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Abstract
This study analyzes acoustic lung signals with different abnormalities, using Mel Frequency Cepstral Coefficients 
(MFCC), Self-Organizing Maps (SOM), and K-means clustering algorithm. SOM models are known as artificial 
neural networks than can be trained in an unsupervised or supervised manner. Both approaches were used in this 
work to compare the utility of this tool in lung signals studies. Results showed that with a supervised training, the 
classification reached rates of 85 % in accuracy. Unsupervised training was used for clustering tasks, and three 
clusters was the most adequate number for both supervised and unsupervised training. In general, SOM models 
can be used in lung signals as a strategy to diagnose systems, finding number of clusters in data, and making 
classifications for computer-aided decision making systems.
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Resumen
En este trabajo se realizó un análisis de anormalidades en señales acústicas de pulmón. La metodología incluyó 
el uso de coeficientes cepstrales de la escala Mel (MFCC), Mapas Auto-Organizados (SOM) y el algoritmo de 
agrupamiento K-means. Los modelos obtenidos con los mapas son conocidos como redes neuronales artificiales, 
que pueden ser entrenados en una forma supervisada o no supervisada. Ambos tipos de entrenamiento fueron 
usados para comparar el uso de este tipo de herramientas computacionales en estudios de señales respiratorias. 
Los resultados mostraron un 85 % de acierto en la clasificación, cuando fue implementado un entrenamiento 
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supervisado. Al realizar tareas de agrupamiento con entrenamiento no supervisado fue encontrado que el número 
de grupos más adecuado es de tres. En general, los modelos SOM pueden ser usados en este tipo de señales como 
una estrategia útil en sistemas de diagnóstico, encontrando información en los datos y realizando clasificación 
para sistemas de apoyo a decisión.

Palabras clave: mapas auto-organizados; señales acústicas de pulmón; sistemas de apoyo a decisión.

Resumo
Neste trabalho realizou-se uma análise de anormalidades em sinais acústicos de pulmão. A metodologia incluiu 
o uso de coeficientes cepstrais da escala Mel (MFCC), Mapas Auto-Organizados (SOM) e o algoritmo de 
agrupamento K-means. Os modelos obtidos com os mapas são conhecidos como redes neurais artificiais, que 
podem ser treinados em uma forma supervisada ou não supervisada. Ambos os tipos de treinamento foram usados 
para comparar o uso deste tipo de ferramentas computacionais em estudos de sinais respiratórios. Os resultados 
mostraram um 85 % de acerto na classificação, quando foi implementado um treinamento supervisado. Ao realizar 
tarefas de agrupamento com treinamento não supervisado foi encontrado que o número de grupos mais adequado 
é de três. Em geral, os modelos SOM podem ser usados neste tipo de sinais como uma estratégia útil em sistemas 
de diagnóstico, encontrando informação nos dados e realizando classificação para sistemas de apoio à decisão.

Palavras chave: mapas auto-organizados; sinais acústicos de pulmão; sistemas de apoio à decisão.
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I. Introduction

Chronic Respiratory Diseases (CRD) are a critical 
public health problem in developing countries [1, 2]. 
Diagnosis of this kind of diseases can be challenging 
for the medical staff when they have limited resources 
(like rural regions far from big cities), making the 
diagnosis process to vary according to access to 
medical care of each patient [3]. In this way, new 
technological tools can contribute to clinicians and 
physicians in diagnostic tasks, providing additional 
information. In addition, for respiratory diseases 
diagnosis, traditional methods to assess lung functions 
are based on auscultation. Disadvantages of these 
methods are related to the use of the stethoscope, 
because it is a subjective process that depends on 
stethoscope characteristics and the capabilities of the 
physician [4, 5].

Computer-aid decision support systems are commonly 
used in the biomedical fields because of the information 
they can provide in diagnosis assignments [6]. This 
information is useful for the medical staff when extra 
help is needed. Most of these systems take advantage 
of previous stored data, conducting a procedure known 
as data mining [7], where Artificial Neural Networks 
are preferred due to their flexibility treating any kind 
of data.

Artificial Neural Networks (ANN) are mathematical 
tools for modeling in high dimensional classification 
problems. The ANN establish a non-linear relationship 
between input variables and known outputs in a 
supervised learning system [8]. Another applications 
of ANN are developed in an unsupervised learning, 
known as tasks of clustering. Examples of ANN in 
respiratory diseases diagnosis can be seen in [9-11], 
where clinical and epidemiological variables are used 
to train neural models.

For ANN training, it is necessary to extract from 
datasets parameters that conform the input vector. 
These features can be extracted from patients’ data 
by using signal processing representation or image 
processing parameters. In this study, lung acoustic 
signal is acquired and processed by Mel Frequency 
Cepstral Coefficients (MFCC) to obtain representative 
parameters of each signal. A database was built 
with these coefficients and then used in the ANN 
training. This signal processing technique has shown 

good results in representing acoustic signals of the 
respiratory system [12-14].

The present work studies the use of ANN based on 
Self Organizing Maps (SOM), as a pre-processing 
for clustering task developed through K-means 
algorithm. Subsequently, SOM was used as a classifier 
of acoustic lung sounds resulting from respiratory 
abnormalities. Experiments using signal processing 
to obtain features, which were used as inputs in the 
ANN training, are presented. Three different classes 
were defined, two representing abnormal sounds, and 
a third class representing normal sounds. Results are 
compared with previous studies, which used Gaussian 
Mixture Models and Support Vector Machines for 
the classification [12]. Other studies [15, 16] utilized 
methodologies including neural networks, but without 
using MFCCs.

II. Materials and methods

First, the used database and signal processing 
implemented to extract features from each signal are 
presented. Then, characteristics about neural network 
architecture and training are described.

A. Database

RALE database [17], developed by the University of 
Manitoba, Winnipeg-Canada, was utilized in this study. 
This repository is composed by thirteen recordings 
obtained from patients who exhibited normal breath, 
crackles, wheezes and other abnormalities found 
in acoustic lung sounds. These signals were high-
pass filtered at 7.5 Hz to suppress any DC offset by 
using a first-order Butterworth filter. Additionally, a 
second eighth-order low-pass Butterworth filter at 2.5 
kHz was applied to avoid aliasing. All signals were 
sampled at 10 Hz.

Table 1 shows the number of signals for each 
class, according with abnormalities located in 
the database. Crackles represent discontinuous 
explosive adventitious lung sounds, and are obtained 
from patients with cardio-respiratory disorders. 
Characteristics of these sounds are the time length, 
less than 20 milliseconds, and frequency range, which 
typically ranges from 100 up to 2000 Hz [18]. The 
waveform of the wheeze signals is similar to a sine 
wave with fundamental frequency around 100-2000 
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Hz, and time length for this kind of signals varies 
between 80 and 250 milliseconds [18].

Table 1
Registers for each class

Class of lung signal Number of registers
Crackles 4
Wheezes 4
Normal 5

B. Mel Frequency Cepstral Coefficients - MFCC

MFCC is a representation from speech signals based 
on perception of human being. MFCC uses Discrete 
Fourier Transform (DFT) and the Discrete Cosine 
Transform. The main difference is that the bands are 
placed in a logarithmic way, according to the Mel scale. 
In this way, the speech is modeled by a more human 
answer, allowing a more efficient signal processing 
[19].

MFCC process computation is carried out first 
with signal segmentation into frames, and DFT is 
calculated. Afterward, the spectrum is filtered using 
thirteen triangular windows corresponding to the Mel 
frequency scale. Logarithmic functions are applied to 
the energy computed in the Mel frequency bands, and 
Discrete Cosine Transform (DCT) is used for each log-
energy. Finally, the MFCC correspond to the amplitude 
spectrum provided after DCT (Figure 1). In this study, 
signal was divided into frames of 30 milliseconds with a 
frame shift of 10 milliseconds. For each frame, thirteen 
coefficients are computed to represent the acoustic 
lung signal based on performance obtained in previous 
studies [12, 14, 19].

Fig. 1. MFCC process computation.

C. SOM neural networks

SOM neural networks are capable of arranging 
the input data into a discretized two-dimensional 
space known as map, which attempts to preserve 
the topological properties of the input space. This is 
motivated by behavior of visual, aural and sensory 
areas of the human cerebral cortex [20, 21].

The main advantage of SOM architectures, compared 
with other neural network models, is the training 
because in most of the cases it is unsupervised. This 
is useful in clustering tasks because similarities in the 
data can be found by the map [20].

SOM uses the information from the input to do a 
representation across a nonlinear mapping in an output 
space with reduced dimensionality. This new space is 
taken to analyze the original dataset in a graphical 
way, where different areas of the map preserve 
characteristics of the classes employed in the training 
process.

Learning process is composed by three stages: 
competitive, cooperative and adaptive. In competitive 
learning, Euclidian distance (weights) from each input 
to all units or neurons is computed. The unit with the 
most similar weight to the input is defined as the best 
matching unit (BMU). Then, a cooperative process is 
given around BMU, and units close to it are updated 
based on a neighborhood function. Finally, adaptive 
process (1) changes BMU weights according to the 
input [20]. This is reached through the expression:

 	
(1)

where ωi(t) are weights of the map, η(t) is a learning 
coefficient, hij(t) is a neighborhood function, and x(t) 
is the input vector.

For training, SOM network provides necessary 
information such as number of units, size, type of 
lattice map, and neighborhood function parameters. 
Number of units and size define the map resolution, 
type of lattice defines arrangement units from regular or 
irregular forms, and the base size of the neighborhood 
function controls cooperative process [20].

There are heuristic rules to compute number of units 
and map dimension, one of them is based on principal 
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component analysis (PCA). The ratio of first and 
second principal components from the training dataset 
can provide an initial value to obtain the length and 
width relation of the map [20, 21]. Also, it is necessary 
to attempt that data activate all units of the map. 
These rules were followed to determine the number 
of units and size. Hexagonal topology for lattice was 
implemented because the distance between adjacent 
units is similar.

Finally, the neighborhood function (2) establishes 
the strength in connections between the units. In the 
present work, it is based on Gaussian distribution, 
given by:

    (2)

where dij is the Euclidian distance between the j 
unit and BMU, and σ(t) is the basis of the function 
in the iteration t. This parameter changes during the 
training, beginning with a basis of four units and 
ending with just one unit. The map size and area 
where the neighborhood function has significant 
values determine the classification accuracy and 
generalization [20].

D. Training process

In training process, database size is important to 
build sets to train the neural networks, and sets to 
validate the best model. In this case, a high number of 
events is demanded. Nevertheless, different strategies 
have been studied to solve these difficulties. Cross-
validation and bootstrap techniques are examples of 
these solutions [22-24].

In this study, where only thirteen registers/events are 
available, a specific cross-validation technique known 
as Leave One Out (LOO) was implemented. Therefore, 
the number of ANN obtained is the same as the events 
in the database (thirteen). For each network, training 
set is settled by all but one event, and the use of SOM 
networks is validated in a general way, through the 
error of all trained ANN.

The LOO error is a statistical estimator of the behavior 
when a learning algorithm is used, and it is very useful 
for model selection because is slightly biased, despite 
its empirical error. Also, when the algorithm is stable, 

LOO error is low [21, 22]. The LOO error (3) can be 
calculated using:

     (3)

where m is the number of samples in the D set, 
composed by the zi elements, and fi is the function 
obtained after training. These methods have been 
used in applications where models of regression or 
structures in time series are required.

An unsupervised training was developed, where just 
information extract from acoustic lung signal was 
established. In this case, a vector with thirteen features 
was presented to the input of neural network. Here, 
trained maps were analyzed clustering the neurons, 
and searching for a map divided into groups that 
represent the information in the input of the map.

Additionally, a supervised training based on labels 
of acoustic lung signals was implemented. As shown 
in Table 1, three classes were established for map 
training. A map clustering was pre-defined through 
K-means algorithm, adjusting to three groups the 
neurons of the trained map output.

E. Post-training process

After SOM training, it was established a clustering 
process using the K-means algorithm that is based on 
proximity measures between data representation. In 
this case, information from neurons in the map were 
used as the algorithm. Proximity between neurons is 
measure through synaptic weights [25].

When unsupervised training was implemented, the 
number of clusters extracted from the map, through 
K-means algorithm, was evaluated using quality 
measures for clustering processes. Davies-Bouldin 
and Silhouette indices were used with this objective 
[26-27]. According to this, the best number of clusters 
was found, and labels were put for each one of 
them, corresponding to the number of hits given by 
each signal in different regions of the map. Then, a 
classification rate for unsupervised proposal was 
computed.

For supervised training, the number of cluster was 
settled to three that corresponds to the number of 
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abnormalities in the database. Then, a classification 
rate for supervised proposal was calculated.

Computation of the classification rate was based on 
frames. Each signal was divided into frames to extract 
the MFCC values, and each frame was presented as 
an input vector to the SOM+K-means proposal. The 
classification rate was determined according to the 
cluster with the highest number of activations given 
by the frames. In this way, lung signal was classified 
according to the class with the highest number of 
activations in each neuron in the network output. This 
calculation was developed for each neural network 
from thirteen trained networks by proposal. Then, 
general efficiency was computed, using the LOO 
technique.

III. Results

According to LOO method, validation is obtained with 
one sample left out. This means that a single neural 
network was trained for each acoustic lung signal, 
obtaining thirteen networks by unsupervised and 
supervised proposal. The results of the two approaches 
are shown below.

A. Unsupervised proposal

Figure 2 shows values for Davies-Bouldin and 
Silhouette indices. The best values for both indices 
correspond to small number of clusters. Therefore, it 
was preferable to maintain three clusters, and compare 
these results with supervised approach. Subsequently, 
the SOM+K-means proposal was adjusted to this 
number of clusters.

Table 2 shows the unsupervised proposal results. The 
best classification rate performance from training was 
71 % for crackles class. It is possible to see that the 
Normal class had a low classification rate, showing the 
poor capability of neural network to learn this pattern. 
Wheezes class had a classification rate of 69 %.

Results from the testing test are shown as number of 
hits out of number of maps for each class obtained 
through LOO technique. In summary, crackles cluster 
had 75 %, Wheezes 75 % and Normal 20 % of 
classification accuracy. In general, these results had 54 
% of classification accuracy.

a) Davies-Bouldin Index

b) Silhouette Index
Fig. 2. Clustering index values for unsupervised 

training.

Table 2
Unsupervised proposal results

Training
Subset

Signal’s class
Crackles Wheezes Normal

1 100 % 50 % 20 %
2 67 % 75 % 20 %
3 67 % 50 % 20 %
4 67 % 75 % 20 %
5 75 % 67 % 20 %
6 50 % 67 % 20 %
7 75 % 67 % 20 %
8 50 % 67 % 20 %
9 75 % 75 % 25 %
10 75 % 75 % 25 %
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Training
Subset

Signal’s class
Crackles Wheezes Normal

11 75 % 75 % 25 %
12 75 % 75 % 25 %
13 75 % 75 % 25 %

Mean 71+12 % 69+9 % 22+2 %

Testing (3/4) 75 % (3/4) 75 % (1/5) 20 %
(7/13) 54 %

Figure 3 shows the first of the thirteen maps obtained 
with three clusters defined with red, green and yellow 
colors (crackles, wheezes and normal).

Fig. 3. Map from unsupervised training using the first 
signal.

B. Supervised proposal

For comparison, Figure 4 shows Davies-Bouldin and 
Silhouette indices from maps obtained by supervised 
training. Both indices showed that small number of 
clusters exhibit better results. According to the classes 
in the database, the number of clusters was fixed to 
three. Table 3 shows the results of the supervised 
proposal, and Figure 5 shows the clustering map. In 
the map, three regions are visualized, according to the 
supervised proposal. Red, yellow and green colors 
were used to label the crackles, wheezes and normal 
clusters, respectively.

IV. Discussion

As previously mentioned, the LOO method attempts 
to obtain results in terms of method efficiency in 
a general way. This means that there is not a single 
network that solves the classification problem; 
however, there is a models based study on neural 
networks for the classification methodology.

A substantial difference between unsupervised 
and supervised approaches was the classification 
efficiency. In the first proposal, results reached 54 

% for testing set. In the second approach, 85 % of 
efficiency was reached. This shows that information 
included in supervised proposal was important in 
terms of classification rates.

When results are compared with other approaches 
[12, 28], it was noticeable that classification rates, for 
supervised proposal, were closer to these results. Table 
4 summarizes these comparisons.

a) Davies-Bouldin Index

b) Silhouette Index

Fig. 4. Clustering index values for supervised training.
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Table 3
Supervised proposal results

Training

Subset

Signal’s class
Crackles Wheezes Normal

1 100 % 100 % 100 %
2 100 % 100 % 100 %
3 100 % 100 % 100 %
4 100 % 75 % 100 %
5 100 % 100 % 100 %
6 100 % 100 % 100 %
7 100 % 100 % 100 %
8 100 % 0 % 80 %
9 75 % 100 % 25 %
10 100 % 0 % 0 %
11 100 % 100 % 75 %
12 100 % 100 % 100 %
13 100 % 100 % 100 %

Mean 98 + 8 % 82 + 4 % 83 + 3 %
(4/4) 100 % (3/4) 75 % (4/5) 80 %

Testing (11/13) 85 %

Table 4
Comparison of the results

Signal’s 
class

Unsupervised 
SOM+K-means

Supervised
SOM+K-means

[13] [28]

Crackles 75 % 100 % 100 % 75 %
Wheezes 75 % 75 % 85 % 100 %
Normal 20 % 80 % 92 % 80 %

Results from normal signals were poor in the 
unsupervised training. This can be explained by 
intra-cluster differences. Signals for this class were 
obtained from sounds such as vesicular, tracheal, 
bronchial and bronchovesicular, which are different 
but belong to the normal class [17].

Index values were comparable in both type of 
trainings. The best indices were obtained with small 
number of clusters and in the supervised proposal.

Differences in clustered maps can be noted where 
clusters have better performance in the supervised 

proposal with well-defined regions (Figures 3 and 
5). Irregular clustering was exhibit in the supervised 
proposal, where for crackles signals (Map1 to Map4), 
one cluster was divided into the corners of the map 
(Figure 5).

The results from testing could be shown using a 
mean computed with just thirteen maps, according 
to the available number of signals. Therefore, 
complementary experiments with bigger databases 
would provide more information about the use of 
current methodology. Databases with more samples 
facilitate the study of other kind of validation 
methods, without the limitations exposed here.
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Fig. 5. Map from supervised training using the first 
signal.

V. Conclusions

Neural networks are useful tools to analyze acoustic 
lung signals. SOM trained in a supervised way 
provided a rate classification of 85 %, obtaining 
comparable results to previous studies for classifying 
lung signals. Finally, the clustering technique used 
here showed that it is possible to analyze this kind of 
signals to extract relevant information, and determine 
whether they belong to an abnormal or a normal group.
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