bogota.
  6. Excoffier, L. and H.E.L. Lischer. 2010. Arlequin Suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564-567. Doi: https://doi.org/10.1111/j.1755-0998.2010.02847.x
  7. Falconer, D.S. and T.F.C. Mackay. 2001. Introducción a la genética cuantitativa. Editorial Acribia, Zaragoza, Spain.
  8. Fraser, A.S. 1972. An introduction to population genetic theory. Crow, J.F. and M. Kimura (eds.). New York. 656 pp. 1970. Teratology 5, 386-387. Doi: https://doi.org/10.1002/tera.1420050318
  9. González-Pérez, S., A. Garcés-Claver, C. Mallor, L.E. Sáenz de Miera, O. Fayos, F. Pomar, F. Merino, and C. Silvar. 2014. New insights into Capsicum spp relatedness and the diversification process of Capsicum annuum in Spain. PloS ONE 9(12), e116276. Doi: https://doi.org/10.1371/journal.pone.0116276
  10. Guzmán, F.A., S. Moore, M. Carmen de Vicente, and M.M. Jahn. 2020. Microsatellites to enhance characterization, conservation and breeding value of Capsicum germplasm. Genet. Resour. Crop Evol. 67(3), 569-585. Doi: https://doi.org/10.1007/s10722-019-00801-w
  11. Justino, E.V., M.E.N. Fonseca, M.E. Ferreira, L.S. Boiteux, P.P. Silva, and W.M. Nascimiento. 2018. Estimate of natural cross-pollination rate of Capsicum annuum using a codominant molecular marker associated with fruit pungency. Genet. Mol. Res. 17(1), gmr16039887. Doi: https://doi.org/10.4238/gmr16039887
  12. Lee, J.M., S.H. Nahm, Y.M. Kim and B.D. Kim. 2004. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 108, 619-627. Doi: https://doi.org/10.1007/s00122-003-1467-x
  13. Lee, H.-Y., N.-Y. Ro, H.-J. Jeong, J.-K. Kwon, J. Jo, Y. Ha, A. Jung, J.-W. Han, J. Venkatesh and B.-C. Kang. 2016. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 17, 142. Doi: https://doi.org/10.1186/s12863-016-0452-8
  14. Marcos Pérez, D. 2013. Caracterización molecular y análisis de diversidad genética en variedades de pimiento autóctonas de Galicia. MSc thesis. Facultade de Ciencias, Universidade da Coruña, La Coruña, Spain.
  15. Nagy, I., A. Stágel, Z. Sasvári, M. Röder, and M. Ganal. 2007. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.). Genome 50(7), 668-688. Doi: https://doi.org/10.1139/g07-047
  16. Nei, M. 1972. Genetic distance between populations. The American Naturalist 106(949), 283-292. Doi: https://doi.org/10.1086/282771
  17. Nicolaï, M., M. Cantet, V. Lefebvre, A.-M. Sage-Palloix, and A. Palloix. 2013. Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet. Resour. Crop Evol. 60, 2375-2390. Doi: https://doi.org/10.1007/s10722-013-0006-0
  18. Odland, M.L. and A.W. Porter. 1941. A study of natural crossing in pepper (Capsicum frutescens L.). J. Am. Soc. Hort. Sci. 38, 585-588.
  19. Oyama, K., S. Hernández-Verdugo, C. Sánchez, A. González-Rodríguez, P. Sánchez-Peña, J.A. Garzón-Tiznado, and A. Casas. 2006. Genetic structure of wild and domesticated populations of Capsicum annuum (Solanaceae) from northwestern Mexico analyzed by RAPDs. Genet. Resour. Crop Evol. 53(3), 553-562. Doi: https://doi.org/10.1007/s10722-004-2363-1
  20. Peakall, R. and P.E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19), 2537-2539. Doi: https://doi.org/10.1093/bioinformatics/bts460
  21. Ramírez, J.G., B.W. Avilés and E.R. Dzib. 2006. Áreas con potencial productivo para Chile Habanero (Capsicum chinense, Jacq) en el estado de Yucatán. pp. 66-67. In: Memoria Primera Reunión Nacional de Innovación Agrícola y Forestal (RENIAF). COFUPRO; SAGARPA-INIFAP; UACH, Merida, Mexico.
  22. Rivera, A., A.B. Monteagudo, E. Igartua, A. Taboada, A. García-Ulloa, F. Pomar, M. Riveiro-Leira, and C. Silvar. 2016. Assessing genetic and phenotypic diversity in pepper (Capsicum annuum L.) landraces from North-West Spain. Sci. Hortic. 203, 1-11. Doi: https://doi.org/10.1016/j.scienta.2016.03.006
  23. Shannon, C.E. 1948. A mathematical theory of communication. The Bell Syst. Tech. J. 27(3), 379-423, 623-656. Doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  24. Silva Aguilar, F. 2011. Estimación de parámetros genéticos en el contenido de capsaicina y rendimiento en una cruza de pimentón cultivar serrano y ají cayenne (Capsicum annuum) por medio del análisis de medias generacionales. MSc thesis. Universidad Nacional de Colombia, Sede Palmira Facultad de Ciencias Agropecuarias, Palmira, Colombia.
  25. Stewart Jr, C.N. and L.E. Via. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14(5), 748-751. Doi: https://doi.org/10.1007/978-3-642-60441-6_4
  26. Tanksley, S.D. 1983. Molecular markers in plant breeding. Plant Mol. Biol. Rep. 1(1), 3-8. Doi: https://doi.org/10.1007/BF02680255
  27. Viafara-Vega, R.A. and H. Cárdenas-Henao. 2018. Caracterización molecular de líneas de interés comercial de Capsicum frutescens (Solanaceae) presentes en un banco de semillas. In: XII Congreso Latinoamericano de Botánica. Asociación Latinoamericana de Botánica; Quito.
  28. Wahyuni, Y., A.-R. Ballester, E. Sudarmonowati, R.J. Bino, and A.G. Bovy. 2011. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 72(11-12), 1358-1370. Doi: https://doi.org/10.1016/j.phytochem.2011.03.016
  29. Wright, S. 1931. Evolution in Mendelian populations. Genetics 16(2), 97-159. Doi: https://doi.org/10.1093/genetics/16.2.97
  30. Xanthopoulou, A., I. Ganopoulos, G. Koubouris, A. Tsaftaris, C. Sergendani, A. Kalivas and P. Madesis. 2014. Microsatellite high-resolution melting (SSR-HRM) analysis for genotyping and molecular characterization of an Olea europaea germplasm collection. Plant Genet. Resour. 12(3), 273-277. Doi: https://doi.org/10.1017/S147926211400001X
  31. Yumnam, J.S., W. Tyagi, A. Pandey, N.T. Meetei, and M. Rai. 2012. Evaluation of genetic diversity of chilli landraces from North Eastern India based on morphology, SSR markers and the Pun1 locus. Plant Mol. Biol. Rep. 30(6), 1470-1479. Doi: https://doi.org/10.1007/s11105-012-0466-y
  32. Zhang, X.-M, Z.H. Zhang, X.-Z. Gu, S.-L- Mao, X.-X. Xiang, J. Chadoeuf, A. Palloix, L.-H. Whang, and B.-X. Zhang. 2016. Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution. J. Integr. Agric. 15(9), 1991-2001. Doi: https://doi.org/10.1016/S2095-3119(16)61364-3

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.