Skip to main navigation menu Skip to main content Skip to site footer

Stomatal aperture and physicochemical qualities in yellow pitahaya (Hylocereus megalanthus Bauer) fruits in response to day/night rhythm in pre and postharvest

Ripe pitahaya fruits in crop nearby Fusagasuga (Cundinamarca, Colombia). Photo: G. Fischer

Abstract

Yellow pitahaya is a tropical fruit with economic potential due to its physicochemical, organoleptic and nutritional properties. Given the CAM (crassula acid metabolism) of pitahaya, it is necessary to study the stomatal aperture and acidic behaviour in the cladode and fruit in field and postharvest in order to understand the physiology, crop management, and postharvest processes of yellow pitahaya, particularly in response to the day/night rhythm. Stomatal behaviour was characterised in a 4-year-old pitahaya crop (Silvania, Colombia), under ambient conditions of 19°C, 12/12 hours day/night, and additionally, total titratable acidity (TTA), total soluble solids (TSS) and maturity ratio (MR) were determined in the fruits. Subsequently, fruits harvested in physiological maturity (90% green, 10% yellow) were stored at 13°C and 80% relative humidity for 16 days, and the effect of three lighting treatments (continuous light, continuous darkness and light/dark change: 12/12 h) was evaluated, determining stomatal behaviour, TTA, TSS, MR, firmness, respiration and weight loss. In the field, the cladodes showed a behaviour characteristic of CAM plants, but the fruits did not. In storage, fruits subjected to the light/dark change showed significant increases in respiration intensity and cumulative weight loss. Postharvest treatments did not show significant differences in firmness, TTA, TSS and fruit maturity ratio. Based on the results, it is indicated that storage under alternating light and dark conditions decreases the postharvest shelf life of pitahaya fruit.

Keywords

Dragon fruit, Stomatal opening, CAM metabolism, Alternating light/dark, Respiration, Storage

PDF

References

  1. Álvarez-Herrera, J.G., Y.A. Deaquiz, and A.O. Herrera. 2016. Effect of different 1-methylcyclopropene doses on the postharvest period of pitahaya fruits (Selenicereus megalanthus Haw.). Rev. Fac. Nal. Agron. Medellin 69(2), 7975-7983. 2016. Doi: https://doi.org/10.15446/rfna.v69n2.59142
  2. Anwar, R., A.K. Mattoo, and A.K. Handa. 2019. Ripening and senescence of fleshy fruits. pp. 15-51. In: Paliyath, G., J. Subramanian, L.-T. Lim, K.S. Subramanian, A.K. Handa, and A.K. Mattoo (eds.). Postharvest biology and nanotechnology. John Wiley & Sons, Hoboken, NJ. Doi: https://doi.org/10.1002/9781119289470
  3. Botton, A., P. Tonutti, and B. Ruperti. 2019. Biology and biochemistry of ethylene. pp. 93-112. In: Yahia, E.M. (ed.). Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, Cambridge, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00005-1
  4. Braam, J. 2013. Las frutas y verduras, mejor almacenarlas bajo ciclos de luz-oscuridad. In: Instituto Tomas Pascual Sanz, https://www.institutotomaspascualsanz.com/las-frutas-y-verduras-mejor-almacenarlas-bajo-ciclos-de-luz-oscuridad; consulted: June, 2024.
  5. Brewer, C.A. 1992. Responses by stomata on leaves to microenvironmental conditions. pp. 67-75. In: Goldman, C.A. (ed.). Tested studies for laboratory teaching. Vol. 13: Proc. 13th Workshop/Conference of the Association for Biology Laboratory Education, New Haven, CT.
  6. Caetano, M., F. Otálvaro, J.E. Muñoz, J.G. Morales, R.S. Suárez, C.L. Sandoval, M.A. Martínez, D.Y. Cañar, R.D. Peña, E. Parra, E. Muñoz, R.D. Rojas, J.R. Jiménez, A.E. Benavides, and L.F. Pérez. 2011. Enfoque multidisciplinario para solución en el agro colombiano: el caso de pitahaya amarilla Selenicereus megalanthus. Rev. Asoc. Colomb. Cienc. Biol. 23, 52-64.
  7. Cañar, D.Y., C.M. Caetano, and M.M. Bonilla-Morales. 2014. Caracterización fisicoquímica y proximal del fruto de pitahaya amarilla [Selenicereus megalanthus (K. Schum. ex Vaupel) Moran] cultivada en Colombia. Agron. 22(1), 77-87.
  8. Casal, J.J. 2008. Fotomorfogénesis: la luz como factor regulador del crecimiento. pp. 467-482. In: Azcón-Bieto, J. and M. Talón (eds.). Fundamentos de la fisiología vegetal. McGraw-Hill Interamericana, Madrid.
  9. Castillejo, N., L. Martínez-Zamora, and F. Artés-Hernández. 2023. A photoperiod including visible spectrum LEDs increased sulforaphane in fresh-cut broccoli. Postharvest Biol. Technol. 200, 112337. Doi: https://doi.org/10.1016/j.postharvbio.2023.112337
  10. Centurión, Y.A., S. Solís, E. Mercado, R. Báez, C. Saucedo, and E. Sauri. 1999. Variación de las principales características de la pitahaya (Hylocereus undatus) durante su maduración postcosecha. Hort. Mex. 7(3), 419-425.
  11. Chaudhary, A., M. Pappuswamy, A. Chakma, C.S. Ramyashree, P. Kruthika, K.S. Jan, M.K. Deshpande, C.C. Morris, and J.K. Sebastian. 2023. Tuning the output of the higher plants Circadian Clock. Plant Sci. Today 10(Sp. 2), 118-125. Doi: https://doi.org/10.14719/pst.2521
  12. Chuck-Hernández, C., R. Para-Saldivar, and L. Sandate-Flores. 2016. Pitaya (Stenocereus spp.). pp. 385-391. In: Caballero, B., P.M. Finglas, and F. Toldrá (eds.). Encyclopedia of food Health. Academic Press. Doi: https://doi.org/10.1016/B978-0-12-384947-2.00775-3
  13. Corredor, D. 2012. Pitahaya amarilla [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer]. pp. 802-824. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  14. Davis, S.C., J. Simpson, K.C. Gil-Vega, N.A. Niechayev, E. van Tongerlo, N. Hurtado Castano, L.V. Dever, and A. Búrquez. 2019. Undervalued potential of crassulacean acid metabolism for current and future agricultural production. J. Exp. Bot. 70(22), 6521-6537. Doi: https://doi.org/10.1093/jxb/erz223
  15. de Leone, M.J., C.E. Hernando, S. Mora-García, and M.J. Yanovsky. 2020. It's a matter of time: the role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants. Transcription 11(3-4), 100-116. Doi: https://doi.org/10.1080/21541264.2020.1820300
  16. Deori, M., S. Kumar, D. Kumar, and R.P. Singh. 2024. Dragon fruit. pp. 152-158. In: Rathour, T.P., R.P. Singh, P. Datta, and P.K. Nimbolkar (eds.). Minor fruit crops. An inclusive study. Walnut Publication, Rasulgarh, India.
  17. Dueñas, Y.M., C.E. Narváez-Cuenca, and L.P. Restrepo. 2009. El choque térmico mejora la aptitud al almacenamiento refrigerado de pitaya amarilla. Agron. Colomb. 27(1), 105-110.
  18. Dueñas, Y.M., C.-E. Narváez-Cuenca, and L.P. Restrepo. 2012. Ablandamiento de frutos de pitaya amarilla (Acanthocereus pitajaya) a temperatura ambiente y en refrigeración: actividad de poligalacturonasa, celulasa y xilanasa. Acta Biol. Colomb. 17(2), 259-270.
  19. Esquivel, P. and Y. Ayara. 2012. Características del fruto de la pitahaya (Hylocereus sp.) y su potencial de uso en la industria alimentaria. Rev. Venez. Cienc. Tecnol. Aliment. 3(1), 113-129.
  20. Fernández, L.R., J. Chediak, and R. Sánchez. 2015. Aumento de la productividad de la pitahaya roja (Hylocereus undatus) mediante la iluminación artificial con energía renovable. Rev. Univ. Guayaquil 121(3), 73-78. Doi: https://doi.org/10.53591/rug.v121i3.393
  21. Fischer, G., H.E. Balaguera-López, A. Parra-Coronado, and S. Magnitskiy. 2023. Adaptation of fruit trees to different elevations in the tropical Andes. pp. 193-208. In: Tripathi, S., R. Bhadouria, P. Srivastava, R. Singh, and R.S. Devi (eds.). Ecophysiology of tropical plants - Recent trends and future perspectives. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9781003335054-22
  22. Fischer, G., J.O. Orduz-Rodríguez, and C.V.T. Amarante. 2022. Sunburn disorder in tropical and subtropical fruits. A review. Rev. Colomb. Cienc. Hortic. 16(3), e15703. Doi: https://doi.org/10.17584/rcch.2022v16i3.15703
  23. Flórez-Velasco, N., G. Fischer, and H.E. Balaguera-López. 2024. Photosynthesis in fruit crops of the high tropical Andes: a systematic review. Agron. Colomb. 42(2), e113887. Doi: https://doi.org/10.15446/agron.colomb.v42n2.113887
  24. Gallo, F. 1996. Manual de fisiología, patología poscosecha y control de calidad de frutas y hortalizas. Convenio SENA-Reino Unido, Armenia, Colombia.
  25. Gil, K.-E. and C.-M. Park. 2019. Thermal adaptation and plasticity of the plant circadian clock. New Phytol. 221(3), 1215-1229. Doi: https://doi.org/10.1111/nph.15518
  26. Goodspeed, D., J.D. Liu, E.W. Chehab, Z. Sheng, M. Francisco, D.J. Kliebensetin, and J. Braam. 2013. Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling. Curr. Biol. 23(13), 1235-1241. Doi: http://doi.org/10.1016/j.cub.2013.05.034
  27. Guaquetá, N.O., T.L. Davenport, S.P. Burg, G. Fischer, and N. Martínez. 2007. Comportamiento estomatal en frutas y hojas de banano, carambola, guayaba y cítricos en condiciones naturales y bajo almacenamiento hipobárico. p. 112. In: Mem. 2o Cong. Colomb. Hortic. Sociedad Colombiana de Ciencias Hortícolas, Bogota.
  28. Hassidim, M., Y. Dakhiya, A. Turjeman, D. Hussien, E. Shor, A. Anidjar, K. Goldberg, and R.M. Green. 2017. Circadian Clock Associated1 (CCA1) and the circadian control of stomatal aperture. Plant Physiol. 175(4), 1864-1877. Doi: https://doi.org/10.1104/pp.17.01214
  29. Herrera, A.O. 2010. Poscosecha de perecederos: prácticas de laboratorio. Universidad Nacional de Colombia, Bogota.
  30. Herrera, A.O. 2012. Manejo poscosecha de las frutas. pp. 266-292. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  31. Holcroft, D. 2015. Water relations in harvested fresh produce. PEF White Paper 15-01. The Postharvest Education Foundation, La Pine, Spain.
  32. Hotta, C.T., M.J. Gardner, K.E. Hubbard, S.J. Baek, N. Dalchau, D. Suhita, A.N. Dodd, and A.A.R. Webb. 2007. Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ. 30(3), 333-349. Doi: https://doi.org/10.1111/j.1365-3040.2006.01627.x
  33. Jiang, Y.-L., Y.-Y. Liao, M.-T. Lin, and W.-J. Yang. 2016. Bud development in response to night-breaking treatment in the noninductive period in red pitaya (Hylocereus sp.). HortScience 51(6), 690-696. Doi: https://doi.org/10.21273/HORTSCI.51.6.690
  34. Johnson, B.E. and W.A. Brun. 1966. Stomatal density and responsiveness of banana fruit stomates. Plant Physiol. 41(1), 99-101. Doi: https://doi.org/10.1104/pp.41.1.99
  35. Khanal, B.P., B. Sangroula, A. Bhattarai, G. Klamer Almeida, and M. Knoche. 2022. Pathways of postharvest water loss from banana fruit. Postharvest Biol. Technol. 191, 111979. Doi: https://doi.org/10.1016/j.postharvbio.2022.111979
  36. Lambers, H. and R.S. Oliveira. 2019. Plant physiological ecology. 3rd ed. Springer Nature Switzerland AG, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-29639-1
  37. Laurin, É., M.C.N. Nunes, J.-P. Émond, and J.K. Brecht. 2006. Residual effect of low pressure stress during simulated air transport on Beit Alpha-type cucumbers: stomata behavior. Postharvest Biol. Technol. 41(2), 121-127. Doi: https://doi.org/10.1016/j.postharvbio.2005.09.012
  38. Le Bellec, F. and F. Vaillant. 2011. Pitahaya (pitaya) (Hylocereus spp.). pp. 247-271. In: Yahia, E.M. (ed.). Postharvest biology and technology of tropical and subtropical fruits. Vol. 4. Mangosteen to white sapote. Woodhead Publishing, Cambridge, UK. Doi: https://doi.org/10.1533/9780857092618.247
  39. Le Bellec, F., F. Vaillant, and E. Imbert. 2006. Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits 61, 237-250. Doi: https://doi.org/10.1051/fruits:2006021
  40. Li, H., Z. Gu, D. He, X. Wang, J. Huang, Y. Mo, P. Li, Z. Huang, and F. Wu. 2024. A lightweight improved YOLOv5s model and its deployment for detecting pitaya fruits in daytime and nighttime light-supplement environments. Comput. Electron. Agric. 220, 108914. Doi: https://doi.org/10.1016/j.compag.2024.108914
  41. Lima, C.A., F.G. Faleiro, N.T.V. Juanqueira, K.O. Cohen, and T.G. Guimarâes 2013. Características físico-químicas, polifenóis e flavonoides amarelos em frutos de espécies de pitaias comerciais e nativas do cerrado. Rev. Bras. Frutic. 35(2), 565-570. Doi: https://doi.org/10.1590/S0100-29452013000200027
  42. Martínez-González, M.E., R. Balois-Morales, I. Alia-Tejacal, M.A. Cortes-Cruz, Y.A. Palomino-Hermosillo, and G.G. López-Gúzman. 2017. Postharvest fruits: maturation and biochemical changes. Rev. Mex. Cienc. Agríc. (Pub. Esp. 19), 4075-4087. Doi: https://doi.org/10.29312/remexca.v0i19.674
  43. Mejía, H.A., S.B. Muriel, C.A. Montaya, and C. Reyes. 2013. In situ morphological characterization of Hylocereus spp. (Fam: Cactaceae) genotypes from Antioquia and Córdoba (Colombia). Rev. Fac. Nac. Agron. Medellin 66(1), 6845-6854.
  44. Mercado-Silva, E.M. 2018. Pitaya—Hylocereus undatus (Haw). pp. 339-350 In: Rodrigues, S., E.O. Silva, and E.S. Brito (eds.). Exotic fruits, reference guide. Elsevier Academic Press, UK.
  45. Mori, C.V., A.R. Patel, V.K. Parmar, and G.S. Patel. 2023. Dragon fruit (Kamalam): an excellent exotic fruit crop of India. Pharma Innov. 12(1), 115-123. Doi: https://doi.org/10.22271/tpi.2023.v12.i1b.18189
  46. Morillo-Coronado, A.C., Y.P. Tovar-León, and Y. Morillo-Coronado. 2017. Caracterización molecular de la pitahaya amarilla (Selenicereus megalanthus Haw.) en la provincia de Lengupá, Boyacá-Colombia. Biotecnol. Sector Agropecu. Agroind. 15(1), 11-18. Doi: http://doi.org/10.18684/BSAA(15)11-18
  47. Nerd, A., F. Gutman, and Y. Mizrahi. 1999. Ripening and postharvest behaviour of fruits of two Hylocereus species (Cactaceae). Postharvest Biol. Technol. 17(1), 39-45. Doi: https://doi.org/10.1016/S0925-5214(99)00035-6
  48. Noichinda, S., K. Bodhipadma, C. Mahamontri, T. Narongruk, and S. Ketsa. 2007. Light during storage prevents loss of ascorbic acid, and increases glucose and fructose levels in Chinese kale (Brassica oleracea var. alboglabra). Postharvest Biol. Technol. 44(3), 312-315. Doi: https://doi.org/10.1016/j.postharvbio.2006.12.006
  49. Nunes, E.N., A.S.B. Sousa, C.M. Lucena, S.M. Silva, R.F.P. Lucena, C.A.B. Alves, and R.E. Alves. 2014. Pitaia (Hylocereus sp.): uma revisão para o Brasil. Gaia Sci. 8(1), 90-98.
  50. Osuna, T., M.E. Ibarra, M.D. Muy, J.B. Valdez, M. Villarreal, and S. Hernández. 2011. Calidad postcosecha de frutos de pitahaya (Hylocereus undatus Haw.) cosechados en tres estados de madurez. Rev. Fitotec. Mex. 34(1), 63-72. Doi: https://doi.org/10.35196/rfm.2011.1.63
  51. Pareek, S. 2016. Ripening physiology: an overview. pp. 1-48. In: Pareek, S. (ed.). Postharvest ripening physiology of crops. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/b19043
  52. Paull, R.E. and O. Duarte. 2012. Tropical fruits. 2nd ed. Vol. II. CABI Publishing, Wallingford, UK. Doi: https://doi.org/10.1079/9781845937898.0000
  53. Perween, T., K.K. Mandal, and M.A. Hasan. 2018. Dragon fruit: an exotic super future fruit of India. J. Pharmacogn. Phytochem. 7(2), 1022-1026.
  54. Pott, D.M., J.G. Vallarino, and S. Osorio. 2020. Metabolite changes during postharvest storage: effects on fruit quality traits. Metabolites 10(5), 187. Doi: https://doi.org/10.3390/metabo10050187
  55. Rengel, Z., I. Cakmak, and P.L. White. 2023. Marschner’s mineral nutrition of plants. 4th ed. Academic Press, London.
  56. Rodríguez, J.P., C.E. Narváez, and L.P. Restrepo. 2006. Estudio de la actividad enzimática de poligalacturonasa en la corteza de pitaya amarilla (Acanthocereus pitajaya). Acta Biol. Colomb. 11, 65-74.
  57. Rodríguez, D.A., M.P. Patiño, D. Miranda, G. Fischer, and J.A. Galvis. 2005. Efecto de dos índices de madurez y temperaturas de almacenamiento sobre el comportamiento en poscosecha de pitahaya amarilla (Selenicereus megalanthus Haw.). Rev. Fac. Nal. Agr. Medellin 58(2), 2837-2857.
  58. Saltveit, M.E. 2019. Respiratory metabolism. pp. 73-91. In: Yahia, E.M. (ed.). Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, Cambridge, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00004-X
  59. Sánchez, C., G. Fischer, and D.W. Sanjuanelo. 2013. Comportamiento estomático en frutos y hojas de gulupa (Passiflora edulis Sims) y en frutos y cladodios de pitahaya amarilla [Hylocereus megalanthus (K.Schum. ex Vaupel) Ralf Bauer]. Agron. Colomb. 31(1), 38-47.
  60. Sanchez, S.E. and S.A. Kay. 2016. The plant Circadian Clock: from a simple timekeeper to a complex developmental manager. Cold Spring Harb. Perspect. Biol. 8(12), a027748. Doi: https://doi.org/10.1101/cshperspect.a027748
  61. Siddiq, M. and M. Nasir. 2012. Dragon fruit and durian. pp. 587-596. In: Siddiq, M. (ed.). Tropical and subtropical fruits. In: Siddiq, M. (ed.). Postharvest physiology, processing and packaging. Wiley-Blackwell, Ames, IA. Doi: https://doi.org/10.1002/9781118324097.ch30
  62. Sotomayor, A., S. Pitizaca, M. Sánchez, A. Burbano, A. Díaz, J. Nicolalde, W. Viera, C. Caicedo, and Y. Vargas. 2019. Evaluación físico química de fruta de pitahaya (Selenicereus megalanthus) en diferentes estados de desarrollo. Enfoque UTE 10(1), 89-96. Doi: https://doi.org/10.29019/enfoqueute.v10n1.386
  63. Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed Editora, Porto Alegre, Brazil.
  64. Umeohia, U.E. and A.A. Olapade. 2024. Physiological processes affecting postharvest quality of fresh fruits and vegetables. Asian Food Sci. J. 23(4), 115915. Doi: https://doi.org/10.9734/afsj/2024/v23i4706
  65. Vallarino, J.G. and S. Osorio. 2019. Organic acids. pp. 207-224. In: Yahia, E.M. (ed.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Cambridge, MA. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00010-5
  66. van Meeteren, U. and S. Aliniaeifard. 2016. Stomata and postharvest physiology. pp. 157-216. In: Pareek, S. (ed.). Postharvest ripening physiology of crops. CRC Press, Boca Raton, FL.
  67. Van To, L., N. Ngu, N.D. Duc, and H.T.T. Huong. 2002. Dragon fruit quality and storage life: effect of harvesting time, use of plant growth regulators and modified atmosphere packaging. Acta Hortic. 575, 611-621. Doi: https://doi.org/10.17660/ActaHortic.2002.575.72
  68. Verona-Ruiz, A., J. Urcia-Cerna, and L.M. Paucar-Menacho. 2020. Pitahaya (Hylocereus spp.): cultivo, características fisicoquímicas, composición nutricional y compuestos bioactivos. Sci. Agropecu. 11(3), 439-453. Doi: https://doi.org/10.17268/sci.agropecu.2020.03.16
  69. Wills, R.B.H. and J.B. Golding. 2016. Postharvest: an introduction to the physiology and handling of fruit and vegetables. 6th ed. CABI; New South Publishing, Sidney. Doi: https://doi.org/10.1079/9781786391483.0000
  70. Winter, K. and J.A.M. Holtum. 2014. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J. Exp. Bot. 65(13), 3425-3441. Doi: https://doi.org/10.1093/jxb/eru063
  71. Yahia, E.M., A. Carrillo-López, G. Malda, H. Suzán-Azpiri, and M. Queijeiro. 2019. Photosynthesis. pp. 47-72. In: Yahia, E.M. (ed.). Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, Cambridge, UK. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00003-8

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.