Skip to main navigation menu Skip to main content Skip to site footer

Effect of preharvest conditions on the quality of important Myrtaceae fruits in Colombia. A review

Fructification of feijoa tree. The fruiting behavior on the trunk is curious. Photo: H.B. Balaguera-López

Abstract

The aim of this review is to provide information on the conditions that facilitate the production of high-quality Myrtaceae fruits that are important in Colombia. Many fruits of the Myrtaceae family have very important nutritional, functional, and economic characteristics. In Colombia, commercial fruit trees of the Myrtaceae family include guava (Psidium guajava L.), feijoa (Acca sellowiana [Berg] Burret), arazá (Eugenia stipitata McVaugh), and champa (Campomanesia lineatifolia R. & P.). Each of these species, and their varieties, must be planted in a suitable climate, soil and altitudinal range, and these factors influence their quality (nutraceutical, organoleptic, and physicochemical). Furthermore, the crop must be managed with the best cultural practices that guarantee the achievement of its genetic potential. These practices include pruning, which guarantees a physiological balance between vegetative and reproductive branches; nutrition, depending on the content of elements assimilable in soil; and tools such as foliar analysis. Regarding water, sites with a bimodal rainfall regime can guarantee two harvests per year, except in the case of champa, for which only one is reported, although irrigation can bring this forward. Facilitating effective pollination is a requirement for fruit formation and quality. Regarding the development of quality, guava and feijoa stand out for their high content of phytochemical substances (phenols, ascorbic acid, carotenoids, and antioxidant activity), which support their own defense in stressful conditions, and could help human consumers to counteract chronic diseases. Unfortunately, there is a lack of studies on these crops regarding, for example, the cultural practices that can increase these bioactive compounds in the fruit. More research is needed in the country to improve the quality of these fruits, with champa, which is grown only in department of Boyaca, being the least studied.

Keywords

Psidium guajava, Acca sellowiana, Eugenia stipitata, Campomanesia lineatifolia, Fruit quality, Tropical fruits, Crop management

PDF

References

  1. Acosta-Vega, L., D.A. Moreno, and L.N. Cuéllar. 2024. Arazá: Eugenia stipitata Mc Vaught as a potential functional food. Food 13(15), 2310. Doi: https://doi.org/10.3390/foods13152310
  2. Aguilera-Arango, G.A., E. Rodríguez-Henao, H.N. Chaparro-Zambrano, and J.O. Orduz-Rodríguez. 2020. Estado actual de la investigación para el cultivo de guayaba en Colombia. Agron. Mesoamer. 31(3), 845-860. Doi: https://doi.org/10.15517/am.v31i3.40207
  3. Ali, M.M., A.F. Yousef, B. Li, and F. Chen. 2021. Effect of environmental factors on growth and development of fruits. Trop. Plant Biol. 14(3), 226-238. Doi: https://doi.org/10.1007/S12042-021-09291-6
  4. Álvarez-Herrera, J.G., J.A. Galvis, and H.E. Balaguera-López. 2009. Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agron. Colomb. 27(2), 253-259.
  5. Amarante, C.V.T., A.G. Souza, T.D.T. Benincá, and C.A. Steffens. 2017. Phenolic content and antioxidant activity of fruit of Brazilian genotypes of feijoa. Pesq. Agropec. Bras. 52(12), 1223-1230. Doi: https://doi.org/10.1590/S0100-204X2017001200011
  6. Araújo, F.F., I.A. Neri-Numa, D.P. Farias, G.R.M.C. Cunha, and G.M. Pastore. 2019. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res. Int. 121, 57-72. Doi: https://doi.org/10.1016/j.foodres.2019.03.018
  7. Araújo, H.M., F.F.G. Rodrigues, W.D. Costa, C.F.A. Nonato, F.F.G. Rodrigues, A.A. Boligon, M.L. Athayde, and J.G.M. Costa. 2015. Chemical profile and antioxidant capacity verification of Psidium guajava (Myrtaceae) fruits at different stages of maturation. EXCLI J. 14, 1020-1030. Doi: https://doi.org/10.17179/excli2015-522
  8. Asif, M. 2015. Bioactive phytochemical constituents of some edible fruits of Myrtaceae family. Am. J. Nutr. Res.1, 20150619.
  9. Asrey, R., S. Kumar, and N.K. Meena. 2018. Influence of water quality on postharvest fruit and vegetable quality. pp. 169-187. In: Siddiqui, M.W. (ed.). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, London.
  10. Balaguera, H.E. 2011. Estudio del crecimiento y desarrollo del fruto de champa (Campomanesia lineatifolia R. & P.) y determinación del punto óptimo de cosecha. MSc thesis. Facultad de Agronomía, Universidad Nacional de Colombia, Bogota.
  11. Balaguera, H.E., J.G. Álvarez, and D.C. Bonilla. 2009. Crecimiento y desarrollo del fruto de champa (Campomanesia lineatifolia Ruiz & Pavón). Rev. UDCA Act. Div. Cient. 12(2), 113-123. Doi: https://doi.org/10.31910/rudca.v12.n2.2009.697
  12. Balaguera-López, H.E., G. Fischer, and A. Herrera-Arévalo. 2022. Postharvest physicochemical aspects of Campomanesia lineatifolia R. & P. fruit, a Myrtaceae with commercial potential. Rev. Colomb. Cienc. Hortic. 16(2), e14185. Doi: https://doi.org/10.17584/rcch.2022v16i2.14185
  13. Balaguera-López, H.E. and A. Herrera. 2012. Determining optimal harvest point for champa (Campomanesia lineatifolia R. & P.) fruit based on skin color. Ing. Inv. 32(1), 88-93. Doi: https://doi.org/10.15446/ing.investig.v32n1.28523
  14. Balaguera-López, H.E., A. Herrera, and D. Cortés-Moreno. 2012. Growth of champa fruit under agroecological conditions of Miraflores, Boyacá, Colombia. Pesq. Agropec. Bras. 47(12), 1722-1730. Doi: https://doi.org/10.1590/S0100-204X2012001200007
  15. Balerdi, C.F. J.H. Crane, and B. Schaffer. 2003. Managing your tropical fruit grove under changing water table levels. Doc. HS957. IFAS Extension, University of Florida, Gainesville, FL.
  16. Balfagón, D., V. Arbona, and A. Gómez-Cadenas. 2022. The future of citrus fruit: the impact of climate change on citriculture. Metode Sci. Stud. J. 12, 123-129. Doi: https://doi.org/10.7203/metode.12.20319
  17. Barman, K., M.S. Ahmad, and M.W. Siddiqui. 2015. Factors affecting the quality of fruits and vegetables: recent understandings. pp. 1-50. In: Siddiqui, M.W. (ed.). Postharvest biology and technology of horticultural crops: principles and practices for quality maintenance. CRC Press Taylor and Francis Group, Boca Raton, FL. Doi: https://doi.org/10.1201/b18438
  18. Barrera, J.A., M.S. Hernández, A. García, G. Vargas, D. Caicedo, O. Martínez, L.M. Melgarejo, and J.P. Fernández-Trujillo. 2012. Maximum leaf photosynthetic light response for araza (Eugenia stipitata McVaugh) plants growing in four environments of the Southern Colombian Amazonian region. Acta Hortic. 928, 187-192. Doi: https://doi.org/10.17660/ActaHortic.2012.928.22
  19. Bautista-Montealegre, L.G., L.Y. DEantonio-Florido, W.A. Cardona, M.M. Bolaños-Benavides, and G. Fischer. 2022. Mineral nutrition and tolerance to Colletotrichum spp. of Andean blackberry (Rubus glaucus Benth.) in nursery. Agron. Mesoamer. 33(3), 48655. Doi: https://doi.org/10.15517/am.v33i3.48655
  20. Benavides, H.O., O. Simbaqueva, and H.J. Zapata. 2017. Atlas de radiación solar, ultravioleta y ozono de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogota.
  21. Benkeblia, N., D.P.F. Tennant, S.K. Jawandha, and P.S. Gill. 2011. Preharvest and harvest factors influencing the postharvest quality of tropical and subtropical fruits. pp. 112-141. In: Yahia, E.M. (ed.). Postharvest biology and technology of tropical and subtropical fruits fundamental issues. Woodhead Publishing, Oxford, UK. Doi: https://doi.org/10.1533/9780857093622.112
  22. Blancke, R. 2016. Tropical fruits and other edible plants of the world: an illustrated guide. Cornell University Press, Ithaca and London. Doi: https://doi.org/10.7591/9781501704284
  23. Buitrago, S., M. Leandro, and G. Fischer. 2021. Symptoms and growth components of feijoa (Acca sellowiana [O. Berg] Burret) plants in response to the missing elements N, P, and K. Rev. Colomb. Cienc. Hortic. 15(3), e13159. Doi: https://doi.org/10.17584/rcch.2021v15i3.13159
  24. Calderón-Acero, L.V. and G. Nates-Parra. 2013. Visitantes florales y posibles polinizadores de chamba Campomanesia lineatifolia (Myrtaceae) en la provincia de Lengupá, Boyacá, Colombia. pp. 72-79. In: Memorias VIII Congreso Mesoamericano de Abejas Nativas. Heredia, Costa Rica.
  25. Carabalí, A., D.L. Correa, A. Jaramillo, E. Rodriguez, R. Tarazona, L.C. Grajales, D.E. Canacuan, and M. Montes. 2019. Prácticas de manejo sostenible para el cultivo de guayaba. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Palmira, Colombia.
  26. Carrejo, N.S. and R. González. 1999. Parasitoids reared from species of Anastrepha (Diptera: Tephritidae) in Valle del Cauca, Colombia. Flo. Entomol. 82(1), 113-118. Doi: https://doi.org/10.2307/3495842
  27. Casierra-Posada, F. and G. Fischer. 2012. Poda de árboles frutales. pp. 169-185. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  28. Chiveu, J.C., M. Naumann, K. Kehlenbeck, and E. Pawelzik. 2019. Variation in fruit chemical and mineral composition of Kenyan guava (Psidium guajava L.): inferences from climatic conditions, and fruit morphological traits. J. Appl. Bot. Food Qual. 92, 151-159. Doi: https://doi.org/10.5073/JABFQ.2019.092.021
  29. Combariza, J.A. and Y. Aranda. 2012. Producción y comercialización. pp. 16-34. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  30. Contreras-Calderón, J., L. Calderón-Jaimes, E. Guerra-Hernández, and B. García-Villanova. 2011. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 44(7), 2047-2053. Doi: https://doi.org/10.1016/j.foodres.2010.11.003
  31. Duarte, O. and R.E. Paull. 2015. Myrtaceae. pp. 51-59. In: Exotic fruits and nuts of the new world. CABI Publishing, Wallingford, UK. Doi: https://doi.org/10.1079/9781780645056.0000
  32. Escobar, C.J., J.J. Zuluaga, C.A. Cárdenas, and E.H. Rivas. 1999. El cultivo del arazá (Eugenia stipitata McVaugh). 2nd ed. Cartilla Divulgativa Regional 10. Corpoica; SENA. Florencia, Colombia.
  33. Espinal, M., J.I. Daza, and L.P. Restrepo. 2012. Lipophilic antioxidant activity of guava fruit varieties Palmira ICA I, Regional Roja and Regional Blanca in four ripening stages. Agron. Colomb. 30(2), 251-259.
  34. Fallik, E., and Z. Ilic. 2018. Pre- and postharvest treatments affecting flavor quality of fruits and vegetables. pp. 139-168. In: Siddiqui, M.W. (ed.). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, London.
  35. FAO. 2024. Major tropical fruits: market review. Preliminary results 2023. Rome.
  36. Farias, D.P., I.A. Neri-Numa, F.F. Araújo, and G.M. Pastore. 2020. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 306, 125630. Doi: https://doi.org/10.1016/j.foodchem.2019.125630
  37. Fernández-Trujillo, J.P., M.S. Hernández, M. Carrillo, and J. Barrera. 2011. Arazá (Eugenia stipitata McVaugh). pp. 98-115. In: Yahia, E.M. (ed.). Postharvest biology and technology of tropical and subtropical fruits. Vol. 2: Açai to citrus. Woodhead Publishing Ltd., Oxford, UK. Doi: https://doi.org/10.1533/9780857092762.98
  38. Ferreira, M.C., F.B. Martins, G.W.L. Florêncio, and L.A.A.P. Pasin. 2019. Cardinal temperatures and modeling of vegetative development in guava. Rev. Bras. Eng. Agric. Ambient. 23(11), 819-825. Doi: https://doi.org/10.1590/1807-1929/agriambi.v23n11p819-825
  39. Fischer, G., P.J., Almanza-Merchán, and F. Ramírez. 2012. Source-sink relationships in fruit species. A review. Rev. Colomb. Cienc. Hortic. 6(2), 238-253. Doi: https://doi.org/10.17584/rcch.2012v6i2.1980
  40. Fischer, G., H.E. Balaguera-López, and J. Álvarez-Herrera. 2021. Causes of fruit cracking in the era of climate change. A review. Agron. Colomb. 39(2), 196-207. Doi: https://doi.org/10.15446/agron.colomb.v39n2.97071
  41. Fischer, G., H.E. Balaguera-López, A. Parra-Coronado, and S. Magnitskiy, 2024. Adaptation of fruit trees to different elevations in the tropical Andes. pp. 193-208. In: Tripathi, S., R. Bhadouria, P. Srivastava, R. Singh, and R.S. Devi (eds.). Ecophysiology of tropical plants - Recent trends and future perspectives. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9781003335054-22
  42. Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: https://doi.org/10.17584/rcch.2020v14i1.10893
  43. Fischer, G. and L.M. Melgarejo. 2021. Ecophysiological aspects of guava (Psidium guajava L.). A review. Rev. Colomb. Cienc. Hortic. 15(2), e12355. Doi: https://doi.org/10.17584/rcch.2021v15i2.12355
  44. Fischer, G., L.M. Melgarejo, and H.E. Balaguera-López. 2022c. Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Cienc. Tecnol. Agropecu. 23(2), e2475. Doi: https://doi.org/10.21930/rcta.vol23_num2_art:2475
  45. Fischer, G., L.M. Melgarejo, and J. Cutler. 2018. Pre-harvest factors that influence the quality of passion fruit: A review. Agron. Colomb. 36(3), 217-226. Doi: https://doi.org/10.15446/agron.colomb.v36n3.71751
  46. Fischer, G. and A. Parra-Coronado. 2020. Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agron. Colomb. 38(3), 388-397. Doi: https://doi.org/10.15446/agron.colomb.v38n3.88982
  47. Fischer, G., A. Parra-Coronado, and H.E Balaguera-López. 2020. Aspectos del cultivo y de la fisiología de feijoa (Acca sellowiana [Berg] Burret). Una revisión. Cien. Agri. 17(3), 11-24. Doi: https://doi.org/10.19053/01228420.v17.n3.2020.11386
  48. Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022a. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854
  49. Fischer, G. and J.O. Orduz-Rodríguez. 2012. Ecofisiología en frutales. pp. 54-72. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  50. Fischer, G., J.O. Orduz-Rodríguez, and C.V.T. Amarante. 2022b. Sunburn disorder in tropical and subtropical fruits. A review. Rev. Colomb. Cienc. Hortic. 16(3), e15703. Doi: https://doi.org/10.17584/rcch.2022v16i3.15703
  51. Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 34(2), 190-199. Doi: https://doi.org/10.15446/agron.colomb.v34n2.56799
  52. Galvis, J.A. 2003. Manejo de cosecha y poscosecha de feijoa. pp. 111-123. In: Fischer, G., D. Miranda, G. Cayón, and M. Mazorra (eds.). Cultivo, poscosecha y exportación de la feijoa (Acca sellowiana Berg). Universidad Nacional de Colombia, Bogota.
  53. Galvis, J.A. and M.S. Hernández. 1993. Análisis del crecimiento y determinación del momento oportuno de cosecha del fruto de arazá (Eugenia stipitata Mc Vaugh). Colomb. Amazón. 6(2), 107-121.
  54. Hernández, M.S., O. Martínez, and J.P. Fernández-Trujillo. 2007. Behavior of arazá (Eugenia stipitata Mc Vaugh) fruit quality traits during growth, development and ripening. Sci. Hortic. 111(3), 220-227. Doi: http://doi.org/10.1016/j.scienta.2006.10.029
  55. Hernández, M.S., J.A. Barrera, and M. Carrillo. 2006. Arazá. Instituto Amazónico de Investigaciones Científicas (SINCHI), Bogota. https://sinchi.org.co/files/publicaciones/publicaciones/pdf/araza_2web.pdf
  56. Insuasty, O., R. Monroy, A. Díaz-Fonseca, and J. Bautista. 2007. Manejo integrado del picudo de guayaba (Conotrachelus psidii Marshall) en Santander. Produmedios, Bogota.
  57. Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22(11), 569-574. Doi: https://doi.org/10.1016/j.tree.2007.09.006
  58. Kumar, G.N.K., V.S. Vani, A.V.D.D. Rao, P. Subbaramamma, and R.V. Sujatha. 2017. Effect of foliar sprays of urea, potassium sulphate and zinc sulphate on quality of guava cv. Taiwan pink. Int. J. Chem. Stud. 5(5), 680-682.
  59. Ladaniya, M.S. 2008. Preharvest factors affecting fruit quality and postharvest life. pp. 79-102. In: Citrus fruit, biology, technology and evaluation. Elsevier, Oxford, UK. Doi: https://doi.org/10.1016/B978-012374130-1.50006-1
  60. Lal, N. and N. Sahu. 2017. Management strategies of sun burn in fruit crops - A review. Int. J. Curr. Microbiol. Appl. Sci. 6(6), 1126-1138. Doi: https://doi.org/10.20546/ijcmas.2017.606.131
  61. Lambers, H. and F.S. Oliveira, 2019. Plant physiological ecology. 3rd ed. Springer Nature Switzerland, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-29639-1
  62. Lima, J.S.S., J.M.C. Castro, L.B.S. Sabino, A.C.S. Lima, and L.B.V. Torres. 2016. Physicochemical properties of gabiroba (Campomanesia lineatifolia) and myrtle (Blepharocalyx salicifolius) native to the mountainous region of Ibiapaba–CE, Brazil. Rev. Caatinga 29(3), 753-757. Doi: https://doi.org/10.1590/1983-21252016v29n327rc
  63. López, M. and J. Rodríguez. 1995. Diagnóstico del mercadeo de la champa en el municipio de Miraflores Boyacá. Undergraduate thesis. Instituto de Educación Abierta y a Distancia; Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
  64. Lozano, J.C., J.C. Toro, R. García, and R. Tafur. 2002. Manual sobre el cultivo del guayabo en Colombia. Fruticultura Colombiana, Santiado de Cali, Colombia.
  65. Maestre, L., E. Palacios, B.L. Moreno, H.E. Balaguera-López, and J.P. Hernández. 2023. Hydroalcoholic extracts of Campomanesia lineatifolia R. & P. seeds inhibit the germination of Rumex crispus and Amaranthus hybridus. Horticulturae 9, 177. Doi: https://doi.org/10.3390/horticulturae9020177
  66. Martínez, C.A., H.E. Balaguera-López, and J.A. Fonseca. 2022. Bioherbicidal activity of seed extract of Campomanesia lineatifolia on the weed Sonchus oleraceus L. Agron. Colomb. 40, 49-57. Doi: https://doi.org/10.15446/agron.colomb.v40n1.98502
  67. Mercado-Silva, E., P. Benito-Bautista, and M.A. Garcia-Velasco. 1998. Fruit development, harvest index and ripening changes of guavas produced in central Mexico. Postharvest Biol. Technol. 13(2), 143-150. Doi: https://doi.org/10.1016/S0925-5214(98)00003-9
  68. MinAgricultura, Ministerio de Agricultura y Desarrollo Rural Colombia. 2024. Agronet: Área, producción y rendimiento nacional por cultivo: guayaba común, feijoa, arazá y champa. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
  69. Monforte, M.T., V. Fimiani, F. Lanuzza, C. Naccari, S. Restuccia, and E.M. Galati. 2014. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation. J. Med. Food 17, 455-461. Doi: https://doi.org/10.1089/jmf.2012.0262
  70. Moreno-Miranda, C., R. Moreno-Miranda, A.A. Pilamala-Rosales, J.I. Molina-Sánchez, and L. Cerda-Mejía. 2019. El sector hortofrutícola de Ecuador: principales características socio-productivas de la red agroalimentaria de la uvilla (Physalis peruviana). Cien. Agri. 16(1), 31-55. Doi: https://doi.org/10.19053/01228420.v16.n1.2019.8809
  71. Moretti, C.L., L.M Mattos, A.G. Calbo, and S.A. Sargent. 2010. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Res. Int. 43(7), 1824-1832. Doi: https://doi.org/10.1016/j.foodres.2009.10.013
  72. Morley-Bunker, M. 2010. Miscellaneous fruits. pp. 280-293. In: Jackson, D.I. N. Looney, and M. Morley-Looney (eds.). Temperate and subtropical fruit production. 3nd ed. CABI Publishing, Wallingford, UK.
  73. Muñoz-Ordoñez, F.J., N. Gutiérrez-Guzmán, M.S. Hernández-Gómez, and J.P. Fernández-Trujillo. 2023. The climactic conditions limit fruit production and quality in gulupa (Passiflora edulis Sims f. edulis) under integrated fertilization. S. Afr. J. Bot. 153, 147-156. Doi: https://doi.org/10.1016/j.sajb.2022.11.043
  74. Nates-Parra, G., R. Ospina, A.T. Rodríguez-Calderón, F.J. Chamorro, M.M. Henao-Cárdenas, L.V. Calderón, and M.S. Pinilla-Gallego. 2016. Polinización en cultivos promisorios. pp. 239-252. In: Nates-Parra, G. (ed.). Iniciativa colombiana de polinizadores - abejas - ICPA. Universidad Nacional de Colombia, Bogota.
  75. Neves, N.C.V., M.P. Mello, I. Zaidan, L.P. Sousa, A.V. Braga, R.R. Machado, W. Kukula-Koch, F. Boylan, M.V. Caliari, and R.O. Castilho. 2023. Campomanesia lineatifolia Ruiz & Pavón (Myrtaceae): isolation of major and minor compounds of phenolic-rich extract by high-speed countercurrent chromatography and anti-inflammatory evaluation. J. Ethnopharmacol. 310, 116417. Doi: https://doi.org/10.1016/j.jep.2023.116417
  76. Olaya, J.A. and L.P. Restrepo. 2012. Estudio del contenido de fenoles y actividad antioxidante de guayaba en diferentes estados de madurez. Acta Biol. Colomb. 17(3), 611-624.
  77. Otalvaro-Álvarez, A.M., L.C. Pabón-Baquero, M.R. Redón-Fernández, and M.P. Chaparro-González. 2017. Microwave extraction of champa (Campomanesia lineatifolia Ruiz & Pav.) fruit: alternative to obtain natural antioxidants. Acta Agron. 67(1), 53-58. Doi: https://doi.org/10.15446/acag.v67n1.61367
  78. Parra-Coronado, A. 2014. Maduración y comportamiento poscosecha de la guayaba (Psidium guajava L.). Una revisión. Rev. Colomb. Cienc. Hortic. 8(2), 314-327. Doi: https://doi.org/10.17584/rcch.2014v8i2.3223
  79. Parra-Coronado, A. and G. Fischer. 2013. Maduración y comportamiento poscosecha de la feijoa (Acca sellowiana (O. Berg) Burret). Rev. Colomb. Cienc. Hortic. 7(1), 98-110. Doi: https://doi.org/10.17584/rcch.2013v7i1.2039
  80. Parra-Coronado, A., G. Fischer, H.E. Balaguera-López, and L.M. Melgarejo. 2022. Sugar and organic acids content in feijoa (Acca sellowiana) fruits, grown in two altitudes. Rev. Cienc. Agr. 39(1), 55-69. Doi: https://doi.org/10.22267/rcia.223901.173
  81. Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2015a. Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia. Bragantia 74(3), 359-366. Doi: http://doi.org/10.1590/1678-4499.0459
  82. Parra-Coronado, A., G. Fischer, and J.H. Camacho-Tamayo. 2016. Growth model of the pineapple guava fruit as a function of thermal time and tropical altitude. Ing. Inv. 36(3), 6-14. Doi: https://doi.org/10.15446/ing.investig.v36n3.52336
  83. Parra-Coronado, A., G. Fischer, and B. Chaves-Cordoba. 2015b. Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biol. Colomb. 20(1), 163-173. Doi: http://doi.org/10.15446/abc.v20n1.43390
  84. Parra-O., C. 2014. Sinopsis de la familia Myrtaceae y clave para la identificación de los géneros nativos e introducidos en Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 38 (148), 261-277. Doi: https://doi.org/10.18257/raccefyn.128
  85. Pasquariello, M.S., F. Mastrobuoni, D. DiPatre, L. Zampella, L.R. Capuano, M. Scortichini, and M. Petriccione. 2015. Agronomic, nutraceutical and molecular variability of feijoa (Acca sellowiana (O. Berg) Burret) germplasm. Sci. Hortic. 191, 1-9. Doi: https://doi.org/10.1016/j.scienta.2015.04.036
  86. Paull, R.E. and O. Duarte. 2012. Guava. pp. 91-122. In: Tropical fruits. Vol. 2. 2nd ed. CABI International, Wallingford, UK. Doi: http://doi.org/10.1079/9781845937898.0000
  87. Perea, M., G. Fischer, and D. Miranda. 2010. Feijoa Acca sellowiana Berg. pp. 330-349. In: Perea, M., L.P. Matallana, and A. Tirado (eds.). Biotecnología aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de Colombia, Bogota.
  88. Pérez, L.V. and L.M. Melgarejo. 2015. Photosynthetic performance and leaf water potential of gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the colombian andes. Acta Biol. Colomb. 20(1), 183-194. Doi: https://doi.org/10.15446/abc.v20n1.42196
  89. Porras, Y.C., M.C. Pedreros, W.L. Reyes, and H.E. Balaguera. 2020. Light effect on germination of champa (Campomanesia lineatifolia R. & P.) seeds. Cien. Agri. 17(2), 23-31. Doi: https://doi.org/10.19053/01228420.v17.n2.2020.10979
  90. Prado, R.M., J.P. Souza Junior, G.B. Silva Junior, and I.H.L. Cavalcante. 2017. Guava: the relationship between the productive aspects, the quality of the fruits and its health benefits. pp. 1-16. In: Murphy, A. (ed.). Guava: cultivation, antioxidant properties and health benefits. Nova Science Publishers, Hauppauge, USA.
  91. Quintero, O. 2003. Selección de cultivares, manejo del cultivo y regulación de cosechas de feijoa. pp. 49-71. In: Fischer, G., D. Miranda, G. Cayón, and M. Mazorra (eds.). Cultivo, poscosecha y exportación de la feijoa (Acca sellowiana Berg). Universidad Nacional de Colombia, Bogota.
  92. Quintero, O.C. 2012. Feijoa (Acca sellowiana Berg). pp. 443-473. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  93. Quintero, O.C. 2014. La feijoa en Colombia. pp. 167-178. In: Mem. VI Encontro sobre Pequenas Frutas e Frutas Nativas do Mercosul. Empraba Clima Temperado. Pelotas, Brazil.
  94. Ramírez, L.N., G.P. González, and J.-A. Cleves-Leguizamo. 2021. Mathematical modeling of climatological data to estimate passion fruit crop yield (Passiflora edulis L. f. flavicarpa y purpurea). Rev. Bras. Frutic. 43(3), e-182. Doi: https://doi.org/10.1590/0100-29452021182
  95. Ramírez, R. and J. Kallarackal. 2017. Feijoa [Acca sellowiana (O. Berg) Burret] pollination: a review. Sci. Hortic. 226, 333-341. Doi: https://doi.org/10.1016/j.scienta.2017.08.054
  96. Raza, A., F. Ashraf, X. Zou, X. Zjang, and H. Tosif. 2020. Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. pp. 117-146. In: Hasanuzzaman, M. (ed.). Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I: general consequences and plant responses. Springer Nature Singapore, Singapore. Doi: https://doi.org/10.1007/978-981-15-2156-0_5
  97. Rengel, Z., I. Cakmak, and P.J. White. 2023. Marschner’s mineral nutrition of plants. 4th ed. Elsevier, London.
  98. Reyes, C. 2012. Arazá (Eugenia stipitata Mc Vaugh). pp. 928-935. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  99. Ritthe, R.D., R.A. Patil, V.N. Shinde, S.N. Band, and N.S. Ingle. 2023. Effect of pre-harvest chemical spray and bagging on physico-chemical quality of guava (Psidium guajava L.) fruits cv. Sardar. Pharm. Innov. 12(12), 1286-1290.
  100. Rodríguez, A.T. 2014. Requerimientos y valor económico del servicio de polinización prestado por abejas en dos frutales promisorios colombianos, (champa Campomanesia lineatifolia Ruiz & Pav. y cholupa Passiflora maliformis L.). M.Sc. thesis. Universidad Nacional de Colombia, Bogota.
  101. Rodríguez, A., F.J. Chamorro, L.V. Calderón, M.S. Pinilla, M. Henao, R. Ospina, and G. Nates-Parra. 2015. Polinización por abejas en cultivos promisorios de Colombia: agraz (Vaccinium meridionale), chamba (Campomanesia lineatifolia) y cholupa (Passiflora maliformis). Universidad Nacional de Colombia, Bogota.
  102. Rojas-Barquera, D. and C.-E. Narváez-Cuenca. 2009. Determinación de vitamina C, compuestos fenólicos totales y actividad antioxidante de frutas de guayaba (Psidium guajava L.) cultivadas en Colombia. Quim. Nova 32(9), 2336-2340. Doi: https://doi.org/10.1590/S0100-40422009000900019
  103. Rupavatharam, S., A.R. East, and J.A. Heyes. 2016. Effects of preharvest application of aminoethoxyvinylglycine (AVG) on harvest maturity and storage life of ‘Unique’ feijoa. New Zeal. J. Crop Hort. Sci. 44(2), 121-135. Doi: https://doi.org/10.1080/01140671.2016.1152980
  104. Salazar, D.M., P. Melgarejo, R. Martínez, J.J. Martínez, F. Hernández, and M. Burguera. 2006. Phenological stages of the guava tree (Psidium guajava L.). Sci. Hortic. 108(2), 157-161. Doi: https://doi.org/10.1016/j.scienta.2006.01.022
  105. Sánchez-Mora, F.D., L. Saifert, M.S. Pasa, M.N. Ciotta, H.N. Ribeiro, A. Rojas-Molina, G. Lombardi, and R.O. Nodari. 2017. Poda de frutificação em variedades comerciais de goiabeira-serrana. p. 73. In: XV Encuentro Nacional de Fruticultura de Clima Temperado. Fraiburgo, Brazil.
  106. Santos, E., Y. Mendoza, B. Vignale, M. Vera, S. Diaz-Cetti, D. Cabrera, E. Morelli, and C. Invernizzi. 2022. Animal pollination dependence in feijoa [Acca sellowiana (Berg) Burret] (Myrtaceae) and variation of pollinators between regions of Uruguay. Braz. J. Anim. Environ. Res. 5(4), 3728-3745. Doi: https://doi.org/10.34188/bjaerv5n4-023
  107. Sau, S., S. Sarkar, B. Ghosh, K. Ray, P. Deb, and D. Ghosh. 2018. Effect of foliar application of B, Zn and Cu on yield, quality and economics of rainy season guava cultivation. Curr. J. Appl. Sci. Technol. 28(1), 1-10. Doi: https://doi.org/10.9734/CJAST/2018/42131
  108. Schotsmans, W.C., A. East, G. Thorp, and A.B. Woolf. 2011. Feijoa (Acca sellowiana [Berg] Burret). pp. 115-135. In: Yahia, E.M. (ed.). Postharvest biology and technology of tropical and subtropical fruits. Vol. 3: cocona to mango. Woodhead Publishing, Oxford, UK. Doi: https://doi.org/10.1533/9780857092885.115
  109. Schreiner, M. 2005. Vegetable crop management strategies to increase the quantity of phytochemicals. Eur. J. Nutr. 44, 85-94. Doi: https://doi.org/10.1007/s00394-004-0498-7
  110. Sharma, R.R., A. Nagaraja, A.K. Goswami, M. Thakre, and E. Varghese. 2020. Influence of on-the-tree fruit bagging on biotic stresses and postharvest quality of rainy-season crop of ‘Allahabad Safeda’ guava (Psidium guajava L.). Crop Prot. 135, 105216. Doi: https://doi.org/10.1016/j.cropro.2020.105216
  111. Shukla, M. and B. Bisen. 2021. Effect on pruning intensity and foliar application of KNO3 on plant growth, flowering and fruiting of guava cv. Allahabad Safeda. Pharm. Innov. 10(9), 225-228.
  112. Shukla, S., D. Kaur, S. Kaur, and R. Prasad. 2018. Effect of seasonality and fruit ripening stages on bioactive constituents and antioxidant potential of guava fruit cultivars. Plant Arch. 18(2), 2363-2371.
  113. Shukla, P.R., J. Skea, R. Slade, R. Van Diemen, E. Haughey, J. Malley, M. Pathak, and J.P. Pereira (eds.). 2019. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems: technical summary. In: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/03_Technical-Summary-TS.pdf ; consulted:
  114. Singh, S.P. 2011. Guava (Psidium guajava L.). pp. 213-245. In: Yahia, E.M. (ed.). Postharvest biology and technology of tropical and subtropical fruits. Vol. 3: cocona to mango. Woodhead Publishing, Oxford, UK. Doi: https://doi.org/10.1533/9780857092885.213
  115. Solarte, M.E., L.M. Melgarejo, O., Martínez, M.S. Hernández, and J.P. Fernández-Trujillo. 2014. Fruit quality during ripening of Colombian guava (Psidium guajava L.) grown at different altitudes. J. Food Agric. Environ. 12(2), 669-675.
  116. Solarte, M.E., H.M. Romero, and L.M. Melgarejo. 2010. Caracterización ecofisiológica de la guayaba de la hoya del río Suárez. pp. 25-56. In: Morales, A.L. and L.M. Melgarejo (eds.). Desarrollo de productos funcionales promisorios a partir de la guayaba (Psidium guajava L.) para el fortalecimiento de la cadena productiva. Universidad Nacional de Colombia, Bogota.
  117. Souza, M.E., A.C. Silva, A.P. Souza, A.A. Tanaka, and S. Leonel. 2010. Influência das precipitações pluviométricas em atributos físico-químicos de frutos da goiabeira ‘Paluma’ em diferentes estádios de maturação. Rev. Bras. Frutic. 32(2), 637-646. Doi: https://doi.org/10.1590/S0100-29452010005000060
  118. Taiwo, A.F., O. Daramola, M. Sow, and V.K. Semwal. 2020. Ecophysiology and responses of plants under drought. pp. 231-268. In: Hasanuzzaman, M. (ed.). Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer Nature Singapore, Singapore. Doi: https://doi.org/10.1007/978-981-15-2156-0_8
  119. Thorp, G. 2008. Feijoa Acca sellowiana (Berg) Burret, Myrtaceae. pp. 526-533. In: Janick, J. and R.E. Paull (eds.). Encyclopedia of fruit and nuts. CAB International, Wallingford, UK.
  120. Tito, R., H.L. Vasconcelos, and K.J. Feeley. 2018. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Global Change Biol. 24(2), 592-602. Doi: https://doi.org/10.1111/gcb.13959
  121. Tiwari, S., D. Ram, D. Mishra, and N. Gurudev. 2024. Effect of plant growth regulators on yield and quality of winter season guava (Psidium guajava L.) cv. L-49. Plant Arch. 24(1), 1355-1362. Doi: https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.1.190
  122. Trujillo, R., M. Hernández de la Torre, I.Y. Hernández, and I.E. Méndez. 2018. Psidium acidum (DC.) Landrum (Myrtaceae): frutal de reciente cultivo en Cuba. Agrisost. 24(3), 207-214.
  123. Ubeda, C., R. Hornedo-Ortega, A.B. Cerezo, M.C. García-Parrilla, and A.M. Troncoso. 2020. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem. 314, 126222. Doi: https://doi.org/10.1016/j.foodchem.2020.126222
  124. Valdés-Infante, J., N.N. Rodríguez, J.B. Velásquez, D.G. Sourd, G. González, J.A. Rodríguez, and W. Rohde. 2012. Herramientas para un programa de mejoramiento genético del guayabo (Psidium guajava L.) en Cuba. Agron. Costar. 36(2), 111-129.
  125. Van Kanten, R. and J. Beer. 2005. Production and phenology of the fruit shrub Eugenia stipitata in agroforestry systems in Costa Rica. Agroforest. Syst. 64, 203-209. Doi: https://doi.org/10.1007/s10457-004-2105-6
  126. Villachica, H., J.E.U. Carvalho, C.H. Muller, C. Diaz, and M. Almanza. 1996. Frutales y hortalizas promisorios de la Amazonía. Tratado de Cooperación Amazónica, Secretaria Pro-Tempore, Lima.
  127. Wills, R.B.H. and J.B. Golding. 2016. Postharvest: an introduction to the physiology and handling of fruit and vegetables. 6th ed. CABI, Sydney. Doi: https://doi.org/10.1079/9781786391483.0000
  128. Yahia, E.M. (ed.). 2017. Fruit and vegetable phytochemicals: chemistry and human health (2nd ed., Vol. 1 and 2). John Wiley and Sons, Oxford, UK. Doi: https://doi.org/10.1002/9781119158042.ch1
  129. Yahia, E.M. 2019. Introduction. pp. 1-17. In: Yahia, E.M. (ed.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Cambridge, MA. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00001-4
  130. Yahia, E.M., A. Gardea-Béjar, J.J. Ornelas-Paz, I.O. Maya-Meraz, M.J. Rodríguez-Roque, C. Ríos-Velasco, J. Ornelas-Paz, and M.A. Salas-Marina. 2019a. Preharvest factors affecting postharvest quality. pp. 99-128. In: Yahia, E.M. (ed.), Postharvest technology of perishable horticultural commodities. Elsevier, Amsterdam. Doi: https://doi.org/10.1016/B978-0-12-813276-0.00004-3
  131. Yahia, E.M., A. Carrillo-López, G.M. Barrera, H. Suzán-Azpiri, and M. Queijeiro Bolaños. 2019b. Photosynthesis. pp. 47-72. In: Yahia, E.M. (ed.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Cambridge, MA. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00003-8
  132. Zhu, F. 2018. Chemical and biological properties of feijoa (Acca sellowiana). Trends Food Sci. Technol. 81, 121-131. Doi: https://doi.org/10.1016/j.tifs.2018.09.008
  133. Zoratti, L., K. Karppinen, A.L. Escobar, H. Häggman, and L. Jaakola. 2014. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 5, 534. Doi: https://doi.org/10.3389/fpls.2014.00534

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >> 

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.