Physiological responses in commercial plants of the genus Solanum to flooding stress: a systematic review

Abstract
Flood events present a significant threat to global agricultural production, with an increasing likelihood of occurrence in the coming years due to climate variability. Commercial species of the genus Solanum are an integral part of the global food economy, due to their nutritional properties. However, their growth is threatened by flooding. The objective of this review was to analyze the current research status of the physiological response to flooding stress in S. lycopersicum, S. tuberosum, S. melongena, S. quitoense, S. muricatum and S. betaceum. A systematic review was conducted in accordance with PRISMA guidelines using four databases. A total of 1,364 relative change data points were obtained from 41 scientific articles to evaluate the behaviour of variables related to water status, photosynthesis and growth under flooded versus non-flooded conditions. The tomato was the most studied species under flood stress, in contrast to the potato, tree tomato, and sweet cucumber. In conclusion, the results demonstrated that flood stress reduced water status, photosynthesis and growth in commercial Solanum plants by 32, 25 and 29%, respectively. These findings indicate that these species are highly vulnerable to waterlogging. This review identifies research gaps in the physiology of crops belonging to the genus Solanum that should be addressed in future studies to contribute to plant tolerance to flood stress.
Keywords
Solanaceae, Gas exchange, Chlorophyll, Hypoxia, morphological traits
References
- Baracaldo, A., R. Carvajal, A.P. Romero, A.M. Prieto, F.J. García, G. Fischer, and D. Miranda. 2014. El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío. Rev. Colomb. Cienc. Hortic. 8(1), 92-102. Doi: https://doi.org/10.17584/rcch.2014v8i1.2803
- Betancourt-Osorio, J., D. Sanchez-Canro, and H. Restrepo-Diaz. 2016. Effect of nitrogen nutritional statuses and waterlogging conditions on growth parameters, nitrogen use efficiency and chlorophyll fluorescence in tamarillo seedlings. Not. Bot. Horti Agrobot. Cluj-Napoca 44(2), 375-381. Doi: https://doi.org/10.15835/nbha44210438
- Bhatt, R.M., K.K. Upreti, M. Divya, S. Bhat, C. Pavithra, and A. Sadashiva. 2015. Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci. Hortic. 182, 8-17. Doi: https://doi.org/10.1016/j.scienta.2014.10.043
- Borsoi, F.T., G.M. Pastore, and H. Arruda. 2024. Health benefits of the alkaloids from lobeira (Solanum lycocarpum St. Hill): a comprehensive review. Plants 13(10), 1396. Doi: https://doi.org/10.3390/plants13101396
- Briglia, N., K. Williams, D. Wu, Y. Li, S. Tao, F. Corke, G. Montanaro, A. Petrozza, D. Amato, F. Cellini, J.H. Doonan, W. Yang, and V. Nuzzo. 2020. Image-based assessment of drought response in grapevines. Front. Plant Sci. 11, 595. Doi: https://doi.org/10.3389/fpls.2020.00595
- Burda, B.U., E.A. O'Connor, E.M. Webber, N. Redmond, and L.A. Perdue. 2017. Estimating data from figures with a Web-based program: Considerations for a systematic review. Res. Synth. Methods 8(3), 258-262. Doi: https://doi.org/10.1002/jrsm.1232
- Cardona, W.A.A., L.G. Bautista-Montealegre, N. Flórez-Velasco, and G. Fischer. 2016. Biomass and root development response of lulo (Solanum quitoense var. septentrionale) plants to shading and waterlogging. Rev. Colomb. Cienc. Hortic. 10(1), 53-65. Doi: https://doi.org/10.17584/rcch.2016v10i1.5124
- Chaumont, F. and S.D. Tyerman. 2014. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol. 164(4), 1600-1618. Doi: https://doi.org/10.1104/pp.113.233791
- Chen, Y., H. Zhang, W. Chen, Y. Gao, K. Xu, X. Sun, and L. Huo. 2024. The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. Plant Cell Rep. 43, 278. Doi: https://doi.org/10.1007/s00299-024-03367-9
- de Ollas, C., Z. Pitarch, J.T. Matus, H. Candela, J.L. Rambla, A. Granell, and V. Arbona. 2021. Identification of ABA-mediated genetic and metabolic responses to soil flooding in tomato (Solanum lycopersicum L. Mill). Front. Plant Sci. 12, 613059. Doi: https://doi.org/10.3389/fpls.2021.613059
- de Pedro, L.F., F. Mignolli, A. Scartazza, J.P. Melana-Colavita, C.A. Bouzo, and M.L. Vidoz. 2020. Maintenance of photosynthetic capacity in flooded tomato plants with reduced ethylene sensitivity. Physiol. Plant. 170(2), 202-217. Doi: https://doi.org/10.1111/ppl.13141
- Delbrouck, J.A., M. Desgagné, C. Comeau, K. Bouarab, F. Malouin, and P.L. Boudreault. 2023. The therapeutic value of Solanum steroidal (glyco) alkaloids: a 10-year comprehensive review. Molecules 28(13), 4957. Doi: https://doi.org/10.3390/molecules28134957
- Dresbøll, D. B., K. Thorup-Kristensen, B. M. McKenzie, L. X. Dupuy, and A. G. Bengough. 2013. Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil 369, 467-477. https://doi.org/10.1007/s11104-013-1592-5
- Elizalde-Romero, C.A., L.A. Montoya-Inzunza, L.A. Contreras-Angulo, J.B. Heredia, and E.P. Gutiérrez-Grijalva. 2021. Solanum fruits: phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Front. Nutr. 8, 790582. Doi: https://doi.org/10.3389/fnut.2021.790582
- Else, M.A. and M.B. Jackson. 1998. Transport of 1-aminocycloproPane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Funct. Plant Biol. 25, 453-458. Doi: https://doi.org/10.1071/PP97105
- Else, M.A., J.M. Taylor, and C.J. Atkinson. 2006. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA. J. Exp. Bot. 57(12), 3349-3357. Doi: https://doi.org/10.1093/jxb/erl099
- Fan, B., K. Liao, L.-N. Wang, L.-L. Shi, Y. Zhang, L.-J. Xu, Y. Zhou, J.-F. Li, Y.-Q. Chen, Q.-F. Chen, and S. Xiao. 2023. Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. Mol. Plant 16(6), 979-998. Doi: https://doi.org/10.1016/j.molp.2023.04.002
- Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021. Revisión de la ecofisiología de frutos andinos importantes: Solanaceae. Rev. U.D.C.A Act. & Div. Cient. 24(1), e1701. Doi: https://doi.org/10.31910/rudca.v24.n1.2021.1701
- Fischer, G., F. Casierra-Posada, and M. Blanke. 2023. Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: a review. Agron. Colomb. 41(2), e108351. Doi: https://doi.org/10.15446/agron.colomb.v41n2.108351
- Flórez-Velasco, N., H.E. Balaguera-López, and H. Restrepo-Díaz. 2015. Effects of foliar urea application on lulo (Solanum quitoense cv. septentrionale) plants grown under diffeRent waterlogging and nitrogen conditions. Sci. Hortic. 186, 154-162. Doi: https://doi.org/10.1016/j.scienta.2015.02.021
- Flórez-Velasco, N., G. Fischer, and H.E. Balaguera-López. 2024. Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agron. Colomb. 42(2), e113887. Doi: https://doi.org/10.15446/agron.colomb.v42n2.113887
- Forero, L.E., J. Grenzer, J. Heinze, C. Schittko, and A. Kulmatiski. 2019. Greenhouse- and field-measured plant-soil feedbacks are not correlated. Front. Environ. Sci. 7, 478851. Doi: https://doi.org/10.3389/fenvs.2019.00184
- Geldhof, B., J. Pattyn, and B. Van De Poel. 2023. From a different angle: genetic diversity underlies diffeRentiation of waterlogging-induced epinasty in tomato. Front. Plant Sci. 14. Doi: https://doi.org/10.3389/fpls.2023.1178778
- Ghatak, A., P. Chaturvedi, P. Paul, G.K. Agrawal, R. Rakwal, S.T. Kim, W. Weckwerth, and R. Gupta. 2017. Proteomics survey of Solanaceae family: current status and challenges ahead. J. Proteom. 169, 41-57. Doi: https://doi.org/10.1016/j.jprot.2017.05.016
- Hartman, S., N. Van Dongen, D.M. Renneberg, R.A. WelsChen-Evertman, J. Kociemba, R. Sasidharan, and L.A. Voesenek. 2020. Ethylene differentially modulates hypoxia responses and tolerance across Solanum species. Plants 9(8), 1022. Doi: https://doi.org/10.3390/plants9081022
- Igamberdiev, A.U. and R.D. Hill. 2018. Elevation of cytosolic Ca2+ in response to energy deficiency in plants: the general mechanism of adaptation to low oxygen stress. Biochem. J. 475, 1411-1425. Doi: http://doi.org/10.1042/BCJ20180169
- Jackson, M.B., L.R. Saker, C.M. Crisp, M.A. Else, and F. Janowiak. 2003. Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant Soil 253, 103-113. Doi: https://doi.org/10.1023/A:1024588532535
- Jethva, J., R.R. Schmidt, M. Sauter, and J. Selinski. 2022. Try or die: dynamics of plant respiration and how to survive low oxygen conditions. Plants 11(2), 205. Doi: https://doi.org/10.3390/plants11020205
- Jia, W., M. Ma, J. Chen, and S. Wu. 2021. Plant morphological, physiological and anatomical adaptation to flooding stress and the underlying molecular mechanisms. Int. J. Mol. Sci. 22(3), 1088. Doi: https://doi.org/10.3390/ijms22031088
- Kagenishi, T., F. Baluška, and K. Yokawa. 2023. Stress-induced ethanol affects endocytic vesicle recycling and F-actin organisation in arabidopsis root apex cells. Environ. Exp. Bot. 205, 105123. Doi: https://doi.org/10.1016/j.envexpbot.2022.105123
- Khoury, M.G., R. Martin, M. Houben, and G. Muday. 2024. Ethylene regulates root growth and development. pp. 247-260. In: Eshel, A. and T. Beeckman (eds.). Plant roots: the hidden half. 5th ed. CRC Press Taylor & Francis Group, Boca Raton, FL. Doi: https://doi.org/10.1201/b23126
- Kudoyarova, G., D. Veselov, V. Yemelyanov, and M. Shishova. 2022. The role of aquaporins in plant growth under conditions of oxygen deficiency. Int. J. Mol. Sci. 23(17), 10159. Doi: https://doi.org/10.3390/ijms231710159
- Liu, K., M.T. Harrison, H. Yan. D.L. Liu, H. Meinke, G. Hoogenboom, B. Wang, B. Peng, K. Guan, J. Jaegermeyr, E. Wang, F. Zhang, X. Yin, S. Archontoulis, L. Nie, A. Badea, J. Man, D. Wallach, J. Zhao, A. Borrego, S. Fahad, X. Tian, W. Wang, F. Tao, Z. Zhang, R. Rötter, Y. Yuan, M. Zhu, P. Dai, J. Nie, Y. Yang, Y. Zhang, and M. Zhou. 2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 14, 765. Doi: https://doi.org/10.1038/s41467-023-36129-4
- Liu, W., K. Liu, D. Chen, Z. Zhang, B. Li, M.M., S. Tian, and T. Chen. 2022. Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods 11(16), 2402. Doi: https://doi.org/10.3390/foods11162402
- Martínez-Arias, C., J. Witzell, A. Solla, J.A. Martin, and J. Rodríguez-Calcerrada. 2022 Beneficial and pathogenic plant-microbe interactions during flooding stress. Plant Cell Environ. 45, 2875-2897. Doi: https://doi.org/10.1111/pce.14403
- Mauro, R.P., M. Agnello, M. DisteFano, L. Sabatino, C. Leonardi, and F. Giuffrida. 2020. Chlorophyll fluorescence, photosynthesis and growth of tomato plants as affected by long-term oxygen root zone deprivation and grafting. Agronomy 10(1), 137. Doi: https://doi.org/10.3390/agronomy10010137
- Molina, S., A.M. Zamarreño, J. María, and R. Aroca. 2014. The symbiosis with the arbuscular mycorrhizal fungus rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol. 55(5), 1017-1029. Doi: https://doi.org/10.1093/pcp/pcu035
- Mullen, J.L., C. Weinig, and R.P. Hangarter. 2006. Shade avoidance and the regulation of leaf inclination in Arabidopsis. Plant Cell Environ. 29(6), 1099-1106. Doi: https://doi.org/10.1111/j.1365-3040.2005.01484.x
- Nada, K., E. Iwatani, T. Doi, and S. Tachibana. 2004. Effect of putrescine pretreatment to roots on growth and lactate metabolism in the root of tomato (Lycopersicon esculentum Mill.) under root-zone hypoxia. J. Jpn. Soc. Hortic. Sci. 73(4), 337-339. Doi: https://doi.org/10.2503/jjshs.73.337
- Niu, L., F. Jiang, J. Yin, Y. Wang, Y. Li, X. Yu, X. Song, C-O. Ottosen, E. Rosenqvist, R. Mittler, Z. Wu, and R. Zhou. 2023. ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress. Front. Plant Sci. 14, 1238108. Doi: https://doi.org/10.3389/fpls.2023.1238108
- Orsák, M., Z. Kotíková, F. Hnilička, and J. Lachman. 2023. Effect of long-term drought and waterlogging stress on photosynthetic pigments in potato. Plant Soil Environ. 69(4), 152-160. Doi: https://doi.org/10.17221/415/2022-pse
- Ortiz-Bobea, A., T.R. Ault, C.M. Carrillo, R.G. Chambers, and D.B. Lobell. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11(4), 306-312. Doi: https://doi.org/10.1038/s41558-021-01000-1
- Ren, B., W. Yu, P. Liu, B. Zhao, and J. Zhang. 2023. Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading. Crop J. 11(1), 269-277. Doi: https://doi.org/10.1016/j.cj.2022.06.003
- Rodríguez-Gamir, J., J. Xue, M.J. Clearwater, D.F. Meason, P.W. Clinton, and C. Domec. 2019. Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. Plant Cell Environ. 42(2), 717-729. Doi: https://doi.org/10.1111/pce.13460
- Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: https://doi.org/10.17584/rcch.2019v13i3.10017
- Sarker, M.S.A., A. Islam, M.W. Islam, P.C. Dhar, and M.R. Abdullah. 2023a. Effect of water logging on vegetative growth and fruit yield of brinjal. Bangladesh J. 44, 9-12.
- Sarker, K.K., A.K.M. Quamruzzaman, M.N. Uddin, A. Rahman, A. Quddus, S.K. Biswas, A. Gaber, and A. Hossain. 2023b. Evaluation of 10 eggplant (Solanum melongena L.) genotypes for development of cultivars suitable for short-term waterlogged conditions. Gesunde Pflanzen 75(1), 179-192. Doi: https://doi.org/10.1007/s10343-022-00688-1
- Sasidharan, R., J. Bailey-Serres, M. Ashikari, B.J. Atwell, T.D. Colmer, K. Fagerstedt, T. Fukao, P. Geigenberger, K.H. Hebelstrup, R.D. Hill, M.J. Holdsworth, A.M. Ismail, F. Licausi, A. Mustroph, M. Nakazono, O. Pedersen, P. Perata, M. Sauter, M.-C. Shih, B.K. Sorrell, G.G. Striker, J.T. van Dongen, J. Whelan, S. Xiao, E.J.W. Visser, and L.A.C.J. Voesenek. 2017. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 214(4), 1403-1407. Doi: https://doi.org/10.1111/nph.14519
- Shukla, V., L. Lombardi, S. Iacopino, A. Pencik, O. Novak, P. Perata, B. Giuntoli, and F. Licausi. 2019. Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis. Mol. Plant 12(4), 538-551. Doi: https://doi.org/10.1016/j.molp.2019.01.007
- Tian, L.-X., Y.-C. Zhang, P.-L. Chen, F.-F. Zhang, J. Li, F. Yan, Y. Dong, and B.-L. Feng. 2021. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898. Doi: https://doi.org/10.3389/fpls.2021.634898
- Wickham, H. 2016. ggplot2: elegant graphics for data analysis. 2nd ed. Springer-Verlag, New York. Doi: https://doi.org/10.1007/978-3-319-24277-4
- Yin, J., L. Niu, Y. Li, X. Song, and C.O. Ottosen. 2023. The effects of waterlogging stress on plant morphology, leaf physiology and fruit yield in six tomato genotypes at anthesis stage. Veg. Res. 3, 31. Doi: https://doi.org/10.48130/VR-2023-0031
- Zhang, Y., G. Liu, H. Dong, and C. Li. 2021. Waterlogging stress in cotton: damage, adaptability, alleviation strategies, and mechanisms. Crop J. 9(2), 257-270. Doi: https://doi.org/10.1016/j.cj.2020.08.005