ISSN 0121-1129

LATIN Interpreter, a Language for Systems Implementation

LATIN Interprete, un leguaje para la implantacion de sistemas

Fecha de recepcioén: 8 de julio de 2010
Fecha de aprobacién: 20 de octubre de 2010

Abstract

It would be wrong to see reality simply as constituted
by isolated objects. If one observes with care, some
of such objects are mutually affected, and make up
interrelations, which constitute systems. Though
systems are the way reality works, and objects are
the systems basic constituents. But how can be
systems described?

At present do not exist languages to describe systems,
only structures such as (3GL, DDL or SQL), or
objects (ODL or OQL). Therefore it has been
designed and called LATIN, (Language Toward
Integration) the language adapted to describe the
above mentioned systems. Here there are specific
details of the interpreter LATIN’s implementation.

Key words: Syrdam, Databases, Compilers and
Interpreters, Objects, Systems, Grammars.

Emiro Mufioz Jerez*
Jaime Octavio Albarracin Ferreira**

Resumen

Seria equivocado ver la realidad como simplemente
constituida por objetos aislados. Si se observa con
detenimiento, ciertas clases de tales objetos, al
afectarse mutuamente, dan lugar a interrelaciones, que
conforman los sistemas. De ahi que los sistemas son
la forma en que opera la realidad, y los objetos son los
constituyentes basicos de los sistemas. Pero ;como
describir los sistemas? En el presente no existen
lenguajes para describir sistemas, sino solo para
estructuras (3GL, DDL o SQL) u objetos (ODL or
OQL); por consiguiente, el lenguaje adaptado para
describir los sistemas ha sido designado y llamado
LATIN (Lenguaje hacia la integracidon). En este
articulo se especifican los detalles de la implantacion
del LATIN Interpreter.

Palabras clave: Syrdam, Bases de datos, Compiladores
e intérpretes, Objetos, Sistemas, Gramaticas.

* Systems Engineer. Specialist in University Teaching. Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.

emiro270273 @gmail.com

** Systems Engineer. Ph.D. in Computer Science, University of Oviedo, Spain. Bucaramanga, Santander, Colombia. jaimealb@uis.edu.co

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, N°. 29, pp. 21-30

ﬁ - CEDEC

1. INTRODUCTION

The foundations of object-oriented databases are
designed to work with programming languages like
Java object oriented, C #, Visual Basic. NET and C
+ +. For these languages a class can be a variable, a
set of instructions or an object, but not a system as
a group of classes sharing a common method. In
the Teacher thesis Albarracin, this model is called
MODRO. But for this article, MODRO will be
called MODRES in Spanish or SYRDAM
(SYSTEM REORIENTED DATA MODEL),
because the MODRO actually is a Systems
Reoriented Data Model. Now the SYRDAM is a
model for integrating both the functional and
structural of organization. To describe the functional

there exist languages like Java, C #, C + +, Visual
Basic. In addition, to describe the structural there
exist SQL and OQL. But there is not a Language to
described systems.

For the above languages and even the same OQL, a
class is like an individual entity with its own attributes
and its own method. The SYRDAM goes beyond
focusing systems such as set of interrelated classes,
sharing a common method, which is the behavior of
the system (See Fig. 1).

II. SPECIFICATION OF LATIN

A system described in Language Latin, is interpreted
as classes of Db4o! . By means of the following steps.

System

(Class 1) (Class 2)
4
Atributes 4_<} Atributes é
=2
________) £
| Method 1 1 Method 2 15
[J | [1'4
-
(72]

T (Class 3) T

Atbutes

>

Method 3

(Class 4) (Class 5)
Atributes *<} Atributes
I Method 4 | | Method 5 !
L J b J

Common Method

FUNCTIONAL

Fig. 1. Approach of the Models of System (MODRES)

! Dbdo: Object to Orientated of database Engine.

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, No. 29

- CEDEC

®
@000

ORIGINAL SYSTEM DESCRIBED IN LATIN
ORIGINAL DESCRITO EN LATIN

Vi

Validation Component

APPROVED SYSTEM (with hierarchy of systems)

Vi

Componets for solving inheritance

O

SYSTEM WITH RESOLVED INHERITANCE
(Imput forr Decomposition)

Vi

Decomposition Component

@ Set of classes (system

DECOMPOSED SYSTEM

structuture) separated of

@ system method)

Reagruping Component

CLASES Db4o (Which means it?

@ cannot run
independtly)
Db4o

Fig. 2. Steps in the System interpretation for the LATIN

A. Validation Component

In this first step, LATIN recognize and validate by
means of its grammar, the definition of the system,
which consists of classes and a common method to
those classes. Such validation will be to acknowledge
the definition of the attributes with data types. It
should also recognize the performance of integrity
rules concerning primary and foreign keys, and other
restrictions inherent in the SYRDAM |[1]. And in the
same way to validate the method belonging to that
system.

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, N°. 29

B. Component for solving inheritance

In this second step, the LATIN resolve the problem
of inheritance that occurs when a system is defined
within a hierarchy of systems (subsystems, systems,
Supersystems).

C. Decomposition Component
Here it separates or descomposes common method

classes, i.e classes and structures are separated from
the common method. This separation is done to build

ﬁ - CEDEC

an appropriate entry for the OODBM’s in the present
time, unable to recognize systems.

D. Re-grupping Component

The next step is to rebuild again each of the classes
in the system with his of slashes method. That is to
say at this time each class will have its own method,
its own functionality, but such classes can not be
independent among since its should be execute all in
simultaneity. To implement this concurrency, Db4o
has a set of sentences, which lets it define classes
with their attributes and method. Although these
classes are defined first in the Interpreter Db4o
through a flat file that contains such sentences.

E. Deliver classes to Db4o

In this step, LATIN delivers to Db4o through a
connection, each of the classes extracted from the
system. This seeks the implementation of oriented
database systems (SYRDAM), lowering them to the
level for object-oriented databases (Db4o).

II1. DESIGN OF LATIN GRAMMAR

The creation of a model of data, implies the use of
a language that allows to describe this model. But
as such a language it doesn’t still exist by reason
of the biggest granularidad in the MODRES
regarding the previous models, and also by reason
of the best approach toward a paradigm of systems
in the conception of the MODRES, it is necessary
to create it, being this language LATIN outlined
by the Doctor Albarracin. LATIN like such it
requires of the definition components,
manipulation and consultation of objects (ODL
AND OML). Similar to their previous SQL of the
pattern compound relational also of a DDL and a
DML. For such a reason, it becomes necessary to
design a Grammar free of context for this model
that is able to generate the ODL and OML
characteristic of LATIN.

For this grammar’s design, the formal system will

be used “BNF” or form of Backus-Naur [2]. Keeping
in mind the syntax SQL, the standard ODMG and

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, No. 29

the syntax used by the programming language guided
to objects, like it is the case of the languages JAVA
and C #.

But although it is certain that the first step to build
LATIN, is to define the grammar, it becomes
necessary also to describe the structure of the
language that implements the component ODL and
OML.

The structure that will have the INTERPRETER in
question will contain the following articles [3].

% Value literal. They are the variables, numbers, it
dates, hour and the values type NULL.

<+ Allowed characters. These are those special
characters that all programming language allows
to the moment to define an instruction, being those
but common the following ones: (, *,), *, <, +, /,
{7 &7>7 T (7}7 :)'

<+ Reserved words. They are those that are only
and characteristic of the language, not being
possible to define a variable, constant, or I object
with the name of these reserved words.

< Comments. These are accepted from a sequence
¢/ * ¢ until the maximum sequence */ “.

+ Initial syntax. Alone they accept a command of
having entered per time and it will always finish
in“;

<+ Syntax of sentences ODL. These are those that
allow the definition of class hierarchies and their
structural elements, the entities.

<+ Syntax of sentences OML. These are those that
allow to define and to use a method, as well as to
consult class hierarchies and their structural
elements, the entities, and their functional
elements, the operations of the methods.

IV. LEXICAL AND SYNTACTIC
IMPLEMENTATION OF ANALYZERS

The following one passes the grammar once it has
been designed, it is to implement the lexical and
syntactic analyzer. These allow to control the
entrances typed for the user and they open the way
to the generation of the structure of the files of
hierarchy of classes. A lexical analyzer is that that

- CEDEC

:1.

he takes the entrances typed and it divides them in
lexical components, “that are sequences of characters
that have an atomic meaning” [4]. Once made this

classification they are correspondents to the syntactic
analyzer as TOKENS. The following figure shows
like it is carried out this process.

Conte Lexical
xt - free Analyzer
grammar generator
Generate

oDL

Lexical

Components Analyzer P. Structure
Ay ' y. ’ arser '

Parser Db4o
generator motor
Connection

File

Fig. 3. Design of Interpreter “LATIN”

The chosen language for the INTERPRETER’S
development is Visual C #, because this it is a language
that offers many advantages, among which are had [5]:

o Offers the power of the design guided to objects
with a simple syntax, easy to manage and a robust
and pleasant environment for the user.

o It has in their structure a group of potent and
flexible classes.

« Interoperability among languages, also called
programming of mixed language.

« Excellent acting in work on the net.

o Excellent levels of security.

A syntactic analyzer is: “a program that he/she
receives as entrance the individual elements or lexical
components (tokens) of the program source and it
determines the structure of the sentences or instructions
that conform it” [4]. It is for this reason that the
analyzer’s main functions are to detect and to inform
of the syntactic errors and the generation of a syntactic
tree for each one of the expressions typed for the user.
The following figure shows the general outline of the
syntactic analysis.

Source Token
Lexical

» analizer » Parser » Analysis »

Syntactic
tree Rest of
the

phase

Request
Token

Intermediate
code

Symbol
table

Fig. 4. General scheme of the syntactic analysis

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, N°. 29

ﬁ - CEDEC

V. CoNNECTING THE LATIN WiTH DB40

The following code shows how LATIN, will connect
to Db4o through a series of instructions specific of
LATIN, which allow data to flow properly from
LATIN to Db4o. This code shows, that first itmust
make sure that if initially there is already a database
with the same name, this should be eliminated.
Following this step creates the database using the
ObjectContainerdb owned by Db4o. We also observe
that it uses the exception handling to insert, update
and delete data from the database. Finally, we must
close the database with the keyword Close () and the
name of the connection string variable, in this case
“bd”. Consider the following code.

Connection String for LATIN with Db4o
using System;

using System.lO;

using com.db4o;

Using db4objects.db4o.Database;

B NTERPRETE [L AT1N]MODRES

&rchivo Edicidn Yer Proyecto Ayuda

Ik

Linea: 1 Columna: 0

public static void Main (String [] args)

{
File.Delete(“C:/database name.yap”); //reset
database
ObjectContainerdb=
database name.yap”);
try {

{

//Instructions to insert, update and delete

}
finally {

{
db.Close();

I

b4o.0OpenFile(“C:/

VI. DESIGN oF THE GUI

The interface that will be created for the Latin, it will
be following a traditional style and design. In the
construction of this interface is used the development
environment of Visual C #, see figure below.

Fig. 5. Interface graph of the Interpreter LATIN

VII. TESTS OF LATIN

One of the most important stages in the development
software is undoubtedly the stage tests, in which the
effective acting of the tool is verified. LATIN like
such it is not unaware to this stage, because in her
each one of their components will be proven (lexical
and syntactic Analyzer). The procedure to continue
to carry out this type of tests is the following one:
< To execute the Interpreter.

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, No. 29

< To analyze the acting of the Analyzers (Lexicon
and Syntactic).
< To observe and to register the obtained results.

Next the process of tests is explained that will be
made the Interpreter’s lexical and syntactic analyzers
LATIN. As well as the variables to keep in mind to
execute this test. For I finish the respective
connection of LATIN he/she settles down with Db4o,
for the shipment of the classes.

- CEDEC

®
@000

A. Process of test of the Lexical Analyzer

They will be carried out three types of tests:

o The first one will consist on entering a series of
chains of characters been worth by the grammar.

¢ For the second test chains of characters will not
be entered allowed inside the grammar.

o For the finish chains of worth characters and
invalids they will be entered.

B. Process of test of the Syntactic Analyzer

To compile, to execute and to develop the test to the
syntactic analyzer will become necessary to create
the following class in C #:

public class static void Main (String [] args)

{

/* Initial analyzer * /
try {

{

parser p = new parser
(new Lexer

(new FileReader (args [0])));
Object result = p.parse ().value;

}

catch (exception e)

{

e.printStackTrace();

I

£ =d| Pr

] Program.cs

_,] Solucion 'interfaz_interprete’ {1 proyecto)
= _,] interfaz_interprete

This class receives as parameter a file of plane text
with the chains typed for the user and carries out the
connection among the lexical and syntactic analyzer.

For the development of these tests it will be
considered the syntax used in the description of the
Supersystems, Subsystems and Systems
characteristic of the grammar.

If the results generated by Interpreter LATIN are in
agreement with the investigation, you will proceed
to the connection and shipment of the Supersystems,
Subsystems and Systems to Db4o.

C. Process of connection test with Db4o

The connection with the database motor Db4o is
carried out by the Interpreter LATIN after verifying
the correct definition of the Supersystems, Systems,
Subsystems, as well as the manipulation of data by
means of the instructions characteristic of LATIN
(ELEGI, MUTA, ADDIDI AND DELEGE).

For the realization of the connection tests with Db4o
the Visual tool C will be used #, since with this the
graphic interface will be created. Alone coarse to
make click with the right button of the mouse in
references (References) to add references, as it shows
it the following figure.

Fig. 6. References of Visual C#

2

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, N°. 29

ELEGI, MUTA, ADDIDI Y DELEGE they are the equivalent Latins of Select, Update, Insert y Delete.

ﬁ - CEDEC

The purpose of adding this reference is the one of
establishing the connection of C #with Db40, by
means of the bookstore “Db4object.Db40o.dll”. Since
this bookstore is the one used by Db40 to be
connected with the programming languages like C
#, Java, Visual C++, to the moment to create a
database. Later to this is given to examine, to find
the portfolio Db4objects, such and as it shows it the
following figure.

With the left button it occurs double click on the
portfolio db4o-7.4, to locate the portfolio net.2.0 and
in her to find the bookstore Db4object.Db4o.dll. To
this bookstore is given double click to show the editor,
to see following figure.

This way it is clever the connection with Db4o, to
begin with the tests, such and as it shows it the
following figure.

| Agregar referencia 7 X
JMET COM Proyectos Examinar Reciente
Buscaren: |) Dhdobjects vl Q& E
dbda-7.4
MNombre: v
Tipo: Archivos de componentes [*.dll" b, olb;" ocx.” exe;” manifest) v
E Aceptar J [Cancelar J

Fig. 7. Add Visual reference C #

| Agregar referencia

NET | COM

Buscaren: |) net-2.0

| Cecil Flowanalysis.dil

| Db4oBench.dll

% Db4objects.Db4o.dll

4| Db4objects. Db4o. Instrumentation. dl
| Db4abjects.Db4o. NativeQueries.dll
| Db4objects.Drs.dil

™ ob4oTaal
| Db4aTool.MSBuild.di

MNombre: Dbdaobjects Dbdo

Tipa:

Proyectos Examinar Reciente

“|Mano. Cecil.dil
%/ Mono. Cecil.Pdb.dil
%/ Mono.GetOptions. dll

Archivos de componentes [*.dll" b, olb;" ocx.” exe;” manifest) v

v J T s v

v

t Aceptar H Cancelar J

Fig. 8. Add reference (Continuation) Visual C #

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, No. 29

- CEDEC

®
@000

LLLLL

Fig. 9. Screen of connection of Visual C# with Db4o

VIII. CONCLUSIONS

1. The specification in the interpreter’s detail LATIN
will allow to implement computationally the
Reoriented Pattern of Data to Systems (MODRES).

2. The interpreter LATIN, will allow to define
Supersystems, Subsystems and Systems.

3. The interpreter LATIN, will allow to solve the
problem that the languages like Java present, Visual
C++, C #, Visual Basic and other that don’t allow to
define Supersystems, Subsystems and Systems.

4. The interpreter LATIN, will allow to solve the
problem of the organizational disintegration in any
organization.

5. The interpreter LATIN, offers another

programming alternative, for the databases guided
to objects.

Revista Facultad de Ingenieria, UPTC, 2010, vol. 19, N°. 29

REFERENCES

[1] J. O. Abarracin Ferreira, Integration of Data and
processes in the organizations by means of a Objects
Reoriented Data Model. Doctoral Thesis; University
of Oviedo. Spain. 2006.

[2] C. Lauden Kenneth. Compilers of Construction.
Editorial Thomson. ISBN: 970-686-299-4; 2001.

[3] F.Contreras Herazo, A. S. Garcia Payares, J. N. Cala
Uribe, Construction of those component ODL and
OQL for a generating system of Reoriented
databases to Objects (SGBDRO) , Thesis of
Pregrado. Universidad Industrial de Santander,
Bucaramanga —Santander, Colombia—, 2008.

[4] S. Galvez Rojas, M. Mata, Java to End: Translators
and Compilers. Universidad de Mélaga —Espafia—,
2005.

[5] H. Schildt. C# Manual of Reference. MacGraw-Hill.
ISBN: 84-481-3712-4; 2003.

ﬁ - CEDEC

