Allelopathic activity of dichloromethane fraction of Campomanesia lineatifolia (R. & P.) on the germination of Rumex crispus (L.) and Amaranthus hybridus (L.)
Abstract
Due to the effects generated by the use of chemical herbicides, there is a need to seek more environmentally friendly ways to combat weeds. The allelopathic effect of Campomanesia lineatifolia seed extract on weed germination has been studied; however, information is still lacking regarding the components responsible for the allelopathic effect of the extract. Therefore, the objective of this study was to evaluate the allelopathic activity of the dichloromethane fraction of C. lineatifolia extract on the germination of Rumex crispus and Amaranthus hybridus. To achieve this, a hydroalcoholic extract of the seeds of C. lineatifolia was prepared and subsequently fractionated through sequential extraction with dichloromethane. The concentrations used in the germination tests were 0, 100, 300, and 600 mg L-1. The percentage of germination (PG), mean germination speed (MGS), mean germination time (MGT), and seed viability were assessed. In R. crispus, low concentrations (100 and 300 mg L-1) favored germination, reaching a PG of 75.5 and 64.5%, respectively. However, the highest concentration (600 mg L-1) significantly inhibited germination (77% inhibition). In the case of A. hybridus, all treatments with concentrations of the dichloromethane fraction inhibited germination compared to the 0 mg L-1 treatment, with the inhibition being most pronounced at 600 mg L-1 (98.5% inhibition). Furthermore, the MGS decreased as concentrations increased in both species, while the MGT increased in A. hybridus with higher concentrations. In conclusion, the dichloromethane fraction of the C. lineatifolia extract exhibits allelopathic activity, which can be either positive or negative depending on the species to which it is applied and the concentrations used.
Keywords
Botanical pesticides, Bioprospecting, Myrtaceae, Hydroalcoholic extract of seeds, Germination inhibitors, Weed control
References
- Abdel Ghani, A.E., M.S.M. Al-Saleem, W.M. Abdel-Mageed, E.M. AbouZeid, M.Y. Mahmoud, and R.H. Abdallah. 2023. UPLC-ESI-MS/MS profiling and cytotoxic, antioxidant, anti-inflammatory, antidiabetic, and antiobesity activities of the non-polar fractions of Salvia hispanica L. aerial parts. Plants 12(5), 1062. Doi: https://doi.org/10.3390/plants12051062
- Barbosa, L.M.P., J.O. Santos, R.C.M. Sousa, J.L.B. Furtado, P. Vidinha, M.A.S. Garcia, H.A. Vitorino, and D.F. Dall’Oglio. 2023. Bioherbicide from Azadirachta indica seed waste: Exploitation, efficient extraction of neem oil and allelopathic effect on Senna occidentalis. Recycling 8(3), 50. Doi: https://doi.org/10.3390/recycling8030050
- Bewley, J.D., K.J. Bradford, H.W.M. Hilhorst, and H. Nonogaki. 2013. Seeds: Physiology of development, germination and dormancy. 3rd ed. Springer, New York, NY.
- Cabeza, H.A., H.E. Balaguera-López, and D.S. Useche de Vega. 2021. Alelopatía del extracto de Campomanesia lineatifolia sobre Taraxacum officinale. Cienc. Tecnol. Agropecuaria 22(3), e2010. Doi: https://doi.org/10.21930/rcta.vol22_num3_art:2010
- Cepeda, A., J.E. Vélez-Sánchez, and H.E. Balaguera-Lopez. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colomb. Cienc. Hortic. 15(2), 12508. Doi: https://doi.org/10.17584/rcch.2021v15i2.12508
- Chauhan, A., N. Kumari, D.C. Saxena, and S. Singh. 2022. Effect of germination on fatty acid profile, amino acid profile and minerals of amaranth (Amaranthus spp.) grain. J. Food Meas. Charact. 16, 1777-1786. Doi: https://doi.org/10.1007/s11694-022-01292-7
- Chauvel, B., J.-P. Guillemin, J. Gasquez, and C. Gauvrit. 2012. History of chemical weeding from 1944 to 2011 in France: Changes and evolution of herbicide molecules. Crop Prot. 42, 320-326. Doi: https://doi.org/10.1016/j.cropro.2012.07.011
- Cobb, A.H. 2022. Herbicides and plant physiology. 3nd ed. Wiley, Chichester, UK.
- De Rzedowski, G.C. 2005. Flora fanerogámica del Valle de México. 2ª ed. Instituto de Ecología; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro, México. pp. 111-127.
- El-Gawad, A.A., A. Elshamy, A.E.-N. El Gendy, A. Gaara, and A. Assaeed. 2019. Volatiles profiling, allelopathic activity, and antioxidant potentiality of Xanthium strumarium leaves essential oil from Egypt: Evidence from chemometrics analysis. Molecules 24(3), 584. Doi: https://doi.org/10.3390/molecules24030584
- Feduraev, P., G. Chupakhina, P. Maslennikov, N. Tacenko, and L. Skrypnik. 2019. Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants 8(7), 237. Doi: https://doi.org/10.3390/antiox8070237
- Flórez, M.C. 2018. Valoración de catequinas y cafeína en productos comerciales de té verde y su comparación con técnicas cromatográficas más económicas. Undergraduate thesis. Facultad de Ciencias Naturales, Universidad ICESI, Santiago de Cali, Colombia.
- Flores, M.A., E. Sánchez, and R. Pérez. 2015. Potencial alelopático de extractos foliares de Astragalus mollissimus Torr. sobre la germinación in vitro de semillas de maleza. Rev. Mex. Cienc. Agric. 6(5), 1093-1103. Doi: https://doi.org/10.29312/remexca.v6i5.601
- García, M.J., C. Palma-Bautista, J.G. Vazquez-Garcia, A.M. Rojano-Delgado, M.D. Osuna, J. Torra, and R. De Prado. 2020. Multiple mutations in the EPSPS and ALS genes of Amaranthus hybridus underlie resistance to glyphosate and ALS inhibitors. Sci. Rep. 10(1), 17681. Doi: https://doi.org/10.1038/s41598-020-74430-0
- González, A.K., L.F. González-Martínez, L.D. Córdoba, A. Rincón, and H.E. Balaguera-López. 2021. Regulating the postharvest life of Campomanesia lineatifolia R. & P. fruits through the interaction of ethylene, 1-methylcyclopropene and low temperatures. Rev. Colomb. Cienc. Hortic. 15(2), e12499. Doi: https://doi.org/10.17584/rcch.2021v15i2.12499
- Haddou, S., A. Elrherabi, E.H. Loukili, R. Abdnim, A. Hbika, M. Bouhrim, O. Al Kamaly, A. Saleh, A.A. Shahat, M. Bnouham, B. Hammouti, and A. Chahine. 2024. Chemical analysis of the antihyperglycemic, and pancreatic α-amylase, lipase, and intestinal α-glucosidase inhibitory activities of Cannabis sativa L. seed extracts. Molecules 29(1), 93. Doi: https://doi.org/10.3390/molecules29010093
- Kasote, D.M., S.S. Katyare, M.V. Hegde, and H. Bae. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 11(8), 982-991. Doi: https://doi.org/10.7150/ijbs.12096
- Kudsk, P. and J.C. Streibig. 2003. Herbicides - a two-edged sword. Weed Res. 43(2), 90-102. Doi: https://doi.org/10.1046/j.1365-3180.2003.00328.x
- Kumar, V., D.C. Brainard, and R.R. Bellinder. 2009. Suppression of powell amaranth (Amaranthus powellii) by buckwheat residues: role of allelopathy. Weed Sci. 57(1), 66-73. Doi: https://doi.org/10.1614/WS-08-028.1
- La Iacona, M., S. Lombardo, G. Mauromicale, A. Scavo, and G. Pandino. 2024. Allelopathic activity of three wild Mediterranean Asteraceae: Silybum marianum, Cynara cardunculus var. sylvestris, Galactites tomentosus. Agronomy 14(3), 575. Doi: https://doi.org/10.3390/agronomy14030575
- Landrum, L. 1986. Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Flora Neotrop. Monogr. 45: 1-179
- Leguízamo-Medina, M.F., E.H. Pinzón-Sandoval, and H.E. Balaguera-López. 2022. Phenology analysis growing and degree days of flower bud growth in three Dianthus caryophyllus L. varieties under greenhouse conditions. Rev. Colomb. Cienc. Hortic. 16(3), e15296. Doi: https://doi.org/10.17584/rcch.2022v16i3.15296
- Maestre, L., E. Palacios, B.L. Moreno, H.E. Balaguera-López, and J.P. Hernandez. 2023. Hydroalcoholic extracts of Campomanesia lineatifolia R. & P. seeds inhibit the germination of Rumex crispus and Amaranthus hybridus. Horticulturae 9(2), 177. Doi: https://doi.org/10.3390/horticulturae9020177
- Martínez, C.A., H.E. Balaguera-López, and J.A. Fonseca. 2022. Bioherbicidal activity of seed extract of Campomanesia lineatifolia on the weed Sonchus oleraceus L. Agron. Colomb. 40(1), 49-57. Doi: https://doi.org/10.15446/agron.colomb.v40n1.98502
- Martínez, D.N. and E. De la Barrera. 2020. Ecofisiología de la germinación de tres malezas efímeras periurbanas en Morelia, Michoacán, México. La Granja: Rev. Cienc. Vida 31(1), 47-55. Doi: https://doi.org/10.17163/lgr.n31.2020.03
- Muhamad, N., S.A. Muhmed, M.M. Yusoff, and J. Gimbun. 2014. Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimbi. J. Food Sci. Eng. 4, 255-260. Doi: https://doi.org/10.17265/2159-5828/2014.05.006
- Ngoroyemoto, N., S. Gupta, M.G. Kulkarni, J.F. Finnie, and J. Van Staden. 2019. Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. S. Afr. J. Bot. 124, 87-93. Doi: https://doi.org/10.1016/j.sajb.2019.03.040
- Niño-Hernandez, J.C., D.F. Moreno, H.D. Ruiz-Berrío, H.E. Balaguera-López, and S. Magnitskiy . 2020. Luz, giberelinas y profundidad de siembra inciden sobre la germinación de semillas de Amaranthus hybridus L. Rev. UDCA Act. Div. Cient. 23(2), e1545. Doi: https://doi.org/10.31910/rudca.v23.n2.2020.1545
- Parra, O. 2014. Sinopsis de la familia Myrtaceae y clave para la identificación de los géneros nativos e introducidos en Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 38(148), 261-277. Doi: https://doi.org/10.18257/raccefyn.128
- Petrova, S.T., E.G. Valcheva, and I.G. Velcheva. 2015. A case study of allelopathic effect on weeds in wheat. Ecol. Balk. 7(1), 121-129.
- Poonpaiboonpipat, T., R. Krumsri, and H. Kato-Noguchi. 2021. Allelopathic and herbicidal effects of crude extract from Chromolaena odorata (L.) RM King and H. Rob. on Echinochloa crus-galli and Amaranthus viridis. Plants 10(8), 1609. Doi: https://doi.org/10.3390/plants10081609
- Rojas, L.Y. 2021. Caracterización química y evaluación de la actividad biológica sobre líneas celulares tumorales de extracto de hojas de Tillandsia usneoides (Barba de viejo). MSc thesis. Faculty of Sciences, Pontificia Universidad Javeriana, Colombia.
- Shams, R., S. Kaur, K.K. Dash, N. Czipa, B. Kovács, and A.M. Shaikh. 2024. A review of emerging technologies for the extraction of bioactive compounds from berries (Phalsa Berries). Horticulturae 10(5), 455. Doi: https://doi.org/10.3390/horticulturae10050455
- Sohn, S.-I., S. Pandian, T.S. Kumar, Y.A.B. Zoclanclounon, P. Muthuramalingam, J. Shilpha, L. Satish, and M. Ramesh. 2021. Seed dormancy and pre-harvest sprouting in rice—an updated overview. Int. J. Mol. Sci. 22(21), 11804. Doi: https://doi.org/10.3390/ijms222111804
- Sugauara, R.R., W.C. Bortolucci, C.M.M. Fernandez, M.R.P. Cabral, R.A.C. Gonçalves, M.H. Sarragiotto, J.E. Gonçalves, N.B. Colauto, G.A. Linde, M.G.I.F. Nunes, S.P. Ruiz and Z.C. Gazim. 2023. Valorization of Campomanesia xanthocarpa leaves: Chemical composition and antioxidant activity of crude extract and fractions. Bol. Latinoam. Caribe Plant. Med. Aromat. 22(3), 301-313. Doi: https://doi.org/10.37360/blacpma.23.22.3.22
- Sun, W., C. Yang, X. Shan, M. An, and X. Wang. 2022. Allelopathic toxicity of cyanamide could control amaranth (Amaranthus retroflexus L.) in alfalfa (Medicago sativa L.) field. Molecules 27(21), 7347. Doi: https://doi.org/10.3390/molecules27217347
- Tubeileh, A.M. and R.T. Souikane. 2020. Effect of olive vegetation water and compost extracts on seed germination of four weed species. Current Plant Biol. 22, 100150. Doi: https://doi.org/10.1016/j.cpb.2020.100150
- Zhu, X., G. Dao, Y. Tao, X. Zhan, and H. Hu. 2021. A review on control of harmful algal blooms by plant-derived allelochemicals. J. Hazard. Mater. 401, 123403. Doi: https://doi.org/10.1016/j.jhazmat.2020.123403
- Zimdahl, R.L. 2018. Fundamentals of weed science. 5th ed. Academic Press, New York, USA. Doi: https://doi.org/10.1016/C2015-0-04331-3