Skip to main navigation menu Skip to main content Skip to site footer

Physiological responses in commercial plants of the genus Solanum to flooding stress: a systematic review

Solanum betaceum plant with flooding symptoms. Photo: D.A. Gutiérrez-Villamil

Abstract

Flood events present a significant threat to global agricultural production, with an increasing likelihood of occurrence in the coming years due to climate variability. Commercial species of the genus Solanum are an integral part of the global food economy, due to their nutritional properties. However, their growth is threatened by flooding. The objective of this review was to analyze the current research status of the physiological response to flooding stress in S. lycopersicum, S. tuberosum, S. melongena, S. quitoense, S. muricatum and S. betaceum. A systematic review was conducted in accordance with PRISMA guidelines using four databases. A total of 1,364 relative change data points were obtained from 41 scientific articles to evaluate the behaviour of variables related to water status, photosynthesis and growth under flooded versus non-flooded conditions. The tomato was the most studied species under flood stress, in contrast to the potato, tree tomato, and sweet cucumber. In conclusion, the results demonstrated that flood stress reduced water status, photosynthesis and growth in commercial Solanum plants by 32, 25 and 29%, respectively. These findings indicate that these species are highly vulnerable to waterlogging. This review identifies research gaps in the physiology of crops belonging to the genus Solanum that should be addressed in future studies to contribute to plant tolerance to flood stress.

Keywords

Solanaceae, Gas exchange, Chlorophyll, Hypoxia, morphological traits

PDF

References

  1. Baracaldo, A., R. Carvajal, A.P. Romero, A.M. Prieto, F.J. García, G. Fischer, and D. Miranda. 2014. El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío. Rev. Colomb. Cienc. Hortic. 8(1), 92-102. Doi: https://doi.org/10.17584/rcch.2014v8i1.2803
  2. Betancourt-Osorio, J., D. Sanchez-Canro, and H. Restrepo-Diaz. 2016. Effect of nitrogen nutritional statuses and waterlogging conditions on growth parameters, nitrogen use efficiency and chlorophyll fluorescence in tamarillo seedlings. Not. Bot. Horti Agrobot. Cluj-Napoca 44(2), 375-381. Doi: https://doi.org/10.15835/nbha44210438
  3. Bhatt, R.M., K.K. Upreti, M. Divya, S. Bhat, C. Pavithra, and A. Sadashiva. 2015. Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci. Hortic. 182, 8-17. Doi: https://doi.org/10.1016/j.scienta.2014.10.043
  4. Borsoi, F.T., G.M. Pastore, and H. Arruda. 2024. Health benefits of the alkaloids from lobeira (Solanum lycocarpum St. Hill): a comprehensive review. Plants 13(10), 1396. Doi: https://doi.org/10.3390/plants13101396
  5. Briglia, N., K. Williams, D. Wu, Y. Li, S. Tao, F. Corke, G. Montanaro, A. Petrozza, D. Amato, F. Cellini, J.H. Doonan, W. Yang, and V. Nuzzo. 2020. Image-based assessment of drought response in grapevines. Front. Plant Sci. 11, 595. Doi: https://doi.org/10.3389/fpls.2020.00595
  6. Burda, B.U., E.A. O'Connor, E.M. Webber, N. Redmond, and L.A. Perdue. 2017. Estimating data from figures with a Web-based program: Considerations for a systematic review. Res. Synth. Methods 8(3), 258-262. Doi: https://doi.org/10.1002/jrsm.1232
  7. Cardona, W.A.A., L.G. Bautista-Montealegre, N. Flórez-Velasco, and G. Fischer. 2016. Biomass and root development response of lulo (Solanum quitoense var. septentrionale) plants to shading and waterlogging. Rev. Colomb. Cienc. Hortic. 10(1), 53-65. Doi: https://doi.org/10.17584/rcch.2016v10i1.5124
  8. Chaumont, F. and S.D. Tyerman. 2014. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol. 164(4), 1600-1618. Doi: https://doi.org/10.1104/pp.113.233791
  9. Chen, Y., H. Zhang, W. Chen, Y. Gao, K. Xu, X. Sun, and L. Huo. 2024. The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. Plant Cell Rep. 43, 278. Doi: https://doi.org/10.1007/s00299-024-03367-9
  10. de Ollas, C., Z. Pitarch, J.T. Matus, H. Candela, J.L. Rambla, A. Granell, and V. Arbona. 2021. Identification of ABA-mediated genetic and metabolic responses to soil flooding in tomato (Solanum lycopersicum L. Mill). Front. Plant Sci. 12, 613059. Doi: https://doi.org/10.3389/fpls.2021.613059
  11. de Pedro, L.F., F. Mignolli, A. Scartazza, J.P. Melana-Colavita, C.A. Bouzo, and M.L. Vidoz. 2020. Maintenance of photosynthetic capacity in flooded tomato plants with reduced ethylene sensitivity. Physiol. Plant. 170(2), 202-217. Doi: https://doi.org/10.1111/ppl.13141
  12. Delbrouck, J.A., M. Desgagné, C. Comeau, K. Bouarab, F. Malouin, and P.L. Boudreault. 2023. The therapeutic value of Solanum steroidal (glyco) alkaloids: a 10-year comprehensive review. Molecules 28(13), 4957. Doi: https://doi.org/10.3390/molecules28134957
  13. Dresbøll, D. B., K. Thorup-Kristensen, B. M. McKenzie, L. X. Dupuy, and A. G. Bengough. 2013. Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil 369, 467-477. https://doi.org/10.1007/s11104-013-1592-5
  14. Elizalde-Romero, C.A., L.A. Montoya-Inzunza, L.A. Contreras-Angulo, J.B. Heredia, and E.P. Gutiérrez-Grijalva. 2021. Solanum fruits: phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Front. Nutr. 8, 790582. Doi: https://doi.org/10.3389/fnut.2021.790582
  15. Else, M.A. and M.B. Jackson. 1998. Transport of 1-aminocycloproPane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Funct. Plant Biol. 25, 453-458. Doi: https://doi.org/10.1071/PP97105
  16. Else, M.A., J.M. Taylor, and C.J. Atkinson. 2006. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA. J. Exp. Bot. 57(12), 3349-3357. Doi: https://doi.org/10.1093/jxb/erl099
  17. Fan, B., K. Liao, L.-N. Wang, L.-L. Shi, Y. Zhang, L.-J. Xu, Y. Zhou, J.-F. Li, Y.-Q. Chen, Q.-F. Chen, and S. Xiao. 2023. Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. Mol. Plant 16(6), 979-998. Doi: https://doi.org/10.1016/j.molp.2023.04.002
  18. Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021. Revisión de la ecofisiología de frutos andinos importantes: Solanaceae. Rev. U.D.C.A Act. & Div. Cient. 24(1), e1701. Doi: https://doi.org/10.31910/rudca.v24.n1.2021.1701
  19. Fischer, G., F. Casierra-Posada, and M. Blanke. 2023. Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: a review. Agron. Colomb. 41(2), e108351. Doi: https://doi.org/10.15446/agron.colomb.v41n2.108351
  20. Flórez-Velasco, N., H.E. Balaguera-López, and H. Restrepo-Díaz. 2015. Effects of foliar urea application on lulo (Solanum quitoense cv. septentrionale) plants grown under diffeRent waterlogging and nitrogen conditions. Sci. Hortic. 186, 154-162. Doi: https://doi.org/10.1016/j.scienta.2015.02.021
  21. Flórez-Velasco, N., G. Fischer, and H.E. Balaguera-López. 2024. Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agron. Colomb. 42(2), e113887. Doi: https://doi.org/10.15446/agron.colomb.v42n2.113887
  22. Forero, L.E., J. Grenzer, J. Heinze, C. Schittko, and A. Kulmatiski. 2019. Greenhouse- and field-measured plant-soil feedbacks are not correlated. Front. Environ. Sci. 7, 478851. Doi: https://doi.org/10.3389/fenvs.2019.00184
  23. Geldhof, B., J. Pattyn, and B. Van De Poel. 2023. From a different angle: genetic diversity underlies diffeRentiation of waterlogging-induced epinasty in tomato. Front. Plant Sci. 14. Doi: https://doi.org/10.3389/fpls.2023.1178778
  24. Ghatak, A., P. Chaturvedi, P. Paul, G.K. Agrawal, R. Rakwal, S.T. Kim, W. Weckwerth, and R. Gupta. 2017. Proteomics survey of Solanaceae family: current status and challenges ahead. J. Proteom. 169, 41-57. Doi: https://doi.org/10.1016/j.jprot.2017.05.016
  25. Hartman, S., N. Van Dongen, D.M. Renneberg, R.A. WelsChen-Evertman, J. Kociemba, R. Sasidharan, and L.A. Voesenek. 2020. Ethylene differentially modulates hypoxia responses and tolerance across Solanum species. Plants 9(8), 1022. Doi: https://doi.org/10.3390/plants9081022
  26. Igamberdiev, A.U. and R.D. Hill. 2018. Elevation of cytosolic Ca2+ in response to energy deficiency in plants: the general mechanism of adaptation to low oxygen stress. Biochem. J. 475, 1411-1425. Doi: http://doi.org/10.1042/BCJ20180169
  27. Jackson, M.B., L.R. Saker, C.M. Crisp, M.A. Else, and F. Janowiak. 2003. Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant Soil 253, 103-113. Doi: https://doi.org/10.1023/A:1024588532535
  28. Jethva, J., R.R. Schmidt, M. Sauter, and J. Selinski. 2022. Try or die: dynamics of plant respiration and how to survive low oxygen conditions. Plants 11(2), 205. Doi: https://doi.org/10.3390/plants11020205
  29. Jia, W., M. Ma, J. Chen, and S. Wu. 2021. Plant morphological, physiological and anatomical adaptation to flooding stress and the underlying molecular mechanisms. Int. J. Mol. Sci. 22(3), 1088. Doi: https://doi.org/10.3390/ijms22031088
  30. Kagenishi, T., F. Baluška, and K. Yokawa. 2023. Stress-induced ethanol affects endocytic vesicle recycling and F-actin organisation in arabidopsis root apex cells. Environ. Exp. Bot. 205, 105123. Doi: https://doi.org/10.1016/j.envexpbot.2022.105123
  31. Khoury, M.G., R. Martin, M. Houben, and G. Muday. 2024. Ethylene regulates root growth and development. pp. 247-260. In: Eshel, A. and T. Beeckman (eds.). Plant roots: the hidden half. 5th ed. CRC Press Taylor & Francis Group, Boca Raton, FL. Doi: https://doi.org/10.1201/b23126
  32. Kudoyarova, G., D. Veselov, V. Yemelyanov, and M. Shishova. 2022. The role of aquaporins in plant growth under conditions of oxygen deficiency. Int. J. Mol. Sci. 23(17), 10159. Doi: https://doi.org/10.3390/ijms231710159
  33. Liu, K., M.T. Harrison, H. Yan. D.L. Liu, H. Meinke, G. Hoogenboom, B. Wang, B. Peng, K. Guan, J. Jaegermeyr, E. Wang, F. Zhang, X. Yin, S. Archontoulis, L. Nie, A. Badea, J. Man, D. Wallach, J. Zhao, A. Borrego, S. Fahad, X. Tian, W. Wang, F. Tao, Z. Zhang, R. Rötter, Y. Yuan, M. Zhu, P. Dai, J. Nie, Y. Yang, Y. Zhang, and M. Zhou. 2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 14, 765. Doi: https://doi.org/10.1038/s41467-023-36129-4
  34. Liu, W., K. Liu, D. Chen, Z. Zhang, B. Li, M.M., S. Tian, and T. Chen. 2022. Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods 11(16), 2402. Doi: https://doi.org/10.3390/foods11162402
  35. Martínez-Arias, C., J. Witzell, A. Solla, J.A. Martin, and J. Rodríguez-Calcerrada. 2022 Beneficial and pathogenic plant-microbe interactions during flooding stress. Plant Cell Environ. 45, 2875-2897. Doi: https://doi.org/10.1111/pce.14403
  36. Mauro, R.P., M. Agnello, M. DisteFano, L. Sabatino, C. Leonardi, and F. Giuffrida. 2020. Chlorophyll fluorescence, photosynthesis and growth of tomato plants as affected by long-term oxygen root zone deprivation and grafting. Agronomy 10(1), 137. Doi: https://doi.org/10.3390/agronomy10010137
  37. Molina, S., A.M. Zamarreño, J. María, and R. Aroca. 2014. The symbiosis with the arbuscular mycorrhizal fungus rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol. 55(5), 1017-1029. Doi: https://doi.org/10.1093/pcp/pcu035
  38. Mullen, J.L., C. Weinig, and R.P. Hangarter. 2006. Shade avoidance and the regulation of leaf inclination in Arabidopsis. Plant Cell Environ. 29(6), 1099-1106. Doi: https://doi.org/10.1111/j.1365-3040.2005.01484.x
  39. Nada, K., E. Iwatani, T. Doi, and S. Tachibana. 2004. Effect of putrescine pretreatment to roots on growth and lactate metabolism in the root of tomato (Lycopersicon esculentum Mill.) under root-zone hypoxia. J. Jpn. Soc. Hortic. Sci. 73(4), 337-339. Doi: https://doi.org/10.2503/jjshs.73.337
  40. Niu, L., F. Jiang, J. Yin, Y. Wang, Y. Li, X. Yu, X. Song, C-O. Ottosen, E. Rosenqvist, R. Mittler, Z. Wu, and R. Zhou. 2023. ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress. Front. Plant Sci. 14, 1238108. Doi: https://doi.org/10.3389/fpls.2023.1238108
  41. Orsák, M., Z. Kotíková, F. Hnilička, and J. Lachman. 2023. Effect of long-term drought and waterlogging stress on photosynthetic pigments in potato. Plant Soil Environ. 69(4), 152-160. Doi: https://doi.org/10.17221/415/2022-pse
  42. Ortiz-Bobea, A., T.R. Ault, C.M. Carrillo, R.G. Chambers, and D.B. Lobell. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11(4), 306-312. Doi: https://doi.org/10.1038/s41558-021-01000-1
  43. Ren, B., W. Yu, P. Liu, B. Zhao, and J. Zhang. 2023. Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading. Crop J. 11(1), 269-277. Doi: https://doi.org/10.1016/j.cj.2022.06.003
  44. Rodríguez-Gamir, J., J. Xue, M.J. Clearwater, D.F. Meason, P.W. Clinton, and C. Domec. 2019. Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. Plant Cell Environ. 42(2), 717-729. Doi: https://doi.org/10.1111/pce.13460
  45. Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: https://doi.org/10.17584/rcch.2019v13i3.10017
  46. Sarker, M.S.A., A. Islam, M.W. Islam, P.C. Dhar, and M.R. Abdullah. 2023a. Effect of water logging on vegetative growth and fruit yield of brinjal. Bangladesh J. 44, 9-12.
  47. Sarker, K.K., A.K.M. Quamruzzaman, M.N. Uddin, A. Rahman, A. Quddus, S.K. Biswas, A. Gaber, and A. Hossain. 2023b. Evaluation of 10 eggplant (Solanum melongena L.) genotypes for development of cultivars suitable for short-term waterlogged conditions. Gesunde Pflanzen 75(1), 179-192. Doi: https://doi.org/10.1007/s10343-022-00688-1
  48. Sasidharan, R., J. Bailey-Serres, M. Ashikari, B.J. Atwell, T.D. Colmer, K. Fagerstedt, T. Fukao, P. Geigenberger, K.H. Hebelstrup, R.D. Hill, M.J. Holdsworth, A.M. Ismail, F. Licausi, A. Mustroph, M. Nakazono, O. Pedersen, P. Perata, M. Sauter, M.-C. Shih, B.K. Sorrell, G.G. Striker, J.T. van Dongen, J. Whelan, S. Xiao, E.J.W. Visser, and L.A.C.J. Voesenek. 2017. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 214(4), 1403-1407. Doi: https://doi.org/10.1111/nph.14519
  49. Shukla, V., L. Lombardi, S. Iacopino, A. Pencik, O. Novak, P. Perata, B. Giuntoli, and F. Licausi. 2019. Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis. Mol. Plant 12(4), 538-551. Doi: https://doi.org/10.1016/j.molp.2019.01.007
  50. Tian, L.-X., Y.-C. Zhang, P.-L. Chen, F.-F. Zhang, J. Li, F. Yan, Y. Dong, and B.-L. Feng. 2021. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898. Doi: https://doi.org/10.3389/fpls.2021.634898
  51. Wickham, H. 2016. ggplot2: elegant graphics for data analysis. 2nd ed. Springer-Verlag, New York. Doi: https://doi.org/10.1007/978-3-319-24277-4
  52. Yin, J., L. Niu, Y. Li, X. Song, and C.O. Ottosen. 2023. The effects of waterlogging stress on plant morphology, leaf physiology and fruit yield in six tomato genotypes at anthesis stage. Veg. Res. 3, 31. Doi: https://doi.org/10.48130/VR-2023-0031
  53. Zhang, Y., G. Liu, H. Dong, and C. Li. 2021. Waterlogging stress in cotton: damage, adaptability, alleviation strategies, and mechanisms. Crop J. 9(2), 257-270. Doi: https://doi.org/10.1016/j.cj.2020.08.005

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.