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Abstract 

A Dithered quantizer consists of an external signal called Dither added to the input signal 

prior to quantization to control the statistical properties of the quantization error. In the 

framework known as Quantum Signal Processing (QSP) an equivalent quantizer was 

developed, called probabilistic quantizer, which is able to generate a Dither signal with an 

arbitrary joint probability distribution. This paper demonstrates how positive B-spline 

functions can be used as a mapping in the probabilistic quantizer and the mathematical 

advantages to perform their analysis. In addition, we established a relation between the 

order of the B-spline and the rendering of conditional moments of the error. Experimental 

results show that the proposed approach performs on par with Dither quantizer, and its 

implementation is easier. 
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B-Splines positivas usadas como mapeos en el cuantificador probabilístico 

Resumen 

Un Cuantificador Dither consiste en una señal externa denominada Dither que se añade a 

la señal de entrada antes de la cuantización para controlar las propiedades estadísticas del 

error de cuantización. En el marco conocido como Procesamiento Cuántico de Señales 

(QSP por sus siglas en inglés), se desarrolló un cuantificador equivalente denominado 

cuantificador probabilístico, el cual es capaz de generar una señal Dither con una 

distribución de probabilidad conjunta arbitraria. Este trabajo demuestra cómo las funciones 

B-spline positivas pueden utilizarse como mapeo en el cuantificador probabilístico y las 

ventajas matemáticas para realizar su análisis. Además, establecemos una relación entre 

el orden de la B-spline y la representación de los momentos condicionales del error. Los 

resultados experimentales muestran que el enfoque propuesto ofrece un rendimiento a la 

par que el cuantificador Dither y su implementación es más fácil. 

Palabras clave: B-spline; cuantificador Dither; cuantificador probabilístico; momentos 

condicionales; procesamiento cuántico de señales. 

 

B-Splines positivos usados como mapeamentos no quantificador probabilístico 

Resumo 

Um Dither Quantizer consiste em um sinal externo chamado Dither que é adicionado ao 

sinal de entrada antes da quantização para controlar as propriedades estatísticas do erro 

de quantização. Na estrutura conhecida como Processamento Quântico de Sinais (QSP), 

foi desenvolvido um quantizador equivalente denominado quantizador probabilístico, que é 

capaz de gerar um sinal Dither com uma distribuição de probabilidade conjunta arbitrária. 

Este trabalho demonstra como funções B-spline positivas podem ser utilizadas como 

mapeamento no quantizador probabilístico e as vantagens matemáticas para realizar sua 

análise. Além disso, estabelecemos uma relação entre a ordem do B-spline e a 

representação dos momentos condicionais do erro. Os resultados experimentais mostram 

que a abordagem proposta oferece desempenho comparável ao quantizador Dither e sua 

implementação é mais fácil. 

Palavras-chave: B-spline; Quantificador de pontilhamento; quantificador probabilístico; 

momentos condicionais; processamento quântico de sinais.  
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I. INTRODUCTION 

The conversion of a signal from analog to digital generally comprises two processes: 

sampling, which converts a signal (a function of time) into a discrete-time signal (a sequence 

of real numbers); and quantization of the amplitude values, a nonlinear process that assigns 

a binary code to each signal sample [1]. In quantization designs, under certain conditions 

(e.g., Quantization Theorem I and II in [2]), from a point of view of moments, the quantization 

error can be modeled as an additive random process, independent of the input signal and 

distributed uniformly [2]. This linear behavior is highly desirable in many circumstances [2]-

[5].  

However, if the input has magnitude values comparable to the quantizer step, the error 

signal ϵ cannot be modeled as an additive random process due to its strongly dependence 

on the input [6]. The most common approach to solve it has been the use of Dithered 

quantizer because it satisfies the QT II, thus controlling the statistical properties of the 

quantization error and their relationship to the input signal of the system by adding a random 

signal, called the Dither signal, to the input signal before quantization [3], [7]. It is widely 

employed, for example in audio and image processing applications to reduce perceptual 

artifacts [8]; in ADCs to improve the resolution [9], [10] and security [11]; in sigma-delta 

digital modulators [12]–[14]; in Watermark to hide data [15] in Light detection [16,17]; and in 

finite frames [18]–[20]. Recently, Dither quantization has been used in the quantization of 

random linear mapping outputs, particularly in compressed sensing [21]-[23] and in spatial 

Dithering for graph signal to find statistically good sampling sets [24]. 

Despite the benefits of the Dither quantizer, one of its disadvantages is computational 

complexity to generate random processes (Dither signals) subject to an arbitrary joint 

probability distribution [7] because, in practice, they are commonly generated as a 

combination of n uniform independent, identically distributed, random variables. Sanyal and 

Sun [25] proposed a new method for adding Dither signals to vector quantizers, which 

achieves a better mismatch shaping performance with low hardware usage compared to 

existing Dither techniques. Akyol and Rose [5] developed a constrained Dither quantizer that 

outperforms the conventional Dither quantizer with similar complexity. In [26], it was 

demonstrated how the resolution of a uniform quantizer increases by using a deterministic 

Dither signal, and in [27], the authors designed an alternative Dithering scheme that 

replaced the Dithering addition by an orthogonal transformation. 

Given this limitation, a new framework called Quantum Signal Processing (QSP) [28] that is 

aimed at developing new or modifying existing signal processing algorithms by borrowing 
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from the principles of quantum mechanics and some of its interesting axioms and 

constraints, presents a probabilistic quantizer that has a direct relationship with the Dither 

quantizer and can generate a Dither signal with an arbitrary joint probability distribution using 

only a uniform random variable as input. Therefore, it reduces the computational complexity; 

however, it needs a mapping function with specific characteristics in time and frequency 

domain. 

This paper shows that the positive B-splines satisfy the conditions to be a mapping for the 

uniform probabilistic quantizer and establishes a relation between the order of B-spline and 

the rendering of conditional moments of the error. One advantage of using B-splines is that 

they can be explicitly characterized, thus, their analysis is easier by eliminating convergence 

issues. Finally, we verify the result through numerical simulations and show that the 

proposed approach performs on par with Dither quantizer, but only requires the generation 

of a random variable. 

 

II. METHODOLOGY  

In value amplitude quantization, a binary code is assigned to each signal sample, then the 

quantization process performs a mapping from the analog world to the digital one.  It is 

necessary to acknowledge the inevitable degradation suffered by the signal, which is 

characteristic of the quantization process. More precisely, the quantizer input is a sequence 

that must belong to the space of sequences of finite energy (ℓ2) to bring stability to the 

quantification process. For each input value 𝑥𝑛, there will be a corresponding quantized 

value given by 𝑦𝑛 = 𝑄(𝑥𝑛), where the quantizer Q selects one of the quantization levels 

according to a defined rule, and the difference between each level is equal to ∆. In the 

operation of the QSP quantizer, the scalar quantizer defined as: 

𝑄(𝑥) = 𝛥 ⌊
𝑥

𝛥
+

1

2
⌋  (1) 

It was taken as a base, where the operator ⌊.⌋ returns the largest integer, which is less than 

or equal to its argument. The ∆ step is commonly referred to as the least significant bit (LSB) 

since a change in the input signal of one step at the most will generate a change in the LSB 

of the binary code of the output [2]. The transfer function of the scalar quantizer is shown in 

Figure 1. 
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Fig. 1. Characteristic Transfer function of a uniform quantizer. 

 

A. Probabilistic Quantizer 

The QSP probabilistic quantizer in the vector space ℝ is shown in Figure 2 [28].  

 

 

Fig. 2. Description of the Probabilistic Quantizer. 

 

To ensure stability in the quantification process, an input transformation Tx : ℝ → ℓ2 is applied, 

mapping the input to the space of sequences with finite energy. To obtain the quantized 

value, a transformation Ty : ℓ2 → ℝ is defined, such that Ty = 𝑦 = 𝑘∆. The QSP measurement, 

denoted as M is constructed on ℓ2, and employs a probabilistic assignment rule f to assign 

a corresponding output value w to each input value u. This quantizer is called QSP Quantizer 

with mapping f. Then, using this probabilistic mapping f, the quantization process can be 

expressed as follows: 

𝑄𝑀(𝑥) = 𝑘𝛥,  with 𝑘 = 𝑓(𝑥) (2) 

where 𝑓 depends on the input 𝑥 through the numbers {𝑥 − 𝑘𝛥}. For example, the uniform 

quantizer is obtained when 𝑓(𝑥) = arg min
𝑖∈𝒦

|𝑥 − 𝑖𝛥|, then different mappings result in new 

and interesting quantizers. 

When developing the probabilistic quantizer, we choose a probabilistic mapping 𝑓: ℝ × 𝑊 →

ℤ where {𝑊 = ℤ} represents the sample space of a discrete auxiliary variable 𝑤 with 

alphabet ℤ. As such, the variable 𝑤 can only take values 𝑤𝑘 = 𝑘 ∈ ℤ with probability 𝑝𝑘 =

ℎ(𝑥 − 𝑘𝛥) for certain function ℎ(𝑥). The mapping assigns an index 𝑘 for each input through 

𝑓(𝑥, 𝑘) = 𝑘, and the output of the quantizer is 

𝑦 = 𝑘𝛥, with probability 𝑝𝑘 = ℎ(𝑥 − 𝑘𝛥)  (3) 

This quantizer will be referred to as a Probabilistic quantizer with mapping ℎ(𝑥). The 

mapping should fulfill the following condition in the time domain [28] 
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ℎ(𝑥 − 𝑖𝛥) ≥ 0  and ∑ ℎ+∞
𝑖=−∞ (𝑥 − 𝑖𝛥) = 1. (4) 

while in the frequency domain, the condition of the mapping is given by 

𝐻 (
2𝜋

𝛥
𝑖) = 𝛥𝛿[𝑖],   𝑖 ∈ ℤ (5) 

where 𝐻(𝜔) represents the Fourier transform of ℎ(𝑥), and 𝛿[𝑖] is the Dirac delta function. 

 

B. Relationship Between Probabilistic and Non-subtractive Dithered (NSD) 

Quantizers 

When the characteristic function of the input signal 𝑥 is bandlimited, the moments of 𝑥 can 

be obtained from the moments of 𝑦 if the frequency of quantization (2𝜋/𝛥) is higher than 

the highest frequency component of the characteristic function (CF) of 𝑥. But, when 𝑥 is not 

bandlimited, another method must be used. One option is non-subtractive Dithered 

quantizer (NSD). It consists in adding an independent signal 𝑣 (Dither) to signal 𝑥 to control 

the bandwidth of the quantizer input signal characteristic function 𝑥 + 𝑣, and satisfies the 

Widrow quantizing theorems [2, QT I-II], as shown in Figure 3. Moreover, NSD systems are 

designed to control the statistical characteristics of the error 𝜖 = 𝑦 − 𝑥 [6], [7]. 

 

 

Fig. 3. Band limitation of characteristic function of quantizer input signal w resulting from Dithering with a 

bandlimited independent Dither signal v. (a) CF of x no bandlimited, (b) CF of Dither signal v bandlimited, (c) 

CF of quantizer input x + v bandlimited. 

 

The Dither signal is assumed to be stationary and statistically independent of input 𝑥 and 

serves as lowpass antialias filtering for 𝚽𝑥(𝑡) . Figure 4 shows a block diagram of a 

memoryless or non-subtractive Dithered quantizer. 
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Fig. 4. Non-subtractive Dithered quantization (NSD). 

 

The probability of the NSD quantizer output 𝑦 = 𝑄(𝑥 + 𝑣) is defined as [28] 

𝑝𝑘(𝑦 = 𝑘𝛥) = 𝟏𝛥(𝑥 − 𝑘𝛥) ∗ 𝑓𝑣(−𝑥) (6) 

where ∗ denotes the convolution operator, 𝑓𝑣 is the Probability Density Function (PDF) of 

the Dither signal, and 

𝟏𝛥 = {
1 −𝛥/2 ≤ 𝑥 ≤ 𝛥/2
0 otherwise

 (7) 

Now, comparing 𝑝𝑘(𝑦) from (6) with (3), the mapping is equivalent to 

ℎ(𝑥) = 𝟏𝛥(𝑥) ∗ 𝑓𝑣(−𝑥) (8) 

and in the frequency domain is 

𝐻(𝜔) = 𝛥sinc (
𝛥𝜔

2
) 𝐹𝑣(−𝜔) (9) 

where 𝐹𝑣 is the Fourier transform of 𝑓𝑣, and sinc(x)=sin(x)/x. To sum up, a NSD quantizer 

with a Dither signal with PDF 𝑓𝑣(𝑣) is equivalent to a probabilistic quantizer with mapping 

ℎ(𝑥). And the necessary relationship between ℎ(𝑥) and 𝑓𝑣(𝑣) in the time domain is defined 

by ([eq_relation]) and its equivalent in the frequency domain by (9). 

 

C. B-Spline Function as Mapping h(x) 

Although it is possible to find mappings that satisfy the previous conditions, the main 

drawback is to achieve that certain moments of the error can be independent of the input. 

This section presents a family of splines that satisfies these requirements. A basic spline or 

B-spline of degree 𝑝 is a polynomial function constrained to be Hölder continuous of order 

𝑝 [29]. The B-spline of order 𝑝 = 0 is the well known Haar scaling, defined by 

𝛽𝐻𝑎𝑎𝑟
0 (𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1) (10) 

where 𝑢(𝑡) is the Heaviside step function. It is of our interest to include the 𝛥 step, then the 

B-spline of order 𝑝 = 0 is reformulated as 

𝛽+
0(𝑡) = 𝑢 (

𝑡

𝛥
) − 𝑢 (

𝑡

𝛥
− 1) (11) 

with the Fourier transform given by 

𝐵+
0(𝜔) =

1−𝑒−𝑗𝜔𝛥

𝑗𝜔𝛥
 (12) 

The basic spline of order 𝑝 is defined by 𝑝 convolutions of 𝛽0: 
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𝛽+
𝑝

= 𝛽+
𝑝−1

∗ 𝛽+
0 (13) 

and using the Fourier properties, its transform is given by: 

𝐵+
𝑝

(𝜔) = (
1−𝑒−𝑗𝜔𝛥

𝑗𝜔𝛥
)

𝑝+1

 (14) 

when the degree tends to infinity, the B-splines converge to the sinc wavelet [30]. 

Furthermore, B-splines produce scaling or wavelet functions with an explicit analytical form 

[29 -31], and they can be implemented by finite or infinite impulse response filter [32],[33]. 

To have more freedom in the selection of the mapping, we use the extension of B-spline 

with non-integer order, called fractional B-splines [34]: 

𝛽+
𝑝

(𝑡) =
1

𝛤(𝑝+1)
∑ (−1)𝑖(𝑝+1

𝑖
) (

𝑡

𝛥
− 𝑖)

+

𝑝

𝑖≥0    (15) 

These splines have compact support only when 𝑝 is an integer, resulting into basic splines 

[34]. Because the support belongs to ℝ+, these splines are called causal. In this paper we 

are only interested in positive and centered B-splines because we need to represent a 

probability density function of a random variable or Dither. The centered B-spline and its 

Fourier transform are expressed as: 

𝛽0
𝑝

= 𝛽+
𝑝

(𝑡 + 𝜏)   ↔
ℱ

  𝐵0
𝑝

(𝜔) = 𝑒−𝑗𝜔𝜏𝐵+
𝑝

(𝜔) (16) 

where 𝜏 = 𝛥(𝑝 + 1)/2 is the shift necessary to center the spline. We focus on fractional 

centered positive B-splines, orders 𝑝 = 0.1 and 𝑝 ≥ 2 as show in Figure 5.  

 

(a) 

(b) 

Fig. 5. (a) Centered B-spline of orders 0 to 2. (b) Centered B-splines for 2≤ p ≤5. 
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The B-splines with fractional orders (0,1) were discarded because they have negative 

values. The partition of unity condition (4) is satisfied because the B-splines are scaling 

functions [29], and it is easily proved in the frequency domain 

𝐵0
𝑝 (

2𝜋𝑖

𝛥
) = 𝑒−𝑗

2𝜋𝑖

𝛥
𝜏 (

1−𝑒−𝑗
2𝜋𝛥𝑖

𝛥

𝑗
2𝜋𝛥𝑖

𝛥

)

𝑝+1

 (17) 

the last quotient is 0 for any 𝑖 ≠ 0, and is 1 to 𝑖 = 0. Then 

𝐵0
𝑝 (

2𝜋𝑖

𝛥
) = 𝑒−𝑗𝜋(𝑝+1)𝑖𝛿[𝑖] (18) 

All fractional and positive B-splines satisfy the mapping conditions of the QSP quantizer. 

Figure 6 shows the Fourier transform of positive splines of order 0 and 2. A feature of the 

NSD quantizer is not possible to make the error and the input statistically independent, 

although certain moments of the error can be independent [6]. In a probabilistic quantizer, 

the 𝑚𝑡ℎ conditional moment of the given error signal, is defined as 

𝔼(𝜖𝑚|𝑥) = ∫ 𝜖𝑚ℎ(𝜖)
+∞

−∞
↑↑↑∆ (𝜖 + 𝑥)𝑑𝜖 (19) 

where ↑↑↑∆ (𝑥) is a Dirac comb of period ∆. The conditional moment is functionally 

independent of the input 𝑥 for 𝑚 ≥ 1 if and only if [28, Theorem 7] 

𝑑𝑚𝐻

𝑑𝜔𝑚
(

2𝜋𝑘

𝛥
) = 0 𝑘 = ±1, ±2, . .. (20) 

The 𝑚𝑡ℎ derivative of the Fourier transform of centered B-spline ([FTb-spline]) can be 

expressed as 

𝑑𝑚𝐵0
𝑝

(𝜔)

𝑑𝜔𝑚
=

𝑑𝑚−1

𝑑𝜔𝑚−1
(

𝑑𝐵0
𝑝

(𝜔)

𝑑𝜔
) (21) 

with 𝑚 ≤ 𝑝 because the B-spline of degree 𝑝 are 𝑝-differentiable. To analyze the previous 

𝑚𝑡ℎ derivative, we first obtain the first derivative. 

𝑑

𝑑𝜔
{𝑒−𝑗𝜔𝜏 (

1−𝑒−𝑗𝜔𝛥

𝑗𝜔𝛥
)

𝑝+1

} =
(𝑝+1)

𝜔
𝑒−𝑗𝜔𝜏 ×

(
1−𝑒−𝑗𝜔𝛥

𝑗𝜔𝛥
)

𝑝

[𝑒−𝑗𝜔𝛥 −
1−𝑒−𝑗𝜔𝛥

𝑗𝜔𝛥
]

−𝑗𝜏𝑒−𝑗𝜔𝜏 (
1−𝑒−𝑗𝜔𝛥

𝑗𝜔𝛥
)

𝑝+1

   (22) 

 

Fig. 6. Fourier transform magnitude of B-splines centered to orders 0 (uniform distribution) and 2.  
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Expressing in terms of 𝐵+
0 we have 

𝑑𝐵0
𝑝

(𝜔)

𝑑𝜔
=

(𝑝+1)

𝜔
𝑒−𝑗𝜔𝜏{𝐵+

0𝑝
(𝜔)[𝑒−𝑗𝜔𝛥 − 𝐵+

0(𝜔)]

−𝑗𝜏𝐵+
0𝑝+1

(𝜔)}.
 (23) 

Since we are deriving a power function, the function will appear in every derivative, so we 

focus on this: 

𝐵+
0(𝜔)|

𝜔=
2𝜋𝑖

𝛥

=
1−𝑒−𝑗𝜔𝛥

𝑗𝜔𝛥
|

𝜔=
2𝜋𝑖

𝛥

= 0 (24) 

Therefore, the Fourier transform of the B-spline both centered and non-centered, satisfies 

the condition (20). Figure 7 shows the conditional moments of the error (19) for a B-spline 

of order 2 (see Figure 5(a)), which matches the results obtained by 2RPDF (Two 

Rectangular Probability Density Function) NSD quantizer generated from the sum of two 

statistically independent zero-mean uniformly distributed random variables, studied by 

Wannamaker et al. [6]. Notice that the first and second moments are constant; therefore, 

they are independent of the input, whereas the third moment is variable. Hence, the 

moments greater than the order of the B-spline (𝑝 > 2) will continue to be variable and 

remain dependent on the input. 

 

 

Fig. 7. Conditional moments of the error for a probabilistic quantizer using centered B-spline of order 2 vs 

2RPDF. 

 

III. RESULTS  

To observe the performance of the probabilistic quantizer, first a 1 Khz sinusoidal, shown in 

Figure 8, is used as input; and the centered B-spline of order 2 (see Figure 5a) is used as 
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mapping ℎ in the quantizer. The discrete random variable 𝑤 ∈ ℤ is generated with 

probabilities 𝑝𝑘 = ℎ(𝑥 − 𝑘𝛥), and the quantized output y is given by 𝑤∆. Note that this 

relation is input dependent. To generate 𝑤, we use the inversion method [35], which consists 

in obtaining the partial sums 𝑠𝑘 = ∑ 𝑝𝑖𝑖≤𝑘  and generating only one uniform [0,1] random 

variable 𝑣. The sum can be seen as a monotone transformation, then 𝑝(𝑠𝑘 ≤ 𝑣 ≤ 𝑠𝑘+1) =

𝑠𝑘+1 − 𝑠𝑘 = 𝑝𝑘. To obtain the output, we must generate a realization of 𝑣, and then quantize 

the input equal to 𝑘𝛥, where 𝑘 is obtained from 𝑠𝑘 ≤ 𝑣 ≤ 𝑠𝑘+1. This can be done with any 

input and the code for all simulations is available online (GitHub repository 

https://github.com/jphoyos/bspline_mapping). 

 

 

Fig. 8. Simulation quantization of a 1 KHz sine wave of 4.0 LSB peak-to-peak amplitude using probabilistic 

quantizer with centered spline of order 2. (a) Input signal x (b) output signal y (c) error signal ϵ, and (d) power 

spectral density of the output signal. 

 

As the order the spline is 2, only the first and second moment of the error are independent 

of the input (Figure 7). Hence, vestiges of the input signal are visible in the error signal Figure 

8(c), as in the output signal Figure 8(b). The power spectral density shown in Figure 8(d) 

presents no distortion and suggests that the error is spectrally white. Our results are the 

same as those obtained by [7], but in our mappings we only needed to generate one random 

variable to do the quantization with the B-spline mapping and obtained the same 

performance. Also, to analyze the Rate-Distortion 

𝑅(𝐷) = min
𝑃𝑌|𝑋∈𝒫(𝑋,𝐷)

𝐼(𝑋, 𝑌) (25) 

https://doi.org/10.19053/01211129.v33.n68.2024.17387
https://github.com/jphoyos/bspline_mapping


Positive B-splines used as Mappings in the Probabilistic Quantizer 

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 33, No. 68, e17387, April-June 2024.  
Tunja-Boyacá, Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328. 
DOI: https://doi.org/10.19053/01211129.v33.n68.2024.17387 

where 𝒫(𝑋, 𝐷) is the set of 𝑃𝑌|𝑋 that satisfy 𝔼[𝑑(𝑋, 𝑌)] ≤ 𝐷, we obtained the upper bounds 

on 𝑅(𝐷) by evaluating the mutual information 𝐼(𝑋, 𝑌) for a specific 𝑌 and distortion 𝐷. Figure 

9 presents the rate-distortion of the proposed mappings in the probabilistic quantizer and 

the standard Dither quantizer for a standard unit variance scalar Gaussian source. We used 

the mean square error distortion as measure 𝑑 for each quantizer, guaranteeing that the 

distribution is on the interval [−𝛥/2, 𝛥/2]. 

The probabilistic quantizer with B-spline of order 0 obtains the same performance as the 

traditional Dither quantizer with uniform distribution, while the B-spline of order 1 and 3 

obtain a rate equal to a Dither quantizer with Gaussian distribution. Conversely, with the 

fractional order, the worst performance is obtained due to the anti-symmetric distribution. 

Then, the best rate was obtained by the B-spline of order 3 and the standard Dither quantizer 

with a Gaussian distribution, which renders all moments of the error independent of the 

system input; unfortunately, achieving it is complex because it would be necessary to 

generate and add theoretically infinite independent random variables [6]. Using a 

probabilistic quantizer with B-splines of order 𝑝 ≥ 3, the same rate is obtained and such 

complexity disappears since only one random variable is required to generate the 

distribution, rendering the 𝑝 moments of the quantization error. 

 

 

Fig. 9. Rate of the probabilistic quantizer with B-spline of order 0,1,3 and fractional 1.3 for a Gaussian source 

as compared to the standard NSD quantizer with uniform and Gaussian distribution. 

 

IV. CONCLUSIONS  

This paper proves that the centered positive B-splines fulfill all the necessary conditions to 

be mappings in a probabilistic quantizer. We show that the use of B-splines as mappings 

brings mathematical advantages because they can be explicitly characterized, thus 
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facilitating their analysis as well as that of the conditional moments of the error. This explicit 

characterization eliminates convergence issues that may arise with other mapping 

techniques. Furthermore, we established a meaningful relationship between the order of B-

splines and the rendering of conditional moments of the error. This finding provides valuable 

insights to optimize the quantization process and achieve higher performance. Additionally, 

it is noteworthy that the implementation of B-splines as mappings requires generating a 

single random variable, which simplifies the overall system complexity. Finally, through 

extensive numerical experimentation, we validated the effectiveness of the probabilistic 

quantizer utilizing B-splines. Our experimental results have shown that this approach 

achieves performance on par with the NSD quantizer, a well-established benchmark. This 

result reinforces the practical feasibility and usefulness of employing B-splines in the 

quantization process. 
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