
Revista Facultad de Ingeniería, 31 (62), 2022, e15207

Revista Facultad de Ingeniería
Journal Homepage: https://revistas.uptc.edu.co/index.php/ingenieria

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Process Model Represented in BPMN

for Guiding the Implementation of

Software Development Practices in

Very Small Companies Harmonizing

DEVOPS and SCRUM

Manuel-Alejandro Pastrana-Pardo1

Hugo-Armando Ordóñez-Erazo2

Carlos-Alberto Cobos-Lozada3

Received: September 6, 2022 Accepted: December 27, 2022 Published: December 31, 2022

Citation: M.-A. Pastrana-Pardo, H.-A. Ordóñez-Erazo, C.-A. Cobos-Lozada, “Process Model

Represented in BPMN for Guiding the Implementation of Software Development Practices in Very

Small Companies Harmonizing DEVOPS and SCRUM,” Revista Facultad de Ingeniería, vol. 31

(62), e15207, 2022. https://doi.org/10.19053/01211129.v31.n62.2022.15207

1 Ph. D. (c) Institución Universitaria Antonio José Camacho (Cali-Valle del Cauca, Colombia).
mapastrana@admon.uniajc.edu.co. ORCID: 0000-0002-6506-0659
2 Ph. D. Universidad del Cauca (Popayán-Valle, Colombia). hugoordonez@unicauca.edu.co. ORCID: 0000-
0002-3465-5617
3 Ph. D. Universidad del Cauca (Popayán-Valle, Colombia). ORCID: 0000-0002-6263-1911

https://revistas.uptc.edu.co/index.php/ingenieria
https://doi.org/10.19053/01211129.v31.n62.2022.15207
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.19053/01211129.v31.n62.2022.15207
mailto:mapastrana@admon.uniajc.edu.co
https://orcid.org/0000-0002-6506-0659
mailto:hugoordonez@unicauca.edu.co
https://orcid.org/0000-0002-3465-5617
https://orcid.org/0000-0002-3465-5617
https://orcid.org/0000-0002-6263-1911

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Abstract

The business process model is a graphic representation mechanism that helps

improve the understanding of a context, the steps undertaken, and the validations

and business rules that are part of its universe. This article proposes an

implementation model of practices for software development based on DevOps

suggestions and how these might be executed within Scrum by the Scrum

Development Team (SDT). Present a practice implementation model that integrates

DevOps suggestions to be executed by a scrum development team (SDT). The

practices for software development based on DevOps were identified. The moment

in which the information provided is helpful for the team's continuous improvement

within SCRUM was determined. With the practices identified, modeling the general

process of implementing practices using BPMN was conducted, followed by detailed

modeling. Finally, experts executed the evaluation of the detailed process model. A

12-question survey was implemented to understand the business process model

created for implementing practices. This instrument was then made available to

experts in the field to obtain feedback on what has been done. The results obtained

are promising. The set of practices suggested by DevOps and its integration in

Scrum allows for establishing a preventive quality approach for the best development

of software products. Using business process models represented by BPMN allows

companies to understand and adopt the proposed practices quickly.

Keywords: business process modeling; DevOps; SCRUM; software engineering;

software quality assurance.

Modelo de procesos representado en BPMN para guiar la implememtacion de

prácticas de desarrollo de software en empresas muy pequeñas

armonizando DEVOPS y SCRUM

Resumen

Los modelos de procesos de negocio son un mecanismo de representación gráfica

que ayudan a mejorar la comprensión que se tiene sobre un contexto, el conjunto

de pasos que se llevan a cabo dentro de él, las validaciones y reglas de negocio

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

que hacen parte de su universo. Utilizando esto el presente artículo propone un

modelo de implementación de prácticas para desarrollo de software basado en las

sugerencias de DevOps y como estas pueden ser ejecutadas dentro de SCRUM por

parte del Equipo de desarrollo SCRUM (SDT por sus siglas en ingles). El trabajo

tiene como objetivo exponer un modelo de implementación de prácticas que integre

las sugerencias de DevOps para ser ejecutadas por un equipo de desarrollo en

scrum (SDT). Se identifican prácticas para desarrollo de software basado en

DevOps. Se determina el momento donde la información aportada es útil para la

mejora continua del equipo dentro de SCRUM. Con las practicas identificadas se

realiza el modelamiento del proceso general de implementación de prácticas

utilizando BPMN, seguido del modelamiento detallado. Por último, expertos

evaluaron el modelo detallado de procesos. Se elabora una encuesta de 12

preguntas sobre la comprensión de los modelos de procesos de negocio creados

para la implementación de las prácticas. Este instrumento es puesto a la disposición

de expertos en el tema para obtener una retroalimentación sobre lo realizado. Los

resultados obtenidos son prometedores. El conjunto de prácticas sugeridas por

DevOps y su integración en SCRUM permiten establecer un enfoque de calidad

preventiva para el mejor desarrollo de productos software. El uso de modelos de

procesos de negocio representados con BPMN permite a las empresas una fácil

comprensión y adopción de las prácticas propuestas.

Palabras clave: aseguramiento de la Calidad de Software; DevOps; ingeniería de

software; modelado de procesos de negocio; SCRUM.

Modelo de processo representado em BPMN para orientar a implementação

de práticas de desenvolvimento de software em microempresas

harmonizando DEVOPS e SCRUM

Resumo

Os modelos de processos de negócios são mecanismos de representação gráfica

que ajudam a melhorar a compreensão de um contexto, o conjunto de etapas que

são realizadas dentro dele, as validações e regras de negócios que fazem parte de

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

seu universo. A partir disso, este artigo propõe um modelo de implementação para

práticas de desenvolvimento de software baseado em sugestões DevOps e como

estas podem ser executadas dentro do SCRUM pelo SCRUM Development Team

(SDT). O trabalho visa expor um modelo de implementação prática que integra

sugestões de DevOps a serem executadas por um time de desenvolvimento scrum

(SDT). São identificadas práticas de desenvolvimento de software baseadas em

DevOps. É determinado o momento em que as informações fornecidas são úteis

para a melhoria contínua da equipe dentro do SCRUM. Com as práticas

identificadas, é realizada a modelagem do processo geral de implementação das

práticas em BPMN, seguida da modelagem detalhada. Finalmente, os especialistas

avaliaram o modelo de processo detalhado. É elaborada uma pesquisa de 12

perguntas sobre o entendimento dos modelos de processos de negócios criados

para a implementação das práticas. Este instrumento é disponibilizado a

especialistas da área para obter feedback sobre o que foi feito. Os resultados

obtidos são promissores. O conjunto de práticas sugeridas pelo DevOps e sua

integração no SCRUM permitem estabelecer uma abordagem de qualidade

preventiva para o melhor desenvolvimento de produtos de software. A utilização de

modelos de processos de negócios representados com BPMN permite que as

empresas compreendam e adotem facilmente as práticas propostas.

Palavras-chave: DevOps; engenharia de software; garantia de qualidade de

software; modelagem de processos de negócios; SCRUM.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

I. INTRODUCTION

Software development companies are constantly looking to optimize their production

processes to improve profitability based on increased quality [1]. Companies should

therefore have mechanisms of control that provide timely information within the

development process to take the necessary corrective measures before

commissioning [2].

Implementation of this control depends on the set of practices for software

development prioritized by the company to have the most significant impact, taking

account of the metrics and information these practices provide to the company to

support its continuous improvement [3]. A critical factor in selecting such practices

is the size of these companies because it determines a set of organizational culture

characteristics that facilitate or limit their adoption.

According to [4], companies with up to 25 employees are classified as very small,

between 26 and 50 as small, 51 to 250 as medium, and those with more than 250

employees as large.

The previous means that results from the evolution of the projects lead to extensive

guarantee periods, where the errors from not having quality controls in place in

conducting the project are assumed, errors which should have been identified long

before the deployment so as not to generate extra costs, breach of commitments,

schedule delays, or work overload. This means that the results at the financial level

in the VSEs limit their cash flow, hindering processes of continuous improvement

that allow exploring quality-enhancing alternatives. Added to this, by having more

extensive guarantee processes, typically, people who belong to this type of company

perform multiple functions in various roles, constantly overburdening themselves

and leaving little time to adopt new ways of working or supporting a company

improvement process.

Authors such as [5] have identified that most companies that make up the software

development industry are very small entities (VSEs). Due to their small size, these

companies start with an empirical software development process based on the

experience of their founders and early collaborators who are part of the development

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

teams, lacking practices around requirements analysis, software design,

development, quality, and even deployment.

As an alternative to these problems, VSEs resort to frameworks such as Scrum and

DevOps that facilitate adaptation to change, adopt practices oriented towards

preventive quality, and generate information that allows continuous retrospective

analysis. Although these alternatives positively impact the industry, a fundamental

problem is associated with the agile philosophy that structures it: there are no

standards or guides that instruct what practices to implement and how to implement

them. Instead, agile frameworks provide suggestions but leave companies free to

explore which ones are appropriate according to their organizational culture, type of

customer, and ways of working.

VSEs require alternatives that facilitate the adoption process of these frameworks

and guide them as to what they can implement, allowing the creation of a phased

adoption plan. Business Process (BP) models (visual representations that facilitate

a single interpretation) are thus presented as a viable alternative to represent a guide

that enables adopting practices. This allows an overall transversal vision of the

processes conducted in an organization, identifying the variables, business rules,

and requirements to be solved, historically proven in industrial process modeling and

requirements analysis [1]. In addition, BPs allow us to understand the step-by-step

that must be executed within a process and even the sequence of sub-processes

linked for shaping a more complex process. All of this makes the BP an appropriate

tool with which every one of the members of the development team can know

graphically what steps are being performed at a given moment in the company.

Based on the above, this paper presents an implementation process model of

practices recommended by DevOps that are common in VSEs, and that can be

applied as a complement to Scrum. The rest of the paper is organized as follows:

Section 2 describes the motivation scenario; Section 3 lays out the methodology;

Section 4 contains the results of a survey of academic and industry experts regarding

their perception of the proposed models; and finally, Section 5 provides the

conclusions and future work expected to be conducted in the short term.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

The difficulties in projects developed by VSEs, according to [6], point to the

identification of controls associated with practices for software development that

organize and centralize the management of their changes, measure the impact they

have on the project, perform traceability of their history, generate early alerts, and

ensure quality through their automation. This set of practices continuously puts

forward information that must be analyzed by the development team at a given

moment, taking corrective measures during the building phase rather than afterward

to increase the quality of the deliverables. DevOps puts forward a set of suggestions

per the above that may be useful for improving the quality associated with the

development process and that can be adopted within Scrum to use this information

as an opportunity for improvement, facilitating learning and the adoption of these by

the team.

A single interpretation model (graphical model) is required to present the guide

proposed in this work, capable of simplifying the understanding of the set of practices

to be adopted, the gradual step-by-step of their implementation, and the holistic

vision of how some practices complement each other to give form to the quality

controls that would transform the VSE development process. Given the advantages

of business process models, these were selected to represent the guide.

According to [7], BP models allow the detailed identification of the practices at a

more abstract level - when they would be used manually or automatically, what

information they should generate and what actions they can trigger in the

development team. At their most detailed level, they provide the step-by-step to

achieving an adequate connection.

II. METHODOLOGY

The defined process is made up of the following phases: I) Identification of essential

practices for software development based on DevOps, II) Linking of the selected

practices with Scrum, III) General modeling of the implementation process of

practices using BP, IV) Detailed process modeling using BP, and V) Evaluation of

the detailed process model by experts.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

A. Identification of Essential Practices for Software Development Based on

DevOps

According to [8], DevOps proposes a collaboration between the area of software

development with the area of infrastructure and operations. This collaboration

supports all the systems and services of companies at the hardware level, seeking

to reduce reprocessing and improve the organizational culture. Its objective is to

adopt practices for software development that continuously generate information,

allowing development teams to analyze it, learn from it, and gradually improve.

The previous suggests that an environment of quality (preferably preventive) that

constantly measures the evolution of the project to be developed must be generated,

featuring a set of quality controls automatically synchronized and always available

to the interested parties, as indicated in [9]. DevOps's impact on the industry is well-

renowned, as the academic community is interested in continuing to delve into this

topic and generate paths that facilitate its adoption [10].

To identify which practices can provide a solution to the needs of the industry, [11]

presents a review of the adoption of DevOps to achieve a continuous delivery (CD)

process. This process consists of adopting a set of practices that automatically

ensures a step-by-step for a successful deployment, with traceability of changes and

control over them. The suggested practices indicate that the source code must be

versioned to ensure that all the information is always organized in a central

repository available to the entire team (collective code ownership). Likewise, in [12],

it is indicated that as the project evolves and the changes are versioned, they must

be continuously integrated to identify if syntactic errors in the code are being

uploaded to the versioner or if it is correct. This quality control is known as continuous

integration (CI). To complement the two previous practices, in [13], they suggest

implementing continuous deployment (CD) so that once the two previous quality

filters are approved, the deployable unit is automatically placed in the quality or

production environment and thus able to ensure continuous delivery. This was

implemented using tools via scripts called pipelines by [14].

Likewise, in [15], it is indicated that the starting point of an effective preventive quality

process starts with versioning and triggers an automatic process of continuous

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

integration, which inspects if the evolution of the code syntactically has not

undergone negative changes (syntax errors) that prevent generating the deployable

unit and allow continuous deployment to execute successfully. Additionally, the code

should be standardized so that all team members develop the project the same way,

thus making it easier to maintain its evolution and support. The adoption of

international programming standards facilitates the understanding of the code, its

readability, and the understanding of structuring. This practice can be reviewed

through manual or automatic code inspections carried out by Static Code Analyzers

(SCA) that not only check if the international standard is met but also add value to

the measurement by reviewing aspects such as security, detecting common

vulnerabilities in development practices based on the OWASP top 10 and informing

them so that corrective measures are taken complying with the minimum suggested

by [16]. Likewise, this tool makes it possible to measure what the industry knows as

a code smell, understood as lousy development practices that prompt negative

impacts within projects. Some examples of code smell include defining variables or

importing libraries (libs) without using them, high cyclomatic complexity, and

improper handling of constructors. The generation of this type of problem within a

project causes the need to refactor the code, involving extra effort and time, known

as technical debt (also measured within the SCA).

Additionally, in [15], it is indicated that the same tool is capable of reviewing unit test

coverage, which suggests that this practice ought to be adopted by teams if they

want to increase the benefits obtained. Unit tests are conducted to check the quality

of the developed code, guaranteeing its correctness (that the functionality does what

it should), in addition to checking the cases where incorrect data is entered and how

it handles exceptions that control failures and prevent the software from crashing

due to mishandling. The more detailed the test is in its correctness and error

handling, the greater its coverage will be.

Also, in [15], it is indicated that if the source code has been versioned and the quality

controls of the CI and the SCA have been approved, the automated process

performs the CD, and previously recorded functional test scripts can be executed

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

automatically. This ensures that thorough automatic reviews of everything

developed so far (functional and regression tests) can be done using tools. The

previous ensures a complete cycle of continuous, high-quality deliveries with various

controls executed during the development period, constantly providing feedback to

the team for continuous improvement.

All these practices work correctly if the teams adopt preventive quality-oriented

thinking in their organizational culture, ensuring an understanding of the benefits of

its adoption to the development process and themselves [6]. Table 1 summarizes

the identified practices and their benefits.

Table 1. Recommended practices and their benefits.

Recommended
practice

Benefit

Code standard It increased the scalability and maintainability of the code.

Versioning
Organization of information, collective ownership of the code, availability,
traceability of changes, and recovery from failures.

Continuous integration
(CI)

Syntactic control of the code, identifying if the versioned changes allow or
prevent the generation of the deployable unit.

Continuous
deployment (CD)

Automation of the deployment process once all the process quality filters have
been approved.

Unit tests (UT)
Minimum seal of development quality. Checks correctness and exception
handling, always guaranteeing the operability of the software.

UT coverage
measurement

Determines how exhaustive the unit tests have been, detecting opportunities
for improvement in the quality of the process.

Static code analysis
(SCA)

Allows detection of security vulnerabilities, structural errors, duplicate code
blocks, and technical debt from the measurement of code smell; inspects
whether it complies with the international code standard for the programming
language and measures PU coverage.

Automated functional
tests

Ensures that once the application has been deployed, automatic functional and
regression tests can be conducted, identifying whether what is expected in the
project is met.

B. Connection of the Selected Practices with SCRUM

According to [17], the success of correctly implementing Scrum suggestions consists

in understanding the value associated with prevention and the constant generation

of information that allows the team to know what they are doing well and what they

should improve. Scrum handles three roles: the Product Owner (PO), who maintains

the vision of the product and ensures compliance with the client's interests; the

Scrum Master (SM), who supports the team in adopting Scrum events, practices,

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

and dynamics; and the Scrum Development Team (SDT), in charge of preparing the

project and ensuring that the results have the highest possible level of quality when

it is put into production environments. The transfer of information between these

roles is essential to ensure the fulfillment of commitments, the high quality of the

deliverables, and the retrospective analysis that allows constant improvement during

the project.

Likewise, in [17], it is indicated that Scrum has a set of important events to be

completed during a project. The sprint, an event that occurs throughout the

execution, allows the work to be broken down into a standard time measurement to

agree on periodic reviews that will approve the job done or generate improvements

based on what has been detected. At the beginning of each sprint, it is necessary to

create an event called the sprint planning meeting, where the steps to be

implemented during that time are defined as well as how they will do it, responding

to the functional needs of the requirements analysis, collected in the product backlog

and architectural needs compiled in the architecture document. In this meeting, the

SM and the SDT actively define the breakdown of development activities that will

complete the commitments, as well as the quality filters and practices that the

execution of the project entails.

The PO will be available for consultation but is not essential for the execution of the

event. After the above, the SDT begins codifying the solution, ensuring the use of

the agreed practices, and verifying the tools that allow the increased quality to be

continuously measured. Here, the line between development and quality disappears,

becoming a single phase of the process. It is necessary to highlight that the work

teams from the preparation sprint (Sprint 0), before development Sprint 1, must

create the versioning repository, ensure its access, and agree on the versioning

policies (inclusion, download, reversion, and integration of changes). Additionally,

other practices such as CI, UT, CD, and SCA suggested by DevOps must be linked

to the versioning tool and define how the functional tests will be conducted. The SM

supports the review of these metrics constantly so that the entire team can learn and

improve during the evolution of each sprint. The specific Scrum event that supports

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

this is the daily meeting, where team members answer questions such as What work

was done the day before? What work is currently being done? and What difficulties

have you had? Additionally, before the meeting, the SDT members and the SM must

review their metrics, determining the current technical debt to avoid increasing it.

This is only possible if they are aware of the recurring unacceptable programming

practices in their work that cause a violation of the code standard (code smell) or

avoid the generation of the application. Likewise, they must ensure with unit tests

that each code unit built carries an implicit quality seal in the process.

Once the above is completed, deployment proceeds, which can be automated by

CD tools, eliminating manual intervention from the process and increasing the

success factor in deployments. The results are presented to the end users in the

sprint review, where the agreed functionalities for the sprint are evaluated. Although

end users do not know the measurements of the tools that support the practices

implemented by the team, they benefit from the high quality due to the reduced

possibility of failures and inconsistencies. Unit testing and functional test automation

are critical to the success of this event. Finally, the team meets without the customer

and holds a sprint retrospective event [17]. Here the team, using hindsight

techniques and supported by metrics, can evaluate what they did well within the

sprint and the possibilities for improvement. The above is summarized in Table 2.

Table 2. The relationship between Scrum and DevOps and its impact.

Scrum events DevOps recommended practice Impact on the development
process

Sprint planning
meeting

● Identification of programming practices
to use.

● Create development policies for
the team.

● Design of the archetype. ● Determine the quality attributes
and design patterns that guide
the architecture and the test
scenarios that must be faced.

Sprint 0

● Implementation of the archetype for
the development baseline.

● Creation of UT guide in the archetype.
● Versioning configuration.
● Version baseline of development.
● Implementation of CI.
● Implementation of CD.
● Implementation of SCA.

● Centralize information and
change management with
historical traceability and failure
recovery.

● Create an automated preventive
quality environment that
constantly reviews the evolution
of the project and allows the

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Scrum events DevOps recommended practice Impact on the development
process

● Implementation of a tool for functional
tests.

team to learn and improve sprint
by sprint.

Development
Sprint

● Development is done with unit tests
(UT).

● Use of versioning.
● Use of CI.
● Use of CD.
● USE of the SCA.
● Automation of functional tests.

● Identify vulnerabilities, code
smell, duplicate blocks,
technical debt, UT coverage,
correctness, and exception
handling to implement
improvements that improve
quality.

Daily Scrum
meeting

● Review the metrics provided by the
tools supporting the suggested
practices.

● Reduce technical debt,
determine the status of
commitments and react to
problems within the sprint.

Sprint review

● CD to ensure sprint review.
● Unit tests with coverage greater than

80% to ensure high quality.
● Automation of functional tests

● Ensure that the development is
to the expectations of end
users.

● Opportunity for continuous
improvement.

Sprint
Retrospective

● Analysis of the information generated
for continuous improvement.

● Opportunity for continuous
improvement.

C. General Model of the Process of Practices Implementation Using BP

Authors such as [15] and [18] agree that the first steps in practices recommended

by DevOps for development teams point to versioning, integration, and continuous

deployment, where versioning is the starting point of the process. To ensure the

collective ownership of the code and its standardization, all members of the SDT

work connected to a source code repository (versioner) where they centralize their

changes, generating traceability and the possibility of immediate failure recovery.

For this practice, it is suggested by [19] that only the last utterly stable version of the

project is kept in the master branch and that it is put into production (what in other

models is known as release or tag) so that each developer will have their own branch

to build the functionalities that they must develop (which in other models such as

that of Git are called features). Likewise, this same branch manages errors that have

not yet reached production and are detected during the quality cycle (what in Git is

called a hotfix).

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

After achieving the definition of completed (functionality built and tested by the

developer), the developer requests to join their changes to an integrations branch

where everyone's work is synchronized and mixed. The request is made through a

practice called a pull request (PR), which notifies the team that someone wants to

upload a change, and a developer other than the one submitting the request does a

manual code inspection to ensure the change is ready to be uploaded and does not

pose a risk to building the deployable unit. If the request is approved, the changes

are integrated, and everyone is notified via email that a change is available (although

there are other alternatives, such as slack chats). It is important to note that if there

is a conflict between the local version of the developer and the integrations branch

that contains the stable version, the developer must resolve them locally first before

being able to request integration via the PR. The versioning model described above

is shown in Fig. 1.

Since the integration branch is the synchronization point of the code, the quality

controls of the other practices should be triggered from here when the PR request is

approved. Additionally, in [15], they suggest that it is advisable to include the

execution of the unit tests (UT) within the CI before building the deployable unit. This

is done to ensure that the developers have tested every code unit. If someone from

the work team has uploaded a change affecting other code units without verifying its

impact, then the UT will be automatically run during the CI, reflecting the current

situation and notifying the work team of this. Likewise, in [19], they indicate that if it

has been possible to perform the versioning properly and the CI with its unit tests,

then the CD is possible. The SCA can be included to inspect the quality of the built

software.

This review corresponds to determining aspects such as vulnerabilities, duplicate

code blocks, and code smell, and even measuring the coverage of unit tests since

they must not only verify correctness (that the functionality responds to the desired

behavior for which it was built) but it must also handle exceptions properly always to

ensure the operation of the application. Therefore, it is essential to use unit tests to

review the coverage if a significant quality result is to be obtained, which is allowed

by the SCA practice.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Fig. 1. Versioning model.

Moreover, triggering an automated testing process after the CD practice is advisable.

These work in tools that allow the recording of scripts with the step-by-step of the

desired functional tests, identifying the navigation flow, required fields, data that must

be entered, and the operation to be performed on the screen. Likewise, they allow

the recording of tests on exception handling, capturing the necessary steps to enter

incorrect information, and identifying the messages that must be returned to control

exceptions. This model is summarized in Fig. 2.

Fig. 2. General model of the process of practice implementation.

D. Detailed Model of the Process of Practice Implementation Using BP

As a prerequisite for their adoption, the team must reach a consensus on which

practices will be adopted. In [20], it is recommended to adopt versioning, CI, and CD

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

initially. Once the members master these practices in one or two projects, the

company can consider including other complementary practices such as unit tests,

static code analysis, and the automation of functional tests described in the model

in Fig. 3.

To ensure that the developer starts working with the latest updated version that

synchronizes all the changes of all the members (the version in the integrations

branch), the branch of the repository in which the developer who has connected is

found must be validated. If this branch does not correspond to the integrations

branch, that switch must be made. Once the developer is in the integrations branch,

the latest updated version is downloaded and immediately switched to the

developer's own branch to begin from there to build the functionalities that have been

committed in the sprint until reaching the definition of completed (developed and

tested).

When the developer builds the functionality, they must also build the unit test

associated with their code to ensure correctness and proper exception handling.

These changes can be saved in the appropriate branch with the desired periodicity.

Once functionality has been completed, a request can be made through the practice

of the PR for the inclusion of its changes in the integrations branch. Once the request

is created, it waits for a team member other than the one requesting it to inspect the

code and determine if it does not affect the project negatively. If the request is not

approved, the developer is notified so that it can make the respective changes and

request the inclusion of its development in integrations again. If the request is

accepted, the changes are unified within the integration version, making it available

to all development team members. This also triggers the CI, where a two-step script

is executed. The first step indicates that all unit tests should be executed to ensure

that no changes have functionally affected other parts of the code. If the tests fail,

the process stops, notifying everyone. If the tests pass, the next step is to execute

the commands required to create the deployable unit. If it is impossible to generate

it, the process stops, and everyone is notified. Otherwise, the appropriate script that

allows the CD is executed.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

This script takes the credentials and access path of the application server where the

software will be put into operation to connect with it and deliver the deployable unit

generated in the previous step. For this, the file is placed in a specific path within the

server, and the operating system commands required for deployment are executed.

If there is a failure at this point, a message is generated notifying the entire team that

the process was not completed and the cause is that the CD could not be executed.

On the other hand, if the process is completed successfully, the entire team is

notified, and the self-test scripts built to that point previously by the team are

executed. This point presents a favorable aspect within Scrum because sprint by

sprint not only functionally checks the newly developed functionalities but can also

do automatic regression tests on those previously developed, ensuring that the

deliverable increments have not affected what has already been done.

Fig. 3. Detailed model.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Finally, the SCA can be executed in parallel with the previous step. Various aspects

can be measured within this point, most easily seen in Fig. 4.

Fig. 4. SCA process.

E. Evaluation of the Detailed Process Model by Experts

For the evaluation and feedback on the "process models for the implementation of

practices in software development”, a survey with the following questions was used:

Position held?

If you work in Software Engineering, select the type of work you do in this area.

1. Is the versioning model understandable?

1.1. Do you have any suggestions for improvement?

2. Do you consider the versioning model replicable?

3. Does it make use of versioning as presented by the model?

3.1. Other. Which activities do you think should be added?

4. From your perspective, what help or vision do the BPMN models give you?

5. Is the general model for implementing practices for software development

understandable?

6. Do you think the general model is replicable?

6.1. Do you think something else could be added?

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

7. Does it make use of continuous integration (CI) as presented by the model?

8. Did the detailed model help you better understand the set of practices involved?

9. Does it make use of continuous deployment (CD) as outlined in the model?

10. Do you consider the model useful for the industry?

11. Do you consider the information provided by the SCA useful?

12. Do you have any suggestions for the proposed models?

These questions were published through a Google form and disseminated to 79

professional experts in the area who work in academia and industry. The results are

presented in the following section.

III. RESULTS

Initially, the question: Position held? Allows the respondents' classification,

determining whether they are researchers, teachers, students, or professionals in

Software Engineering (SE). Of the total respondents (79), 2.6% (2)were researchers,

7.7% (6) were teachers, 23.1% (18) were students, and 66.6% (53) were SE

professionals.

SE professionals were further classified in the survey using the option: If you work

in Software engineering, select the type of work in this area. Of the total respondents

(79), 49% (39) were senior developers, 33% (26) were junior developers, and 9%

(7) were semi-senior developers. The previous reflects a significant interest of most

experienced developers in the industry on these issues. However, junior developers

have become interested in using practices as a much more efficient way of working,

with less rework due to quality controls. An additional 3% of those surveyed, two

people, were analysts. The remaining positions each represented a percentage of

1% of the total respondents, that is, one person. Table 3 below presents the

summary of the previous measurement.

Table 3. Percentage of participation by SE professionals by position held.

SD JD SSD A QA AS. TL PM C

49% 33% 9% 3% 1% 1% 1% 1% 1%
*Senior Developer (SD), Junior Developer (JD), Semi-Senior Developer (SSD), Analyst (A), Quality Assurer

(QA), Software Architect (SA), Technical Leader (TL), Project Manager (PM) Consultant (C).

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Regarding Question 1, Is the versioning model understandable? 96.2% (76) of

participants indicated that the model was understandable, and 3.8% (3) that it was

not.

Additionally, through Question 1.1, Do you have any suggestions for improvement?

The opinions of the respondents were collected to optimize the versioning process

model. The first relevant suggestion was that the name of the first task should be

changed from "Connecting to versioner" to "Connecting to repository" to separate

the tool's connection from the repositories it may have and to give it greater clarity.

This change was applied to the process model after receiving the suggestion. The

second recommendation was to adjust the task of accessing the branch that seems

repeated and would be better presented differently or unified. Therefore,

normalization was done in that part of the flow and adjusted according to the

recommendations.

Something important to highlight in the comments is that there was a strong

tendency to directly associate the version process model with the Git tool, its

practices, and its version model. This means that Git is a widely used tool in the

market and has generated a work culture for several respondents. Based on the

above, it was identified that the model is designed only for custom software

development projects but not for the maintenance and scaling of products where it

is necessary to consider the different versions released in production for one or more

clients (releases or tags), and that must be stored in the versioner. Additionally,

another recommendation was associated with the fact that when the business

process model is presented, it should be indicated if it is feature branches (model

proposed by Git), trunk-based development (model widely used by SVN), or another

process of the team (such as that presented in this work).

Regarding Question 2, Do you consider the versioning model replicable? 86.6% (70)

of those surveyed indicated that the model was replicable, and 11.4% (9) suggested

otherwise. Likewise, in Question 3, it is evaluated if it is used, Does it make use of

versioning as presented by the model? where 56.4% (45) indicated yes, while 43.6%

(34) indicated no. This can be seen in Fig. 5.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Fig. 5. Percentages of acceptance of the versioning model.

As a complement to the above, the participants were presented with option 3.1

Other. Which activities do you think should be added? The following feedback was

obtained: "The model lacks post-dev activities that include maintenance and growth

of the applications," and "The use of emails can be invasive, and it would be good

to evaluate chat alternatives such as slack." Furthermore, it was recommended to

"evaluate cases such as those proposed by GitHub for managing features, hotfixes,

bugs, etc." and "include a versioning of the versions put into production."

Question 4 was intended to determine the effectiveness of the business process

models made with the BPMN notation, From your perspective, what help or vision

do the BPMN models give you? For 100% of the respondents, it facilitates

understanding the proposed processes and makes it possible to obtain an ordered

sequence and generate concise guidelines for adopting the suggested practices.

Additionally, it avoids ambiguous interpretations since the model, when represented

graphically, only has one understanding, eliminating assumptions within the process.

Regarding the general model that integrates all the proposed practices and that was

presented to the participants within the survey, Question 5 asked: Is the general

model of implementation of practices for software development understandable? In

response, 88.5% (70) agreed it was understandable, while 11.5% (9) indicated it was

not. Then, for Question 6, Do you consider that the general model is replicable?

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

84.4% (67) felt the model was replicable, while the remaining 15.6% (12) believed it

was not. This is reflected in Fig. 6.

Fig. 6. Percentages of acceptance of the general model.

As a complement to question 6 of the survey, Question 6.1 was included: Do you

think something else could be added? Among the main recommendations is the

inclusion of a note describing the acronyms. Moreover, It was suggested that it would

be necessary to complement the model with non-functional tests focused on

security, performance, and component integration, and include an element of review

of connection availability and consumption of APIs ("health-checks"). These

validators reveal whether what is going to be consumed is available or not. If the

availability query indicates no connection, the CD is not made, interrupting the

process known to have failed. Instead, an alert is generated, and the current

production or test version continues until the connection problems are solved.

Concerning Question 7, Do you use continuous integration (CI) as presented by the

model? 56.4% (45) of respondents indicated Yes, while 43.6% (34) stated No.

Additionally, for Question 8, Did the detailed model help you better understand the

set of practices involved? Again, there was an excellent understanding associated

with process diagrams that detail practices for development and their combined use

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

in a quality process. Here, 92.3% (73) of the total participants answered Yes, while

7.7% (6) responded No.

Question 9, Does it make use of continuous deployment (CD) as outlined in the

model? evaluates the use of CD, for which 50.6% of the respondents (41) answered

affirmatively, and the remaining 49.4% (38) indicated they did not do it that way.

Regarding the usefulness of the proposal, Question 10 was formulated: Do you

consider the model useful for the industry? Of those surveyed, 72.2% (61) replied

that they thought the model was useful, 19% (15) said maybe, and the remaining

3.8% (3) indicated that it was not.

The perception of the usefulness of the information provided by the Static Code

Analysis model was also evaluated through Question 11, Do you consider the

information provided by the SCA useful? A significant result was obtained, with

93.7% (74) in favor, while the remaining 6.3% (5) indicated that they did not.

Finally, to obtain feedback, Question 12 was posed: Do you have any suggestions

for the proposed models? The first suggestion was that the proposed model be

oriented toward custom software development, leaving out maintenance, growth,

and product support. Likewise, mobile and serverless applications are left out, so it

was recommended to expand the proposal on these points or generate new

recommendations for these cases.

IV. CONCLUSIONS

The paper proposes a detailed model that allows the unifying of the practices

presented by DevOps of versioning, CI, UT, CD, SCA, and automated functional

tests, as part of an axis of preventive quality that constantly increases the quality of

the development of a project during a sprint. Furthermore, these practices generate

relevant information that connects with Scrum events, allowing continuous learning

to lead teams to sprint-by-sprint quality improvement of both the product and the

development process.

Additionally, the business process models have a graphic and holistic presentation

that allows all team members to understand the quality process and adopt the

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

practices regardless of the supporting tools. They likewise represent the

transversality of the processes conducted in the project. Finally, evaluation with

experts makes it possible to demonstrate that the inclusion of these practices is

relevant for the industry to have models that help guide understanding and

implementation.

The most significant interest in adopting practices according to the characterization

of the participants came from senior developers, who recognize the benefits of

including these practices within the work process in an organization. Doing so

generates filters and quality controls that allow taking preventive, non-corrective

measures, reducing possible rework after a developed project reaches production

deployment and is put into operation.

It was identified, furthermore, that several improvement comments are directly

associated with Git-based tools (GitHub, GitLab, Bitbucket, etc.), so it can be noted

that developers do not tend to go for a general model that can then be adapted to

the company, but for a specific model associated with the tool. This creates a

significant opportunity for this research proposal. There is a good understanding and

acceptance of the proposed process models. However, applying the suggestions to

improve the proposal further and solidifying it through a guide that allows following

the procedure and independently adopting the tools is recommended.

In future work, it is recommended to identify configurations of tools, both in the cloud

and on-site, that allow the implementation of the suggested practices by the

proposed process models. In addition, process models that support products already

built and have maintenance, support, and continuous growth must be proposed.

ACKNOWLEDGMENTS

The authors express their gratitude to the Institución Universitaria Antonio José

Camacho for participating in the research project entitled "Guide for the

implementation of harmonized practices for the development of software based on

SCRUM and DevOps in very small companies". Likewise, to the vice-rector for

research office of Universidad del Cauca for the support provided to the group of

researchers in the execution of this project.

https://doi.org/10.19053/01211129.v31.n62.2022.15207

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

AUTHORS’ CONTRIBUTION

Manuel-Alejandro Pastrana-Pardo: Conceptualization, Methodology, Resources,

Writing - original draft.

Hugo-Armando Ordoñez-Erazo: Conceptualization, Methodology, Resources,

Writing - original draft, Supervision, Project administration.

Carlos-Alberto Cobos-Lozado: Supervision, Writing - review and editing.

REFERENCES

[1] S. Martinez-Fernandez et al., “Continuously Assessing and Improving Software Quality With Software

Analytics Tools: A Case Study,” IEEE Access, vol. 7, pp. 68219–68239, 2019.

https://doi.org/10.1109/ACCESS.2019.2917403

[2] L. E. Lwakatare et al., “DevOps in practice: A multiple case study of five companies,” Information and

Software Technology, vol. 114, pp. 217–230, 2019. https://doi.org/10.1016/j.infsof.2019.06.010

[3] T. Laukkarinen, K. Kuusinen, T. Mikkonen, “Regulated software meets DevOps,” Information and Software

Technology, vol. 97, pp. 176–178, 2018. https://doi.org/10.1016/j.infsof.2018.01.011

[4] A. D. Robinson, “Very small entities (VSE); The final systems engineering (SE) frontier,” in 12th Annual

IEEE International Systems Conference, 2018, pp. 1–4. https://doi.org/10.1109/SYSCON.2018.8369570

[5] M. Pastrana, H. Ordoñez, C. Cobos, “ISO 29110 en Colombia: de la teoría a la práctica - ISO 29110 in

Colombia: from theory to practice,” Guillermo de Ockham: Revista Científica, vol. 17, no. 2, pp. 71–80,

2019.

[6] A. Hemon, B. Lyonnet, F. Rowe, B. Fitzgerald, “From Agile to DevOps: Smart Skills and Collaborations,”

Information Systems Frontiers, vol. 22, no. 4, pp. 927–945, 2020. https://doi.org/10.1007/s10796-019-

09905-1

[7] M. Pastrana, H. Ordóñez, A. Ordonez, L. H. Thom, L. Merchan, “Optimization of the Inception Deck

Technique for Eliciting Requirements in SCRUM Through Business Process Models,” Lecture Notes in

Business Information Processing, vol. 308, pp. 649–655, 2018. https://doi.org/10.1007/978-3-319-74030-

0_52

[8] R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer, “What is DevOps? A Systematic Mapping Study on

Definitions and Practices,” in Proceedings of the Scientific Workshop of XP, 2016.

https://doi.org/10.1145/2962695.2962707

[9] N. Tomas, J. Li, H. Huang, “An Empirical Study on Culture, Automation, Measurement, and Sharing of

DevSecOps,” in International Conference on Cyber Security and Protection of Digital Services (Cyber

Security), 2019, pp. 1–8. https://doi.org/10.1109/CyberSecPODS.2019.8884935

[10] Y. Wang, M. V. Mäntylä, S. Demeyer, K. Wiklund, S. Eldh, T. Kairi, “Software test automation maturity: A

survey of the state of the practice,” in Proceedings of the 15th International Conference on Software

Technologies, 2020, pp. 27–38.

[11] M. Z. Toh, S. Sahibuddin, R. A. Bakar, “A Review on DevOps Adoption in Continuous Delivery Process,”

in International Conference on Software Engineering & Computer Systems and 4th International

https://doi.org/10.19053/01211129.v31.n62.2022.15207
https://doi.org/10.1109/ACCESS.2019.2917403
https://doi.org/10.1016/j.infsof.2019.06.010
https://doi.org/10.1016/j.infsof.2018.01.011
https://doi.org/10.1109/SYSCON.2018.8369570
https://doi.org/10.1007/s10796-019-09905-1
https://doi.org/10.1007/s10796-019-09905-1
https://doi.org/10.1007/978-3-319-74030-0_52
https://doi.org/10.1007/978-3-319-74030-0_52
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/CyberSecPODS.2019.8884935

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (62), e15207, October-December 2022. Tunja-Boyacá,

Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v31.n62.2022.15207

Conference on Computational Science and Information Management, 2021, pp. 98–103.

https://doi.org/10.1109/ICSECS52883.2021.00025

[12] S. Vadapalli, DEVOPS: continuous delivery, integration, and deployment with DEVOPS. Packt Publishing,

2018.

[13] S. Vadapalli, DevOps: Continuous Delivery, Integration, and Deployment with DevOps Dive into the core

DevOps strategies. 2018. https://www.mendeley.com/catalogue/6e5717c5-64d8-3c7c-8183-

a659c7018957/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocume

ntId=%7Bd0423fe3-94bc-4497-8289-f037a01fd183%7D

[14] V. Ivanov, K. Smolander, “Implementation of a DevOps Pipeline for Serverless Applications,” Lecture Notes

in Computer Science, vol. 11271 LNCS, pp. 48–64, 2018. https://doi.org/10.1007/978-3-030-03673-7_4

[15] A. Manuel, P. Pastrana, H. A. Ordoñez Erazo, C. A. Cobos Lozada, “Documenting and implementing

DevOps good practices with test automation and continuous deployment tools through software

refinement,” Periodicals of Engineering and Natural Sciences (PEN), vol. 9, no. 4, pp. 854–863, 2021.

https://doi.org/10.21533/PEN.V9I4.2239

[16] Q.-M. Dai, R.-F. Mao, H. Huang, G.-P. Rong, H.-F. Shen, D. Shao, “DevSecOps: Exploring Practices of

Realizing Continuous Security in DevOps,” Journal of Software, vol. 32, no. 10, pp. 3014–3035, 2021.

https://doi.org/10.13328/j.cnki.jos.006276

[17] K. Schwaber, J. Sutherland, La Guía de Scrum. La Guía Definitiva de Scrum: Las Reglas del Juego, 2020.

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf

[18] N. Railic, M. Savic, “Architecting Continuous Integration and Continuous Deployment for Microservice

Architecture,” in 20th International Symposium INFOTEH-JAHORINA, 2021.

https://doi.org/10.1109/INFOTEH51037.2021.9400696

[19] M. A. Pastrana Pardo, H. A. Ordóñez Erazo, C. A. Cobos Lozada, “Approach to the Practices of Software

Development Based on DevOps and SCRUM Used in Very Small Entities,” Revista Facultad de Ingeniería,

vol. 31, no. 61, pp. e14828, 2022. https://doi.org/10.19053/01211129.V31.N61.2022.14828

[20] J. Díaz, R. Almaraz, J. Pérez, J. Garbajosa, “DevOps in practice,” in Proceedings of the 19th International

Conference on Agile Software Development: Companion, 2018, pp. 1–3.

https://doi.org/10.1145/3234152.3234199

https://doi.org/10.19053/01211129.v31.n62.2022.15207
https://doi.org/10.1109/ICSECS52883.2021.00025
https://www.mendeley.com/catalogue/6e5717c5-64d8-3c7c-8183-a659c7018957/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7Bd0423fe3-94bc-4497-8289-f037a01fd183%7D
https://www.mendeley.com/catalogue/6e5717c5-64d8-3c7c-8183-a659c7018957/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7Bd0423fe3-94bc-4497-8289-f037a01fd183%7D
https://www.mendeley.com/catalogue/6e5717c5-64d8-3c7c-8183-a659c7018957/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7Bd0423fe3-94bc-4497-8289-f037a01fd183%7D
https://doi.org/10.1007/978-3-030-03673-7_4
https://doi.org/10.21533/PEN.V9I4.2239
https://doi.org/10.13328/j.cnki.jos.006276
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf
https://doi.org/10.1109/INFOTEH51037.2021.9400696
https://doi.org/10.19053/01211129.V31.N61.2022.14828
https://doi.org/10.1145/3234152.3234199

