
DOI: 10.19053/01211129.v33.n69.2024.17895

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 33, No. 69.
L-ISSN: 0121-1129, e-ISSN: 2357-5328.

COMPARATIVE STUDY OF CUCKOO-INSPIRED ALGORITHMS TO SOLVE 
LARGE-SCALE CONTINUOUS OPTIMIZATION PROBLEMS
Estudio comparativo de algoritmos inspirados en el cuco para problemas de 
optimización continua a gran escala

Carlos-Alberto Cobos-Lozada 
PhD. Universidad del Cauca (Popayán-Cauca, Colombia). 
ccobos@unicauca.edu.co

Henry Muñoz-Collazos 
Ing, Credit One Bank (Las Vegas-Nevada, Estados, Unidos).
henry.munoz@creditone.com

Richar Urbano-Muñoz 
Esp. Universidad del Cauca (Popayán-Cauca, Colombia). 
rurbano@unicauca.edu.co

Received / Recibido: 13/04/2024

Accepted / Aceptado: 05/08/2024

Cómo citar este artículo: C-A- Cobos-Lozada, H. Muñoz-Collazos, R. Urbano-Muñoz, “Comparative Study of Cuckoo-Inspired Algorithms 
to Solve Large-Scale Continuous Optimization Problems”, Revista Facultad de Ingeniería, vol. 33, no. 69, e17895, 2024. https://doi.
org/10.19053/01211129.v33.n69.2024.17895

ABSTRACT
Two distinctive behaviors of the cuckoo bird have inspired several metaheuristic algorithms to solve continuous optimization 
problems. In addition to the well-known parasitic breeding behavior that gave rise to several cuckoo search (CS) algorithms, 
another behavior related to their clustering and the way they locate food sources has given rise to the COA algorithm. As a 
result, there are several variants to solve continuous optimization problems; however, it is necessary to define which one is 
the most suitable under specific requirements. This paper compares six of these algorithms, including CS+LEM (proposed 
in this paper), which consists of a hybridization of the CS algorithm with learning evolutionary models (LEM) using an 
approach known as “metaheuristics enhanced by artificial intelligence”. Three assessments were performed using a set of 
61 continuous test functions: 1) the optimal value achieved with a fixed execution time; 2) the number of objective function 
evaluations required to reach the global optimum; and 3) the optimal value achieved with a fixed number of objective function 
evaluations. CS+LEM presents the best results in evaluation 1, while COA presents the best results in evaluations 2 and 3. 
The results were analyzed using the Friedman and Wilcoxon nonparametric statistical tests.

Keywords: artificial intelligence; Cuckoo search algorithm; large-scale continuous problems; metaheuristics; optimization.

RESUMEN
Dos comportamientos distintivos del pájaro cuco han inspirado varios algoritmos metaheurísticos para resolver problemas 
de optimización continua. Además del conocido comportamiento de reproducción parasitaria que dio origen a diversos 
algoritmos de búsqueda cuco (CS por sus siglas en inglés), otro comportamiento relacionado con sus agrupaciones y la forma 
en que localizan las fuentes de alimento ha dado lugar al algoritmo COA. Como resultado, existen diferentes variantes para 
resolver problemas de optimización continua; sin embargo, es necesario definir cuál es el más adecuado para resolver un 

Esta edición se financió con recursos del Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco 
José de Caldas, Minciencias

https://doi.org/10.19053/01211129.v33.n69.2024.17895
https://revistas.uptc.edu.co/index.php/ingenieria
https://orcid.org/0000-0002-6263-1911
https://ror.org/04fybn584
mailto:ccobos@unicauca.edu.co
https://orcid.org/0009-0005-0551-7724
mailto:henry.munoz@creditone.com
https://orcid.org/0000-0001-5956-6066
https://ror.org/04fybn584
mailto:rurbano@unicauca.edu.co
https://doi.org/10.19053/01211129.v33.n69.2024.17895
https://doi.org/10.19053/01211129.v33.n69.2024.17895
https://creativecommons.org/licenses/by/4.0/


2

Comparative Study of Cuckoo-Inspired Algorithms to Solve Large-Scale Continuous Optimization Problems

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

problema bajo requerimientos específicos. En este trabajo se realiza una comparación entre seis de estos algoritmos incluido 
CS+LEM (propuesto en este artículo), una hibridación del algoritmo CS con modelos evolutivos que aprenden (LEM por 
sus siglas en inglés) usando un enfoque conocido como “metaheurística mejorada por inteligencia artificial”. Se realizaron 
tres evaluaciones utilizando un conjunto de 61 funciones de prueba continuas: 1) el valor óptimo alcanzado con un tiempo 
fijo de ejecución; 2) el número de evaluaciones de la función objetivo necesarias para alcanzar el óptimo global; 3) el valor 
óptimo alcanzado con un número fijo de evaluaciones de la función objetivo. CS+LEM presenta los mejores resultados en 
la evaluación 1, mientras que COA presenta los mejores resultados en las evaluaciones 2 y 3. Los resultados se analizaron 
mediante las pruebas estadísticas no paramétricas de Friedman y Wilcoxon.

Palabras clave: algoritmo de búsqueda del cuco; inteligencia artificial; metaheurísticas; optimización; problemas continuos 
a gran escala.

1. INTRODUCTION

Metaheuristic algorithms are general-purpose algorithms used to find the solution to a specific 
problem. Metaheuristics are considered technical or high-level strategies that combine low-level 
techniques and tactics to explore and exploit the search space [1]. Among the best-known metaheuristics 
are Genetic Algorithm (GA) [2], Memetic algorithm [3], Tabu Search [4], Ant Colony Optimization [5], 
Particle Swarm Optimization (PSO) [6], Grey Wolf Optimization [7], Firefly algorithm [8]-[9], Differential 
Evolution (DE) [10], and Harmony Search algorithms [11]-[12].

In recent years, optimization algorithms have become one of the most essential fields in science and 
engineering —especially when minimizing time, costs, materials, and space—; therefore, this area is 
currently the object of scientific research and development, looking to improve productivity, cost, and 
processing time [13].

Cuckoo Search (CS) is a metaheuristic algorithm based on the exciting breeding behavior (brood 
parasitism) of certain species of cuckoo birds, in combination with the Lévy flight behavior of some birds 
or fruit flies [14]. The success of this algorithm versus Genetic Algorithms (GA) and Particle Swarm 
Optimization (PSO) algorithms has made this useful for engineering optimization problems like the 
design of springs, design of beam structures, and data fusion in wireless sensor networks [14]-[15]. 
The advantage of CS against GA and PSO lies in the balance of randomization, intensification, and the 
lowest number of parameters to be controlled [14]. Cuckoo Optimization Algorithm (COA) is another 
metaheuristic algorithm inspired by cuckoo birds, but in this case, based on their lifestyle (immigration of 
societies or groups), that has shown promising results in continuous optimization problems. This paper 
compares six cuckoo-inspired algorithms to help solution designers select the appropriate algorithm for 
a specific optimization problem. Three scenarios of evaluation were used: 1) the optimal value achieved 
with a fixed time of execution, which is used for applications that need the best possible solution in a 
very short execution time (for online problems); 2) the number of objective function evaluations (OFE) 
required to reach the global optimum, it was designed to define the cuckoo-inspired algorithm that can 
solve (find optimal solutions) the greatest number of problems without restrictions on execution time 
(for offline optimization problems); and 3) the optimal value achieved with a fixed number of OFEs, 
where the behavior between online and offline applications based on the number of OFEs was analyzed; 
currently, this test is the least commonly used by the research community because algorithms can spend 
a variable time between each objective function evaluation (some algorithms spend excessive time, even 
greater than that required to evaluate the objective function, while others need much less time).



3

Cobos-Lozada et al.

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

The paper is organized as follows: Section II summarizes five cuckoo-inspired algorithms; Section III 
presents a new algorithm proposed by the authors, in which CS is hybridized with Learnable Evolution 
Models (LEM); Section IV presents the analysis of the experimental results of the algorithm against 
a broad set of test functions; finally, some concluding remarks and suggestions for future work are 
presented.

2. CUCKOO-INSPIRED ALGORITHMS

Cuckoo Search has been applied to solve many engineering optimization problems and underwent 
several modifications that led to various improvements in accuracy and convergence time over general 
or specific optimization problems, e.g., decreasing the noise sensitivity of CS. The CS algorithm is 
described below, followed by three modifications that will be considered in the comparative study, 
namely: Improved Cuckoo Search Algorithm (ICS) [16], Modified Cuckoo Search (MCS) [17], and 
Modified Cuckoo Search Algorithm (MCSA) [18]. Finally, in this section, another algorithm inspired by 
the lifestyle of the cuckoo is presented, the Cuckoo Optimization Algorithm (COA) [19].

The Cuckoo Search (CS) algorithm provides a new way for intensification (search for better solutions in 
the neighborhood of the current solution) and diversification (make sure the algorithm can explore the search 
space efficiently). By simplifying the breeding behavior of the cuckoo, a set of three idealized rules can be 
established [14]: 1) Each cuckoo lays one egg at a time and deposits it in a randomly chosen nest; 2) The best 
nests with high-quality eggs will be carried over to the next generations; 3) The number of available host nests 
is fixed, and the host bird discovers the egg laid by a cuckoo with a probability ρa ∈ [0,1] (ρa, Percentage of 
abandonments). In this case, the host bird can either get rid of the egg or abandon the nest and build an entirely 
new nest. Likewise, in nature, many animals and insects search for food through a random or quasi-random 
walk (since the next step is always based on the current location and the probability of moving to the following 
location) that can be modeled with a Lévy distribution (a continuous probability distribution for a non-negative 
random variable) known as Lévy flights [20]; many studies have shown that the flight behavior of some animals 
and insects follows its typical characteristics. This kind of search was included in the CS algorithm in Step 1, 
when the cuckoo randomly chose a nest.

The Improved Cuckoo Search Algorithm (ICS) was proposed by Valian, Mohanna, and Tavakoli [16]; 
the main difference with CS algorithm lies in the manner of adjusting the ρa and a parameters (the rate of 
abandonment and the Lévy flight step size, respectively). In ICS, the ρa and a values are dynamically changed 
with the number of generations. In the first generations, the values of ρa and a must be large enough to ensure 
that the algorithm increases the diversity of solution vectors (diversification). However, these values are 
decreased in the later generations to enable a better fit of the solution vectors (intensification).

The Modified Cuckoo Search (MCS) was proposed by Walton, Hassan, Morgan, and Brown [17]. It 
presents two modifications to the CS algorithm. The first change was made in the step size of Lévy flights 
(a parameter). The value of a decreases as the number of generations increases, thus increasing the 
intensification. The second modification was to add an information exchange between eggs to accelerate 
the convergence to the optimal solution. In the CS algorithm, there is no exchange of information 
between individuals, and searches are performed independently. In this version, a fraction of the eggs 
with the best fitness is in a “top” group of eggs. For each of these, an egg is randomly selected from the 
top eggs, and a new egg is generated on the line connecting the two eggs. The new egg is generated 
at the midpoint of both eggs using the Golden Ratio (an irrational mathematical constant frequently 
present in distance ratios taken of the simple geometric figures such as pentagon, pentagram, decagon, 



4

Comparative Study of Cuckoo-Inspired Algorithms to Solve Large-Scale Continuous Optimization Problems

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

and dodecahedron, and defined by φ=(1+√5)⁄2)). A significantly better performance was achieved using 
Golden Radio than with a random fraction.

The Modified Cuckoo Search Algorithm (MCSA) proposed by Tuba, Subotiv, and Stanarevic [18] 
proposed a change in how to calculate the size of the random steps. The change includes a function that 
allows sorting the matrix of candidate solutions (nests) for the fitness value of the solutions contained. 
Thus, the solutions with higher fitness have a slight advantage over those with lower fitness. This method 
maintains the selection pressure (the degree to which high-fitness level solutions are selected) toward 
the best solutions, thus facilitating better results.

The Cuckoo Optimization Algorithm (COA) is inspired by the lifestyle of cuckoo birds and was 
proposed in 2011 by Rajabioun [19]. In COA, a habitat (a matrix of size Npop x Mdim) is generated with 
random points, and the utility function is calculated for each. A specific number of eggs (5-20) and an 
Egg Laying Radius (ELR) that defines the maximum distance where cuckoos can host their eggs are 
assigned to each cuckoo. In each generation, zones (groups) are defined for the habitat of each cuckoo. 
Each area is evaluated and a utility value is assigned to it; this value represents the survival rate for 
an individual and its eggs, being defined by the number of individuals that have proliferated in the 
area, the availability of food, and the similarities between the characteristics of the cuckoo eggs and 
the host bird eggs. Accordingly, the area with the highest utility value is set as the target point, that is, 
the best migration habitat for mature cuckoos who establish a flight path defined by a percentage of 
the distance λ, and a deflection angle ϕ (-π⁄6, π⁄6 radians). Generation after generation, the cuckoos are 
unevenly distributed over the search space, and thus it is complex to identify the cuckoos that belong to 
each group; therefore, the k-means clustering algorithm is used (where k is between 3 and 5) to help in 
adequately defining the cuckoos in each group.

3. PROPOSED CS+LEM ALGORITHM

Inspired by the concept of Learnable Evolution Models (LEM) proposed by Michalski [21][22], a 
new version of the Cuckoo Search (CS) algorithm is proposed in this section. In LEM, machine learning 
techniques are used to generate new populations along with the Darwinian method, applied in evolutionary 
computation and based on mutation and natural selection. This method can determine which individuals in 
a population (or set of individuals from previous populations) are better than others in performing specific 
tasks. This reasoning, expressed as an inductive hypothesis, is used to generate new populations. Then, 
when the algorithm is running in Darwinian evolution mode, it uses random or semi-random operations to 
generate new individuals (employing traditional mutation or recombination techniques).

In this research, the algorithm proposed in [23] carries out the machine learning process, which is 
responsible for the rule inference process. The latter defines a set of conjunctive rules (P←R1∧R2∧…∧Rn) 
that delineate the regions where there is a greater chance of finding a better value for each dimension xi 
(for example LVxi ≤ xi ≤ HVxi; here, LV and HV are the lower and upper limits of the rules for the value on 
dimension). Given the combination of rules (R) for each dimension, the search space is limited to regions 
most likely to generate a global optimum. The rule inference process is run for the first time immediately 
after creating the initial population of nests. The steps of the rule inference process are summarized in 
Figure 1.

The new proposal is called Cuckoo Search using Learnable Evolution Models (CS+LEM), and the steps 
of the algorithm are presented in Figure 2. If the LEM process is activated (when then LEM variable is set 
to true), every time the population of the nest changes, the rule inference process is executed to update 



5

Cobos-Lozada et al.

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

rules for each dimension. If the LEM process is activated, the new cuckoo randomly generated via Lévy 
flights is mutated in some dimensions. The process mutates a dimension with a probability defined by 
the rule consideration rate (RCR) parameter. By default, the RCR parameter is set to 0.5, meaning half 
of the dimensions are created via Lévy flights, and the other half are created based on rules. When 
the algorithm creates a specific number of cuckoos without managing to improve the fitness function 
(MNIWI parameter), the LEM process is deactivated. Then if the algorithm repeats this situation without 
improving fitness for a specific MNIWI, the LEM process is activated again, and so on.

begin

1.	 From the current population (CP) of nests, the high-performance group and low performance group are chosen using 

the following formula: Hgroup = CP (1…, ⌊n/2⌋), Lgroup = CP (n-⌊n/2⌋,…,n), where n is the number of host nest and ⌊n/2⌋ 
is the size of high performance and low performance groups.

2.	 A matrix is generated for each class {high, low} belonging to each group. This matrix stores the attribute value in that 

position and the corresponding fitness as follows, if it is Hgroup it is assigned 1, otherwise 0 is assigned. It is then put in 

order according to the value of its attribute, from lowest to highest.

3.	 The probability of occurrence of each attribute is calculated.

4.	 The attribute with the highest probability of occurrence is selected and added to the list of rules P.

5.	 Steps 2, 3 and 4 are repeated until all the attributes of each group have been evaluated. The resulting rule is of type P → 

Q, where P is a conjunction of the rules that have the highest probability for each attribute, and Q corresponds to class 

1 (high-performance group).

end

Figure 1. Rule inference process

4. EXPERIMENTATION

This section shows the performance of cuckoo-inspired algorithms in three different assessments, 
namely: 1) the optimal value achieved with a fixed time of execution; 2) the number of objective function 
evaluations required to reach the global optimum; and 3) the optimal value achieved with a fixed number 
of Objective Function Evaluations (OFE). Previously used parameters for executing all algorithms in 
each experiment are presented in Table 1. The parameters for all algorithms were used based on values 
recommended by their original authors. The approach of different challenges in optimization problems 
was used in our work. Therefore, the parameter values were the same for all optimization problems, i.e., 
there was no tuning of parameters conducted for each algorithm in each specific problem.

Table 2 shows 6 unimodal separable functions, 22 unimodal non-separable functions, 7 multimodal 
separable functions, and 26 multimodal non-separable functions. They are based on those proposed 
in the report “Benchmark Functions for the CEC’2010 Special Session and Competition on Large-
Scale Global Optimization” [24][25][26] and the paper “A comparative study of Artificial Bee Colony 
Algorithm” [9], which provides an adequate range of complexity levels. For each function, the global 
minimum is searched.

For each assessment, the average and standard deviation of 30 independent executions were reported 
per function. The initial population is generated randomly within ranges specified for each function. The 
results were obtained using the same computer configuration (hardware and software). All algorithms 
were implemented on C# language programming.



6

Comparative Study of Cuckoo-Inspired Algorithms to Solve Large-Scale Continuous Optimization Problems

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

begin
	 Objective function F = f(x); x = (x1, x2…, xd)T

	 Generate initial population of n host nests xi (i=1, 2, …, n)
	 LEM = true
	 iterationsWithoutImprovement = 0
	 while (t <MaxGeneration) or (stop criterion) do
		  Get a new cuckoo randomly by Lévy flights (say, s)
		  Foreach dimension dim of the new cuckoo s
			   If (LEM)
				    If (U(0,1) < RCR)
					     s[dim] = U (LB ,UB ), where best is the best set of rules for current dimen-
sion
				    end if
			   end if
		  End foreach
		  Evaluate the Quality(Fitness) of s, Fs
		  Choose randomly a nest among n (say, j)
		  If (Fs is better than Fj) // < for minimizing and > for maximizing
			   Replace j by the new solution s
			   If (LEM) Run the rule inference process
		  Else
			   iterationsWithoutImprovement ++
			   If (iterationsWithoutImprovement > MNIWI)
				    iterationsWithoutImprovement = 0
				    LEM = not LEM
			   end if
		  end if
		  A fraction (ρa) of worse nests is abandoned and new ones are built
		  Keep the best solutions (or nests with quality solutions)
		  Rank the solutions and find the current best
	 end while
	 Postprocess results and visualization
end

Figure 2. Pseudo-code of CS+LEM

Table 1. General Settings for Experiments

Variable/Parameter CS COA ICS MCS MCSA CS+LEM

Number of nests (Nn) 30 30 30 30 30 30

Number of dimensions (Nd) 30 30 30 30 30 30

Percentages of abandonments (Pa) 0.25 N.A. 0.25 0.75 0.25 0.25

Maximum number of cuckoos (Mc) N.A. 50 N.A. N.A. N.A. N.A.

Number of clusters (k) N.A. 2 N.A. N.A. N.A. N.A.

Maximum number of objective function evaluations (Me) N.A. N.A. 50,000 N.A. N.A. N.A.

Maximum number of steps (Ms) N.A. N.A. N.A. 100 N.A. N.A.

Maximum Lévy step size (Ml) N.A. N.A. N.A. 0.01 N.A. N.A.

Rule Consideration Rate (RCR) N.A. N.A. N.A. N.A. N.A. 0.5

Maximum Number of Iterations Without Improvements (MNIWI) N.A. N.A. N.A. N.A. N.A. 120

Bandwidth (Bw) N.A. N.A. N.A. N.A. N.A. 0.001



7

Cobos-Lozada et al.

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

Table 2. Benchmark Functions (D: Dimensions, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable).

No Function Range D C

1 StepInt [9] [-5.12, 5.12] 5 U,S

2 Step [18] [-100, 100] 30 U,S

3 Sphere (De Jong’s First Function [16] [26]) [-100,100] 30 U,S

4 Sum of Squares [9] [-10,10] 30 U,S

5 Quartic (De Jong’s Forth Function) [9] [-1.28, 1.28] 30 U,S

6 Sum of Different Power [27] [-10, 10] 30 U,S

7 Beale [9] [-4.5, 4.5] 2 U,N

8 Easom [26] [-100, 100] 2 U,N

9 Matyas [9] [-10, 10] 2 U,N

10 Colville [9] [-10, 10] 4 U,N

11 Zakharov [9] [-5, 10] 30 U,N

12 Schwefel’s Problem 2.22 [9] [-10, 10] 30 U,N

13 Schwefel’s Problem 1.2 [9] [26] [-10, 10] 30 U,N

14 Rosenbrock [26] [-100, 100] 30 U,N

15 Dixon-Price [18] [-10, 10] 30 U,N

16 Single-group Shifted and m-rotated Elliptic [26] [-100, 100] 30 U,N

17 Single-group Shifted m-dimensional Schwefel’s Problem 1.2 [26] [-100, 100] 30 U,N

18 D/2m-group Shifted and m-rotated Elliptic [9] [-100, 100] 30 U,N

19 D/2m-group Shifted m-dimensional Schwefel’s Problem 1.2 [26] [-100, 100] 30 U,N

20 D/m-group Shifted and m-rotated Elliptic [26] [-100, 100] 30 U,N

21 D/m-group Shifted m-dimensional Schwefel’s Problem 1.2 [26] [-100, 100] 30 U,N

22 Shifted Schwefel’s Problem 1.2 [26] [-100, 100] 30 U,N

23 Shifted Elliptic [26] [-100, 100] 30 U,N

24 Shifted Schwefel’s Problem 1.2 with Noise in Fitness [24] [-100, 100] 30 U,N

25 Shifted Rotated High Conditioned Elliptic [24] [-100, 100] 30 U,N

26 Elliptic [26] [-100, 100] 30 U,N

27 Trid 10 [9] 10 U,N

28 Powell [9] [-4, 5] 24 U,N

29 Bohachevsky 1 [9] [-100, 100] 2 M,S

30 Booth [9] [-10, 10] 2 M,S

31 Rastrigin [26] [-5.12, 5.12] 30 M,S

32 Generalized Schwefel [26] [-500, 500] 30 M,S

33 Michalewicz 10 [26] [0, ] 30 M,S

34 Shifted Rastrigin [26] [-5, 5] 30 M,S

35 Shifted Ackley [26] [-32, 32] 30 M,S

36 Schaffer [9] [-100, 100] 2 M,N

37 Six-Hump Camel-Back [9] [-5, 5] 2 M,N

38 Bohachevsky 2 [9] [-100, 100] 2 M,N



8

Comparative Study of Cuckoo-Inspired Algorithms to Solve Large-Scale Continuous Optimization Problems

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

Table 2. Benchmark Functions (D: Dimensions, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-
Separable) (Continued).

39 Bohachevsky 3 [9] [-100, 100] 2 M,N

40 Shubert [26] [-10, 10] 5 M,N

41 Goldstein & Price [27] [-2, 2] 2 M,N

42 Griewank [26] [-600, 600] 30 M,N

43 Ackley [26] [-32, 32] 30 M,N

44 Single-group Shifted and m-rotated Rastrigin [26] [-5, 5] 30 M,N

45 Single-group Shifted and m-rotated Ackley [26] [-32, 32] 30 M,N

46 Single-group Shifted m-dimensional Rosenbrock [26] [-100, 100] 30 M,N

47 D/2m-group Shifted and m-rotated Rastrigin [26] [-5, 5] 30 M,N

48 D/2m-group Shifted and m-rotated Ackley [26] [-32, 32] 30 M,N

49 D/2m-group Shifted m-dimensional Rosenbrock [26] [-100, 100] 30 M,N

50 D/m-group Shifted and m-rotated Rastrigin [26] [-5, 5] 30 M,N

51 D/m-group Shifted and m-rotated Ackley [26] [-32, 32] 30 M,N

52 D/m-group Shifted m-dimensional Rosenbrock [26] [-100, 100] 30 M,N

53 Shifted Rosenbrock [26] [-100, 100] 30 M,N

54 Shifted Rotated Expanded Scaffer’s F6 [24] [-100, 100] 30 M,N

55 Shifted Rotated Weierstrass [24] [-0.5, 0.5] 30 M,N

56 Shekel’s foxholes [27] [-65.536, 65.536] 4 M,N

57 Kowalik [9] [-5, 5] 4 M,N

58 Perm [9] [-, ] 4 M,N

59 Power Sum [9] [0, ] 4 M,N

60 Hartman 6 [9] [0, 1] 6 M,N

61 Langerman 5 [27] [0, 10] 5 M,N

A. Assessment 1: Best Optimal Value Reached at Different Times

This assessment aims to identify which cuckoo-inspired algorithm provides the best results (results 
nearest to the global minimum of the objective function) for the following periods: 5, 10, 20, 40, and 
80 seconds. This section shows results in general (all functions as a whole). Additional analyses over 
four groups of functions (unimodal separable, unimodal non-separable, multimodal separable, and 
multimodal non-separable) were performed; however, the results are not presented in this paper due 
to space limitations.

The Friedman test shows that CS+LEM is the best option for solving problems when the designer does 
not know anything about the landscape of the fitness function, the problem has high dimensionality, and 
the execution time is short (lower than 80 seconds) (see Table 3). General results based on the Wilcoxon 
non-parametric test with a 0.95 significance level also show that: 1) At 5s, CS+LEM outperforms COA, 
MCS, and MCSA, and ICS and MCSA outperform COA and MCS; 2) At 10s and 20s, CS+LEM outperforms 
all other algorithms, and MCSA outperforms CS, COA, ICS, and MCS; 3) At 40s and 80s, CS+LEM 
outperforms all other algorithms and COA outperforms CS, ICS, MCS and MCSA.



9

Cobos-Lozada et al.

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

Table 3. Ground-Truth Friedman Test Rankings for Assessment Related to Time (distributed according to chi-square with 5 
degrees of freedom)

Algorithm 5 seconds 10 seconds 20 seconds 40 seconds 80 seconds

Ranking Position Ranking Position Ranking Position Ranking Position Ranking Position

CS 3.4508 4 3.2951 3 3.3689 3 3.4508 4 3.4508 3

COA 3.6230 6 3.7623 5 3.6803 5 3.4098 3 3.4918 5

ICS 3.4508 3 3.4918 4 3.4590 4 3.4016 2 3.4180 4

MCS 3.5738 5 4.1557 6 4.1721 6 4.1967 6 4.2049 6

MCSA 3.4508 2 3.2459 2 3.2869 2 3.4590 5 3.3852 2

CS+LEM 3.4508 1 3.0492 1 3.0328 1 3.0820 1 3.0492 1

Friedman 
statistic

0.526932 14.093677 13.36534 11.887588 12.592506

p-value 0.9911039254 0.0150251913 0.0201853957 0.0363609785 0.0275118689

B. Assessment 2: Number of Objective Function Evaluations (OFE) Required to Reach the Global Optimum

This assessment aims to identify which cuckoo-inspired algorithm provides the best results (results 
nearest to the global minimum of the objective function with the lowest number of evaluations). All 
algorithms were executed until the global minimum was found or a maximum of 50000 OFEs was 
exceeded.

On average, COA reports better results on the number of OFEs required to reach the global optimum 
than the other five algorithms supported by the Friedman non-parametric test (see Table 4). The main 
problem with COA is the additional execution time required by each iteration to cluster cuckoos 
(solutions) using the k-means algorithm because clustering in a continuous space is an NP-hard problem. 
The k-means algorithm requires O (n*k*t) operations to converge a non-optimal cluster solution, where 
n is the number of cuckoos, k is the number of clusters, and t is the average cycles (iterations) required 
by the algorithm to converge. Therefore, COA is more than six times slower than MCS (643.91%), which 
reports the lowest average time for each generation.

Additionally, COA outperforms all algorithms; CS outperforms ICS and MCS with a significance 
level=0.95, and CS+LEM outperforms MCS with a significance level=0.95 in Wilcoxon test results. It is 
essential to highlight that COA is the best cuckoo-inspired algorithm in this test because it reaches the 
optimum value in 55 test functions out of 61 functions in the maximum specified number of OFEs; this is 
a high number of resolved test functions in comparison with other cuckoo-inspired algorithms which can 
solve only 7 to 14 test functions using 50000 OFEs. It can be further noted that CS+LEM ranks second 
with 14 resolved test functions. Based on the above, COA is the best alternative for environments where 
much time can be expected to find the optimal solution.

C. Assessment 3: Best Optimal Value Reached at Different Number of Objective Function Evaluations

This assessment aims to identify which cuckoo-inspired algorithm provides the best results (the 
results nearest to a global minimum for the objective function) at 5000, 10000, 20000, and 50000 OFEs. 
Friedman analysis shows that COA reports the best results for the highest number of OFEs, while MCS 
is best for a small number (Table 5).



10

Comparative Study of Cuckoo-Inspired Algorithms to Solve Large-Scale Continuous Optimization Problems

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

Table 4. Ground-Truth Friedman Test Rankings for Assessment Related to Number of OFEs (distributed according to chi-
square with 5 degrees of freedom)

Algorithm Ranking Position

CS 3.7951 3

COA 1.3279 1

ICS 4.0492 5

MCS 4.2787 6

MCSA 3.8197 4

CS+LEM 3.7295 2

Friedman statistic 102.271663

p-value 8.50330E-11

Table 5. Ground-Truth Friedman Test Rankings for Assessment Related to Best Optimal Value (distributed according to chi-
square with 5 degrees of freedom)

Algorithm 5000 evaluations 10000 evaluations 20000 evaluations 50000 evaluations

Ranking Position Ranking Position Ranking Position Ranking Position

CS 3.2623 3 3.3443 3 3.4016 3 3.4918 3

COA 4.4016 6 3.6639 5 3.0574 1 2.9262 1

ICS 3.0410 2 3.1475 2 3.2131 2 2.9426 2

MCS 2.9180 1 3.1311 1 3.4098 4 3.5820 5

MCSA 3.3361 4 3.4016 4 3.4754 5 3.5656 4

CS+LEM 4.0410 5 4.3115 6 4.4426 6 4.4918 6

Friedman statistic 30.297424 17.0726 20.655738 28.489461

p-value 1.28878E-5 0.0043641482 9.407719E-4 2.91959E-5

Results using Wilcoxon test (by default with a significance level of 0.95) show that at 5000 OFEs, 
MCS outperforms CS, COA, ICS, and CS+LEM, and ICS outperforms COA and CS+LEM; at 10000 OFEs, 
MCS outperforms CS, COA, ICS, and CS+LEM, and ICS outperforms COA and CS+LEM; At 20000 OFEs, 
COA and ICS outperform CS and CS+LEM, and COA outperforms ICS, MCSA, and CS+LEM [Wilcoxon 
significance level of 0.90]; at 50000 OFE - COA outperforms CS, CSA, and CS+LEM, and ICS outperforms 
CS and CS+LEM. It is essential to consider that this test is the least used by the research community 
since algorithms that spend much time calculating the changes in the current individuals to obtain the 
new ones have a clear advantage over those that spend less time.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a new CS algorithm called Cuckoo Search using Learnable Evolution Models, 
or CS+LEM. The proposed algorithm uses LEM techniques to create rules that enable inferring new 
candidates in the population that emerges not only from the random scan. The algorithm was subjected 
to 61 classic optimization features and obtained the best results in most of the functions when the 
designer does not know anything about the landscape of the fitness function, the problem has high 
dimensionality, and the execution time is short (Assessment 1).



11

Cobos-Lozada et al.

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

The hybridization of CS with K-means (COA) reports better results in Test 2 (number of objective 
function evaluations required to reach the global optimum) than the other five algorithms. It is essential 
to highlight that COA reaches the optimum value for 55 test functions over 61 total functions; this is a 
high number of resolved test functions compared with other cuckoo-inspired algorithms that can only 
solve 7 to 14 test functions using 50000 OFEs. Unfortunately, COA requires a much longer execution 
time than the other CS algorithms. Therefore, COA is the best option for offline scenarios where users 
can wait much more time for the global optimum solution of the problem. Additionally, the CS+LEM 
algorithm ranks second in this assessment (Assessment 2).

COA and MCS report the best results in Assessment 3 (Best optimal value reached at different 
number of OFEs); for a high number of OFEs, COA reports the best results, while the MCS Algorithm 
reports the best results for a small number of evaluations.

The different methods for diversification and intensification employed by the cuckoo-inspired 
algorithms compared in the paper mean that each algorithm can provide a better solution to a specific 
problem in a specific scenario. This concept is supported by the “no-free lunch theorem for optimization” 
[28]. The paper helps define the best algorithms for three scenarios and allows designers to select the 
most appropriate algorithm for a specific optimization problem. Regarding future work, the research 
group proposes to compare the previously studied cuckoo-inspired algorithms exhaustively and in 
detail with other heuristics like PSO, DE, HS, and ABC.

AUTHORS’ CONTRIBUTION

Carlos-Alberto Cobos-Lozada: Conceptualization; Methodology; Formal Analysis; Investigation; 
Supervision; Writing-review and editing. Henry Muñoz-Collazos: Software; Formal Analysis; 
Investigation; Validation; Writing-original draft. Richar Urbano-Muñoz: Software; Formal Analysis; 
Investigation; Validation; Writing-original draft.

ACKNOWLEDGMENTS

The University of Cauca partially supported this work.

REFERENCES

[1]	L. Velasco, H. Guerrero, and A. Hospitaler, “A Literature Review and Critical Analysis of Metaheuristics 
Recently Developed,” Arch. Comput. Methods Eng., vol. 31, 2023. https://doi.org/10.1007/s11831-
023-09975-0

[2]	R. R. Abo-Alsabeh and A. Salhi, “The Genetic Algorithm: A study survey,” Iraqi J. Sci., vol. 63, no. 3, pp. 
1215-1231, 2022, https://doi.org/10.24996/ijs.2022.63.3.27

[3]	F. Neri and C. Cotta, “Memetic algorithms and memetic computing optimization: A literature review,” 
Swarm Evol. Comput., vol. 2, pp. 1-14, 2012. https://doi.org/10.1016/j.swevo.2011.11.003.

[4]	V. K. Prajapati, M. Jain, and L. Chouhan, “Tabu Search Algorithm (TSA): A Comprehensive Survey,” in 
Proceedings of 3rd International Conference on Emerging Technologies in Computer Engineering: Machine 
Learning and Internet of Things, ICETCE 2020, 2020, pp. 222–229. 

	 https://doi.org/10.1109/ICETCE48199.2020.9091743

https://doi.org/10.1007/s11831-023-09975-0
https://doi.org/10.1007/s11831-023-09975-0
https://doi.org/10.24996/ijs.2022.63.3.27
https://doi.org/10.1016/j.swevo.2011.11.003
https://doi.org/10.1109/ICETCE48199.2020.9091743


12

Comparative Study of Cuckoo-Inspired Algorithms to Solve Large-Scale Continuous Optimization Problems

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

[5]	N. Nayar, S. Gautam, P. Singh, and G. Mehta, “Ant Colony Optimization: A Review of Literature and 
Application in Feature Selection,” in Lecture Notes in Networks and Systems, 2021, pp. 285-297. 

	 https://doi.org/10.1007/978-981-33-4305-4_22

[6]	A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Arch. 
Comput. Methods Eng., vol. 29, no. 5, pp. 2531-2561, 2022. 

	 https://doi.org/10.1007/s11831-021-09694-4

[7]	I. Sharma, V. Kumar, and S. Sharma, “A Comprehensive Survey on Grey Wolf Optimization,” Recent 
Adv. Comput. Sci. Commun., vol. 15, no. 3, pp. 323–333, 2022. 

	 https://doi.org/10.2174/2666255813999201007165454

[8]	J. Li, X. Wei, B. Li, and Z. Zeng, “A survey on firefly algorithms,” Neurocomputing, vol. 500, pp. 662-678, 
2022. https://doi.org/10.1016/j.neucom.2022.05.100

[9]	D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Appl. Math. 
Comput., vol. 214, no. 1, pp. 108-132, 2009. https://doi.org/10.1016/j.amc.2009.03.090

[10] M. F. Ahmad, N. A. M. Isa, W. H. Lim, and K. M. Ang, “Differential evolution: A recent review based on 
state-of-the-art works,” Alexandria Eng. J., vol. 61, no. 5, pp. 3831-3872, 2022. 

	 https://doi.org/10.1016/j.aej.2021.09.013

[11] F. Qin, A. M. Zain, and K.-Q. Zhou, “Harmony search algorithm and related variants: A systematic 
review,” Swarm Evol. Comput., vol. 74, 2022. https://doi.org/10.1016/j.swevo.2022.101126

[12] E. Ruano-Daza, C. Cobos, J. Torres-Jimenez, M. Mendoza, and A. Paz, “A multiobjective bilevel 
approach based on global-best harmony search for defining optimal routes and frequencies for bus 
rapid transit systems,” Appl. Soft Comput. J., vol. 67, pp. 567-583, Jun. 2018. 

	 https://doi.org/10.1016/j.asoc.2018.03.026

[13] S. Salhi and J. Thompson, “An overview of heuristics and metaheuristics,” in The Palgrave Handbook of 
Operations Research, 2022, pp. 353-403. https://doi.org/10.1007/978-3-030-96935-6_11

[14] X.-S. Yang and S. Deb, “Cuckoo Search via Lévy flights,” in 2009 World Congress on Nature & Biologically 
Inspired Computing (NaBIC), 2009, pp. 210-214. https://doi.org/10.1109/NABIC.2009.5393690.

[15] K. Safdar, K. N. Abdul Rani, H. A. Rahim, S. J. Rosli, and M. A. Jamlos, “A Review on Research Trends in 
using Cuckoo Search Algorithm: Applications and Open Research Challenges,” Prz. Elektrotechniczny, 
vol. 1, no. 5, pp. 18-24, 2023. https://doi.org/10.15199/48.2023.05.04.

[16] E. Valian, S. Mohanna, and S. Tavakoli, “Improved Cuckoo Search Algorithm for Feed forward Neural 
Network Training,” Int. J. Artif. Intell. Appl., vol. 2, no. 3, pp. 36-43, 2011. 

	 https://doi.org/10.5121/ijaia.2011.2304.

[17] S. Walton, O. Hassan, K. Morgan, and M. R. Brown, “Modified cuckoo search: A new gradient free 
optimisation algorithm,” Chaos, Solitons and Fractals, vol. 44, no. 9, pp. 710-718, 2011. 

	 https://doi.org/101016/jchaos201106004

[18] M. Tuba, M. Subotic, and N. Stanarevic, “Modified Cuckoo Search Algorithm for Unconstrained 
Optimization Problems,” Proc. 5th Eur. Conf. Eur. Comput. Conf., pp. 263-268, 2011, [Online]. Available: 
http://www.wseas.us/e-library/conferences/2011/Paris/ECC/ECC-43.pdf

[19] R. Rajabioun, “Cuckoo Optimization Algorithm,” Appl. Soft Comput., vol. 11, no. 8, pp. 5508-5518, 
2011. https://doi.org/doi.org/10.1016/j.asoc.2011.05.008

https://doi.org/10.1007/978-981-33-4305-4_22
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.2174/2666255813999201007165454
https://doi.org/10.1016/j.neucom.2022.05.100
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1016/j.aej.2021.09.013
https://doi.org/10.1016/j.swevo.2022.101126
https://doi.org/10.1016/j.asoc.2018.03.026
https://doi.org/10.1007/978-3-030-96935-6_11
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.15199/48.2023.05.04
https://doi.org/10.5121/ijaia.2011.2304
https://doi.org/101016/jchaos201106004
http://www.wseas.us/e-library/conferences/2011/Paris/ECC/ECC-43.pdf
https://doi.org/doi.org/10.1016/j.asoc.2011.05.008


13

Cobos-Lozada et al.

Revista Facultad de Ingeniería (Rev. Fac. Ing.). Jul.-Sep. 2024. Vol. 33, No. 69

[20] J. Li, Q. An, H. Lei, Q. Deng, and G.-G. Wang, “Survey of Lévy Flight-Based Metaheuristics for 
Optimization,” Mathematics, vol. 10, no. 15, 2022. https://doi.org/10.3390/math10152785

[21] R. S. Michalski, “Learnable evolution model: evolutionary processes guided by machine learning,” 
Mach. Learn., vol. 38, no. 1, pp. 9-40, 2000. https://doi.org/10.1023/a:1007677805582

[22] A. L. da Costa Oliveira, A. Britto, and R. Gusmão, “Machine learning enhancing metaheuristics: a 
systematic review,” Soft Comput., 2023. https://doi.org/10.1007/s00500-023-08886-3

[23] C. Cobos, D. Estupiñán, and J. Pérez, “GHS + LEM: Global-best Harmony Search using learnable 
evolution models,” Appl. Math. Comput., vol. 218, no. 6, pp. 2558-2578, 2011. 

	 https://doi.org/10.1016/j.amc.2011.07.073.

[24] P. N. Suganthan et al., “Problem definitions and evaluation criteria for the CEC 2005 special session 
on real-parameter optimization,” Singapore, 2005. [Online]. Available: 

	 http://www.cmap.polytechnique.fr/~nikolaus.hansen/Tech-Report-May-30-05.pdf

[25] K. Tang et al., “Benchmark functions for the CEC’2008 special session and competition on large 
scale global optimization,” in IEEE World Congress on Computational Intelligence, Rio de Janeiro, Brazil: 
IEEE, 2008, pp. 1-18. [Online]. Available: 

	 http://sci2s.ugr.es/programacion/workshop/Tech.Report.CEC2008.LSGO.pdf

[26] T. Ke, L. Xiaodong, S. P. N., Y. Zhenyu, and W. Thomas, “Benchmark Functions for the CEC’2010 
Special Session and Competition on Large-Scale Global Optimization,” Shanghai, China, 2010. 
[Online]. Available: 

	 http://goanna.cs.rmit.edu.au/~xiaodong/cec13-lsgo/competition/cec2013-lsgo-benchmark-tech-
report.pdf

[27] M. Molga and C. Smutnicki, “Test functions for optimization needs,” Test functions for optimization needs, no. 
c. pp. 1-43, 2005. [Online]. Available: https://robertmarks.org/Classes/ENGR5358/Papers/functions.pdf

[28] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. 
Comput., vol. 1, no. 1, pp. 67-82, 1997. https://doi.org/10.1109/4235.585893.

https://doi.org/10.3390/math10152785
https://doi.org/10.1023/a
https://doi.org/10.1007/s00500-023-08886-3
https://doi.org/10.1016/j.amc.2011.07.073
http://www.cmap.polytechnique.fr/~nikolaus.hansen/Tech-Report-May-30-05.pdf
http://sci2s.ugr.es/programacion/workshop/Tech.Report.CEC2008.LSGO.pdf
http://goanna.cs.rmit.edu.au/~xiaodong/cec13-lsgo/competition/cec2013-lsgo-benchmark-tech-report.pdf
http://goanna.cs.rmit.edu.au/~xiaodong/cec13-lsgo/competition/cec2013-lsgo-benchmark-tech-report.pdf
https://robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
https://doi.org/10.1109/4235.585893

	1. Introduction 
	2. Cuckoo-Inspired Algorithms 
	3. Proposed CS+LEM Algorithm 
	4. Experimentation 
	5. Conclusions and Future Work 
	Authors’ Contribution 
	Acknowledgments 
	References 

