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ABSTRACT
The increasing number of mobile devices and the growing demand for services lead to an increase in the access requests 
per second to the Access and Mobility Management Function (AMF) of the control plane in a Fifth Generation (5G) mobile 
network. It causes congestion of the function and affects the overall network performance. Therefore, this paper proposes 
a self-scaling mechanism for the AMF in a 5G core by CPU usage predictions using the Long Short-Term Memory (LSTM) 
machine learning (ML) technique. The mechanism predicts the percentage of CPU usage in the pod containing the AMF and 
establishes scaling policies that determine the necessary number of AMF pods. The performance of the AMF is evaluated 
through success rate, loss rate, and latency of access requests per second in three scenarios: a reactive one with scaling 
based on current CPU thresholds, a predictive one using CPU predictions, and another using both the scaling policies and 
the LSTM technique. With the previous scenarios, the AMF is scaled reactively and predictively. Results show that the scaling 
policies and the ML algorithm significantly improve the performance of the function in terms of success rate and loss rate of 
access requests per second. An efficient self-scaling of the AMF is achieved, which contributes both to the optimization of 
computational resources and to improving the availability of the 5G mobile network.
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RESUMEN
El aumento en el número de dispositivos móviles y la creciente demanda de servicios generan un incremento en las solicitudes 
de acceso por segundo que llegan a la función de gestión de acceso y movilidad (AMF, Access and Mobility Management 
Function) del plano de control en una red móvil de quinta generación (5G, Fifth Generation), lo que provoca congestión en la 
función y afecta el desempeño general de la red. En este artículo se propone un mecanismo de autoescalado para el AMF en 
un core 5G utilizando predicciones de uso de la CPU obtenidas mediante la técnica de aprendizaje automático (ML, Machine 
Learning) de memoria a largo y corto plazo (LSTM, Long Short-Term Memory). El mecanismo predice el porcentaje de uso de 
la CPU en el pod que contiene la AMF y establece políticas de escalado que determinan la cantidad necesaria de pods AMF. 
Se evalúa el desempeño del componente AMF a través de la tasa de éxito, tasa de pérdidas y latencia de las solicitudes de 
acceso por segundo en tres escenarios diferentes: uno reactivo con escalado basado en límites (Thresholds) actuales de CPU, 
otro predictivo utilizando predicciones de CPU, y otro en el que se involucran tanto las políticas de escalamiento como la 
técnica LSTM. Con los escenarios anteriores, se escala el AMF de forma reactiva y predictiva. Los resultados muestran que 
las políticas de escalamiento y el algoritmo de ML mejoran significativamente el desempeño de la función en términos de tasa 
de éxito y tasa de pérdidas de solicitudes de acceso por segundo. Se logra implementar un autoescalado eficiente del AMF, 
lo cual contribuye tanto a la optimización de recursos computacionales como a mejorar la disponibilidad de la red móvil 5G.

Palabras clave: AMF; autoescalamiento; CPU; LSTM; políticas de escalamiento.

1. INTRODUCTION

The number of subscribers to fifth-generation 5G mobile networks is projected to reach 4.4 billion 
by the end of 2027, thus becoming the main mobile access technology [1]. Consequently, the increase 
in the number of user equipment (UE) will be accompanied by an increase in traffic, both at the user 
and control levels of the mobile network [2] [3]. This increase especially affects the Access and Mobility 
Management Function (AMF) of the control plane in a 5G network. The AMF is  critical for managing and 
controlling access and mobility in the UE. However, the increase in access requests per second overloads 
the function and affects the overall performance of the network because it is the only access point for 
the control plane of the 5G mobile network [3], [4].

To handle this situation, the 3GPP (3rd Generation Partnership Project) has created the 5G 
architecture with the purpose of making it more flexible and scalable than its predecessors [5], [6], [7], 
[8]. As a result, several scaling strategies that allow increasing the capacity of network components 
depending on the workload they receive have been developed [9] [10]. Nevertheless, these strategies 
are often reactive and do not consider the future needs of the network [11]. There are no proposals for 
autoscaling strategies for the AMF in 5G networks in the literature. Then, it is important to note that the 
increase or decrease in the number of users per second is directly related to the loading or unloading of 
computational resources such as the Central Processing Unit (CPU) [12], [13].

Accordingly, this paper analyzes the performance of the AMF component in autoscaling scenarios 
through different metrics such as the success rate, loss rate, and access request latency in three 
different scenarios. These scenarios are built in an AWS cloud and Kubernetes is used to orchestrate 
the pods that store the containers; each component of a 5G network architecture is configured there. 
To automatically scale the number of AMF pods, an autoscaling algorithm is created to predict the CPU 
usage value. It takes as input a historical sequence of metrics in the form of time series. Also, scaling 
policies are defined to avoid erroneous scaling and prevent the waste of computational resources such 
as CPU. 
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The first scenario is reactive, so when access requests increase, the algorithm scales-out or scales-
in AMF pods. The second scenario is predictive as the algorithm already scaled-out or scaled-in the 
pods in the component when the access requests change. In the third scenario, both scaling policies and 
the LSTM (Long Short-Term Memory) Machine Learning technique are involved [14], [15], [16]. In this 
scenario, CPU predictions go through scaling policies to define the number of pods. The LSTM and self-
scaling policies improve the performance of the function in terms of success rate and loss rate of access 
requests. 

This article is organized as follows: Section 2 presents the methodology used to conduct this research; 
Section 3 presents the results and their discussion; Section 4 presents the conclusions and future work 
derived from this research.

2. METHODOLOGY

Figure 1 presents the architecture where tools and technologies used in the different experimental 
scenarios are integrated.

Figure 1. Testbed architecture. 

Initially, My5G-RanTester simulates user terminals to start generating 5G mobile network access 
requests to Open5GS. These requests are managed by the AMF pods, which are monitored by 
Prometheus and Grafana to collect metrics. At the same time, the Kubernetes Metrics Server takes the 
current CPU usage and sends it to the PodScaler module for testing the experimental scenarios. In a 
final stage, the dynamic scaling of the AMF pods is executed based on the chosen scenario. 
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3. RESULTS AND DISCUSSION

Three experimental scenarios are built: a reactive scenario, a predictive scenario, and a self-scaling 
policies scenario.

1. Reactive scenario: Here, the AMF performance is validated only with CPU levels, that is, when access 
requests increase, the AMF pods scales-out or scales-in based on a threshold. Figure 2 presents the 
configuration of the PodScaler, where variable cpu_prediccion is matched to cpu_actual, and variable 
n_instancias_salida is matched to the umbral function and sent cpu_actual.

2. Predictive scenario: Here, the AMF performance is validated with levels based on CPU usage 
predictions. Prior to the increase of access requests, the algorithm has already performed self-scaling 
actions. This scenario does not include self-scaling policies. Figure 3 presents the configuration of the 
PodScaler in such a way that the n_instancias_salida variable is matched to the umbral function and 
sent cpu_prediccion.

Figure 2. PodScaler configuration for the reactive scenario.

Figure 3. PodScaler configuration for the predictive scenario.

3. Self-scaling policies scenario: Here, the self-scaling policies and the LSTM model are used together. 
CPU predictions are integrated with scaling policies to determine the appropriate number of pods, 
seeking to improve resource efficiency and availability of the 5G mobile network. In the following lines 
of code, the PodScaler is configured with the n_instancias_salida variable matched to the evaluate 



5Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 33, No. 69

Campo-Muñoz et al.

function that contains the scaling policies. Figure 4 shows the configuration of the PodScaler with 
the n_instancias_salida variable matched to the evaluate function.

Once the PodScaler has been configured for each experimental scenario, the access request generator 
is configured. In all scenarios, My5G-RanTester is used to generate a validation interval of eight hours 
and to send 10000 access requests per second to the network, as shown in Figure 5. Subsequently, it is 
used to evaluate the performance of the AMF component (Figure 6). 

Figure 4. PodScaler configuration for the self-scaling policies scenario.

Figure 5. My5G-RanTester configuration for all scenarios.
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The access requests generated by My5G-RanTester create the total CPU peaks in the AMF pods 
shown in Figure 7 for the reactive, predictive, and self-scaling policies, respectively. The vertical axis 
of the figure represents the variation of CPU in millicores (mcs), with a scale of maximum 24 mcs. To 
facilitate the analysis, the 24 mcs are evenly distributed across 4 pods, resulting in 6 mcs per pod. It 
is possible to take more or less than 4 pods in the AMF component to handle total CPU usage and 
the dynamics of analyzing network metrics to evaluate the performance of the AMF will be the same. 
Therefore, a limit of 6 mcs per AMF pod is set in the PodScaler.

With the testbed working, the performance of the AMF component is validated according to its CPU 
usage in all scenarios.

The following 6 metrics are evaluated in every scenario: (i) total sum of CPU usage of the AMF 
pods over time; (ii) Total number of AMF pods over time; (iii) Total CPU usage vs Total number of AMF 
pods over time; (iv) Successful access requests to the 5G network; (v) Failed access requests to the 5G 
network; and (vi) Average latency of successful access requests over time.

Figure 6. Access Requests generated using My5G-RanTester.

Figure 7. Total CPU usage for reactive, predictive, and self-scaling policies scenarios, respectively, using My5G-RanTester.

A. Analysis of the Reactive Scenario 

Metric (i). Figure 8. (a) presents the total sum of CPU usage of the AMF pods over time. A peak of 
approximately 7 hours is observed. The 10000 access requests per second generate a variable CPU 
usage as access requests are generated over the validation interval. The highest CPU value is 10.5 mcs. 
Moreover, there is a trend at the peak, as increases in CPU are evident as time goes by. The curve is also 
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cyclical, that is, fluctuations do not have a fixed pattern but occur in longer cycles. Irregularity is also 
observed, as there are outliers in the validation interval, the CPU drops down to a value of 3.3 mcs after 
being at 9 mcs in a short time and rises again to the same value almost instantly. Finally, it is not possible 
to evaluate seasonality because there is one single peak of CPU generated in the validation interval.

Metric (ii). Figure 8. (b) presents the total number of AMF pods in the validation interval. It is observed 
that, to supply the CPU usage, a maximum of two AMF pods are required, each one with 6 mcs of CPU. 
It is evident how the PodScaler in the reactive scenario scales-out and scales-in AMF pods as the CPU 
usage passes the threshold of 6 mcs. Given the fluctuations in CPU usage in a short time, the PodScaler 
can work in the same way, creating and removing AMF pods. 

a. b.

Figure 8. (a) CPU Usage; (b) Number of AMF pods in the validation interval. Reactive scenario.

Metric (iii). Figure 9. (a) presents the total CPU usage vs number of AMF pods over time. It is important 
to note that when CPU usage surpasses the threshold of 6 mcs, the PodScaler creates an additional pod 
to satisfy CPU needs, and vice versa, when CPU usage falls below the threshold, the PodScaler deletes 
a pod. Also, when a slight fluctuation in CPU usage occurs due to an increase in the access requests per 
second, the PodScaler does not generate an additional pod, thus resulting in a saturation in the AMF 
pod. This situation is observed in Figure 9. (b), which is frequently repeated when CPU usage fluctuates 
rapidly.

This CPU saturation in the AMF pod generates failed access requests since the AMF component 
is not operational to attend new incoming requests. Therefore, this experimental scenario is called 
reactive because when access requests per second increase, so does CPU usage, the PodScaler reacts 
by creating an additional pod. Likewise, when access requests per second decrease and CPU usage is 
below the threshold of 6 mcs, the PodScaler reacts by deleting an AMF pod. Consequently, a predictive 
scenario would solve the present problem, that is, the PodScaler has already created an additional pod 
when the increase in CPU usage above 6 mcs is about to happen.

Metrics (iv) and (v): Successful and Failed access requests. For these metrics, it is necessary to calculate 
the success rate. Figure 10. (a) shows the total number of access requests generated in the validation 
interval, and Figure 10. (b) shows 8663 successful access requests. Therefore, the percentage of 
successful access requests is 86.63% (8663/10000). The remaining 13.37% is due to the CPU saturation 
experienced in one of the AMF pods.
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a. b.

Figure 9. (a) Total CPU usage vs number of AMF pods with 6 mcs threshold; (b) CPU saturation in the AMF pod. Reactive scenario.

a. b.

Figure 10. (a). Total access requests generated; (b). Successful access requests. Reactive scenario.

Metric (vi): Figure 11 shows the average total latency of successful access requests during the 
validation interval. It is evident that the maximum value of an access request was 316 ms, and the 
average latency is approximately 120 ms.

Figure 11. Total average latency in successful access requests. Reactive scenario.
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B. Analysis of the Predictive Scenario 

Metric (i). Figure 12. (a). presents the total CPU usage of the AMF pods over time. An increase in its 
measurement is observed for 8 hours. The 10000 access requests per second generate a variable CPU 
usage as access requests are generated over time. It is possible to note that the highest CPU value is 
23.1 mcs. Moreover, there is a trend at the peak where gradual increases in CPU are evident in time. In 
addition, the curve is cyclical. Irregularity is also observed, as there are outliers in the validation interval, 
the CPU drops down to 10.8 mcs after being at 21.1 mcs in a short time and rises again to 21.3 mcs almost 
instantly. Finally, it is not possible to evaluate seasonality since there is only one peak of CPU generated 
as a validation interval. 

Metric (ii): Figure 12. (b) presents the total number of AMF pods in the validation interval. Unlike the 
reactive scenario where only 2 pods are needed, in this predictive scenario a maximum of 6 AMF pods 
are required to supply CPU usage, each with 6 mcs. The rest of the analysis of this metric is the same as 
the previous scenario.

Metric (iii): Figure 13. (a) presents the total CPU usage vs the total number of AMF pods over time. 
It is important to note that when CPU usage surpasses the threshold of 6 mcs, the PodScaler creates an 
additional pod to meet the CPU needs, and vice versa, when CPU usage falls below the threshold, the 
PodScaler deletes a pod. However, when a slight fluctuation in CPU usage occurs due to a considerable 
increase in access requests per second, the PodScaler has previously created an additional pod to avoid 
a saturation in the immediately preceding AMF pod. This behavior is observed in Figure 13. (b).

It is evident that there are no CPU saturations in the AMF pods because the scenario is completely 
predictive. In this way, the pods are already scaled at the time of increasing access requests per second. 
Moreover, more pods are created to supply the CPU usage. Figure 18 presents a demarcation in pod 
number 4. This shows that 4 pods were enough to meet the needs of CPU usage, but the PodScaler 
configured with a predictive scenario created unnecessary additional pods, thus generating an excess. 
This is solved by combining the above prediction with scaling policies to avoid using unnecessary 
computational resources.

Metrics (iv) and (v): Successful and Failed access requests. For these metrics, it is necessary to calculate 
the success rate. Figure 14. (a) shows the total number of access requests generated in the validation interval, 
and Figure 14. (b) shows that 9712 successful access requests are submitted. Therefore, the percentage of 
successful access requests is 97.12% (9712/10000), which is better than the previous scenario.

a. b.

Figure 12. (a) CPU usage; (b) Number of AMF pods in the validation interval. Predictive scenario.
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a. b.

Figure 13. (a) Total CPU usage vs number of AMF pods with 6 mcs threshold; (b) Amount of AMF pods anticipate CPU usage. 
Predictive scenario.

a. b.

Figure 14. (a) Total access requests generated; (b) Successful access requests. Predictive scenario.

Then, failed access requests are 2.88%; a consequence of this scenario being completely predictive, 
which radically avoids the CPU saturation problem experienced by an AMF pod in the reactive scenario. 
An additional problem arises, the predictive scenario wastes computational resources by creating more 
pods than necessary to meet CPU needs.

Metric (vi). Figure 15 shows the total average latency of successful access requests during the 
validation interval. It is noted that the maximum value taken by an access request was 2.05 seconds, and 
that average latency is approximately 500 ms.

C. Analysis of the self-scaling policies scenario

Metric (i). In Figure 16. (a), the total CPU usage of the AMF pods over time presented an increase in 
its measurement for 10 hours. The 10000 access requests per second generate a variable CPU usage 
over time, where the highest CPU value is 23.1 mcs. Moreover, there is an exceptional behavior where 
gradual increases in CPU are evidenced over time. In addition, the curve is cyclical. Irregularity is also 
observed, as there are outliers in the validation interval. The CPU drops to 11 mcs after being at 18 mcs 
in a short time and rises again almost instantly. Also, it is not possible to evaluate seasonality since there 
is only one peak of CPU generated in the validation interval.
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Metric (ii). Figure 16. (b) presents the total number of AMF pods in the validation interval. Unlike the 
previous scenarios, to meet the demand for CPU usage, a maximum of four AMF pods are required, each 
with 6 mcs. The rest of the analysis of this metric is the same as the previous scenarios.

Figure 15. Total average latency for successful access requests. Predictive scenario.

a. b.

Figure 16. (a) CPU usage; (b) Number of AMF pods in the validation interval. Self-scaling policies scenario.

Metric (iii): Figure 17. (a) presents the total CPU usage vs number of AMF pods over time. It is observed 
that, during all CPU usage, the PodScaler does not create additional pods to supply the CPU usage; in 
other words, it does not waste computational resources by generating more pods than required. This 
situation is observed in Figure 17. (b). It is evident then that there are no CPU saturations in the AMF 
pods nor are computational resources wasted. This is because the scenario is predictive but combined 
with scaling policies that decide the increase or decrease of AMF pods.
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Furthermore, pods are not decreased when the CPU is less than the threshold in time intervals close 
to 10 minutes. That is, CPU resources are not optimized at intervals of less than 10 minutes.

Metrics (iv) and (v): Successful and Failed access requests. For these metrics, it is necessary to calculate 
the success rate. Figure 18. (a), shows the total number of access requests generated in the validation 
interval, and Figure 18. (b) shows that 9420 successful access requests are submitted. Therefore, the 
percentage of successful access requests is 94.20% (9420/10000), and failed access requests are 5.8%. 
Scaling policies correct the over-resource problem previously seen in the predictive scenario as there is 
stability in the number of AMF pods.

Metric (vi). Figure 19 shows the average total latency of successful access requests during the 
validation interval. It is noted that the maximum value taken by an access request was 1.28 seconds, 
and that on average the latency curve is approximately 200 ms. In other words, it takes an average of 0.2 
seconds for an access request to be successful.

a. b.

Figure 17. (a) Total CPU usage vs number of AMF pods with 6 mcs threshold; (b) Stability of the number of AMF pods in the face 
of variations in CPU usage. Self-scaling policies scenario.

b.  

Figure 18. (a) Total access requests generated; (b) Successful access requests. Self-scaling policies scenario.



13Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 33, No. 69

Campo-Muñoz et al.

Figure 19. Average total latency in successful access requests. Self-scaling policies scenario.

4. DISCUSSION

To evaluate the performance of the AMF component in various contexts, experiments were performed 
in three different scenarios.

• Total CPU usage vs Total number of AMF pods over time. In the reactive scenario, CPU saturations 
are generated in the AMF pods, causing the unavailability of the 5G mobile network as the AMF 
component is not operational. In the predictive scenario, the CPU saturation problem is corrected, 
but it generates an excess of AMF pods that use computing resources inefficiently. In other words, 
it contributes to the availability of the 5G mobile network but compromises efficiency in the use of 
computing resources. Finally, in the predictive scenario with scaling policies, the problem of CPU 
saturation and excess of AMF pods is corrected; however, it does not optimize CPU resources in time 
intervals of less than 10 minutes. In other words, it contributes to the availability of the 5G mobile 
network without sacrificing computing resources, but there is no maximum efficiency.

• Success rate of 5G mobile network access requests. In the reactive scenario, the success rate is 86.63% 
—the lowest value of the three scenarios—due to the frequent saturations in the CPU usage by AMF 
pods. It leads to unavailability of the AMF because it is not operational during that saturation period. 
In the predictive scenario, the success rate is 97.12% —the highest value of the three scenarios— 
since the autoscaling mechanism creates AMF pods even when they are not needed. Therefore, this 
scenario uses the most computational resources inefficiently. In the predictive scenario with scaling 
policies, the success rate is 94.2%, which corresponds to an intermediate success rate. The stability 
in the number of AMF pods is maintained, preventing CPU saturation and computing resources from 
being wasted, it also provides the most balanced success rate, as there is no CPU saturation or excess 
of AMF pods.
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• Failure rate of 5G mobile network access requests. In the reactive scenario, the failure rate is 13.37% 
—the highest loss rate of the three scenarios— because access requests are not managed or attended 
due to the unavailability of the AMF. In the predictive scenario, the failure rate is 2.88% —the least 
likely to decrease the number of AMF pods— which leads access requests to be lost. The predictive 
scenario with scaling policies has a failure percentage of 5.8% because there is no tendency to delete 
pods, i.e., scaling is done with policies that, depending on metric comparisons, influence the right 
scaling decision.

• Average latency of successful access requests over time. In the reactive scenario, the average latency 
value is 120 ms and its maximum is 316 ms. These latency values are the lowest of the three scenarios 
because there is not a prediction process. For the predictive scenario, the average latency value is 500 
ms and its maximum is 2.05 seconds. It is the scenario with the highest average latency of a successful 
access request, and the one that generates the most AMF pods. When a pod is created, it takes a while 
for its state to be operational so that new access requests are attended. For the predictive scenario 
with scaling policies, the average latency value is 200 ms, and its maximum value is 1.28 seconds 
while maintaining the stability in the number of pods to meet CPU requirements. This confirms the 
balance of a self-scaling policies scenario.

5. CONCLUSIONS

A predictive autoscaling based on ML techniques is implemented to self-scale instances of the AMF 
component of an 5G network to predictively adapt to CPU variations. It contributes to an efficient use of 
computational resources by improving network availability. This approach, in addition to responding to 
current network demands, anticipates potential saturations or inefficiencies, thus allowing for proactive 
and efficient scaling of AMF pods in a Kubernetes environment. Therefore, these policies maximize the 
availability of the 5G mobile network and avoid the inefficient use of valuable computational resources.

The reactive scenario proved to be the option with the lowest success rate in access requests, reaching 
only 86.63%. Although it has the lowest latency, with an average value of 120 ms and a maximum of 
316 ms, this is overshadowed by the constant CPU saturations reaching a maximum CPU of 10.5 mcs, 
which lead to the unavailability of the 5G mobile network. In consequence, a pure reactive approach 
is not enough to keep a 5G network available and efficient due to its tendency to react only to current 
problems without anticipating future demands.

The predictive scenario showed the best success rate, reaching 97.12%. However, this success 
implies a high cost in terms of computational resources, as it tends to oversize the number of AMF pods, 
reaching a maximum CPU value of 23.1 mcs. Although it guarantees 5G network availability, it does so 
at the expense of efficiency by sacrificing resources unnecessarily and with a notable increase in latency 
time with an average value of 500 ms and a maximum of 2.05 seconds.

The scenario that combines predictions of the LSTM model and scaling policies finds a balance between 
the two previous scenarios. It manages to maintain network stability without using computational 
resources inefficiently. Although it does not fully optimize CPU usage in short intervals of less than 
10 minutes, since it reaches a maximum CPU value of 23.1 mcs, it represents a compromise between 
resource efficiency and network availability. Thus, the success rate of  access requests to the 5G mobile 
network is 94.25% and the average latency value is 200 ms with a maximum of 1.28 seconds. 
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