
113
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

ISSN Impreso 0121-1129, ISSN Online 2357-5328, DOI: http://doi.org/10.19053/01211129.v26.n44.2017.5776

A memetic algorithm for minimizing the makespan in
the Job Shop Scheduling problem

Un algoritmo memético para minimizar el makespan en el problema
del Job Shop Scheduling

Um algoritmo memético para minimizar o makespan no problema do
Job Shop Scheduling

Henry Lamos-Díaz*

Karin Aguilar-Imitola**

Yuleiny Tatiana Pérez-Díaz***

Silvia Galván-Núñez****

Abstract
The Job Shop Scheduling Problem (JSP) is a combinatorial optimization problem cataloged as type NP-Hard. To
solve this problem, several heuristics and metaheuristics have been used. In order to minimize the makespan, we
propose a Memetic Algorithm (MA), which combines the exploration of the search space by a Genetic Algorithm
(GA), and the exploitation of the solutions using a local search based on the neighborhood structure of Nowicki
and Smutnicki. The genetic strategy uses an operation-based representation that allows generating feasible
schedules, and a selection probability of the best individuals that are crossed using the JOX operator. The results
of the implementation show that the algorithm is competitive with other approaches proposed in the literature.

Keywords: Job Shop Schedule; local search; memetic algorithm; metaheuristics.

*	 Ph. D. Universidad Industrial de Santander (Bucaramanga-Santander, Colombia). hlamos@uis.edu.co.
**	 M. Sc. Universidad Industrial de Santander (Bucaramanga-Santander, Colombia). ka-rin.aguilar@correo.uis.edu.co.
***	Esp. Universidad Industrial de Santander (Bucaramanga-Santander, Colombia). yuleiny.perez@correo.uis.edu.co.
**** M. Sc. Universidad Industrial de Santander (Bucaramanga-Santander, Colombia). silgalnu@udel.edu.

Fecha de recepción: 30 de abril de 2015
Fecha de aprobación: 26 de agosto de 2016

Henry Lamos-Díaz - Karin Aguilar-Imitola - Yuleiny Tatiana Pérez-Díaz - Silvia Galván-Núñez

DOI: http://doi.org/10.19053/01211129.v26.n44.2017.5776

pp. 113-123

114
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

Resumen
El Job Shop Scheduling Problem (JSP) es un problema de optimización combinatoria catalogado de tipo NP-
Hard. Para dar solución a este problema han sido utilizados diversos métodos heurísticos y metaheurísticos. Con
el objetivo de minimizar el makespan se propone un algoritmo memético (MA) que combina la exploración
del espacio de búsqueda mediante un algoritmo genético (GA) y la explotación de las soluciones, usando una
búsqueda local basada en la estructura de vecindario de Nowicki y Smutnicki. La estrategia genética usa una
representación basada en operaciones que le permite generar programas factibles y una probabilidad de selección
de los mejores individuos que son cruzados usando el operador JOX. Los resultados obtenidos en la ejecución
demuestran que el algoritmo es competitivo frente a otros enfoques propuestos en la literatura.

Palabras clave: algoritmo memético; búsqueda local; Job Shop Schedule; metaheurísticas.

Resumo
O Job Shop Scheduling Problem (JSP) é um problema de otimização combinatória catalogado de tipo NP-Hard.
Para dar solução a este problema têm sido utilizados diversos métodos heurísticos e metaheurísticos. Com o
objetivo de minimizar o makespan propõe-se um algoritmo memético (MA) que combina a exploração do espaço
de procura mediante um algoritmo genético (GA) e a exploração das soluções, usando uma busca local baseada
na estrutura de vizinhança de Nowicki e Smutnicki. A estratégia genética usa uma representação baseada em
operações que permite gerar programas factíveis e uma probabilidade de seleção dos melhores indivíduos que são
cruzados usando o operador JOX. Os resultados obtidos na execução demonstram que o algoritmo é competitivo
frente a outros enfoques propostos na literatura.

Palavras chave: algoritmo memético; busca local; Job Shop Schedule; metaheurísticas.

Cómo citar este artículo:
H. Lamos-Díaz, K. Aguilar-Imitola, Y. T. Pérez-Díaz, and S. Galván-Núñez, “A memetic algorithm for
minimizing the makespan in the Job Shop Scheduling problem,” Rev. Fac. Ing., vol. 26 (44), pp. 113-123, Ene. 2017.

115
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

Henry Lamos-Díaz - Karin Aguilar-Imitola - Yuleiny Tatiana Pérez-Díaz - Silvia Galván-Núñez

I. Introduction

The Job Shop Scheduling Problem (JSP) is one of
the most studied scheduling problems in the literature
[1]. Like other scheduling problems, it is classified as
a problem of combinatorial nature since it requires
to develop a configuration for programming a set of
jobs in a set of machines, where each job has a series
of operations that must be processed in a defined
sequence, and in an established processing time. In
most of the job shop scheduling cases, it is desirable to
find the best configuration to minimize the makespan
(total time where all jobs have been executed). Other
goals directly related to timing are the minimization of
tardiness, delay, and total flow. The JSP is considered
an NP-Hard problem [2]; hence, it is computationally
difficult to find an optimal solution in a reasonable
time since the search space grows exponentially as the
problem entries increase.

Since the early 1950’s, numerous researches have
focused on solving the JSP. In 1956, Jackson [3]
proposed a new approach by generalizing the
Johnson’s Flow Shop algorithm [4]. Akers and
Friedman [5] employed an algebraic approach to
represent the processing sequences. Subsequently,
Roy and Sussmann [6] proposed a representation with
the disjunctive graph; and finally, Balas [7] applied an
enumerative approach based on this graph. Among the
different approaches for solving the JSP, it is common
to find exact methods that aim to find optimal solutions
at a high computational cost; however, they turn out
to be efficient only for small applications. Applegate
and Cook [8], and Brucker et al. [9] solved the Ft10
Benchmark problem, and tried with applications up to
30 jobs and 10 machines for the JSP, using the Branch
and Bound method; other applications of this method
are covered in [10, 11]. For some larger applications,
however, some approximations such as heuristic
algorithms are required. Some of them include priority
dispatching rules [12, 13], and the mobile bottle neck
algorithm [14, 15]. Recent researches have mostly
focused on more advanced heuristic algorithms, better
known as “metaheuristics”, which propose several
approaches like the tabu search [16-19], simulated
annealing [20-22], ant colony optimization [23-26],
particle swarm optimization [27-30], neuronal network
[31, 32], and genetic algorithms (GA). In particular,
the GA are based on Darwin’s evolutionary theory,
and they have been employed to provide successful
solutions to various combinatorial problems (JSP

included [33-36]) since they allow exploring in
an efficient way the solution space; nevertheless,
they may converge prematurely. That is why recent
researches have aimed to combine the GA with other
techniques that ameliorate its efficiency by developing
hybrid methods as the Memetic Algorithm (MA).

The MA was first introduced by Moscato and
Norman [37]. The basis of the MA lays on individual
enhancements of the solutions of agents that
interrelate one to another in a process that contains
stages of cooperation and population competition.
The MA has been successfully used in different areas
and combinatorial problems, such as the knapsack
problem [38-40], routing problems [41-43], quadratic
assignment [44-45], and spanning tree [32, 46],
among others. In order to give a solution to the JSP,
some studies [1, 47-50] have proposed a MA, where
the global search given by the GA is combined with
a neighborhood structure based on Nowicki and
Smutnicki [51], which allows the leading of the local
search and the efficient exploitation of the solution
space with the generation of three adjacent solutions
for each initial solution; all of this with the final goal
of minimizing the makespan. Here, we review the
literature related to solve sequence problems with
evolutionary “metaheuristics” algorithms, taking into
account the JSP and the MA. In addition, we designed
an algorithm to minimize the makespan, and studied
the representation of the solution with chromosome,
based on operations, and various ways of starting
and building the solutions. Likewise, we fixed and
established the genetic operators, as well as the
searching algorithm, and designed an experiment to
measure the effect of the algorithm parameters on the
outputs. Finally, we evaluated the algorithm efficiency
with reference problems from the OR-Library.

This paper is organized as follows: section 2 describes
the JSP; section 3 presents the MA framework; section
4 analyzes the effect of the algorithm parameters on
the makespan by experimentation, and evaluates
the MA with benchmarking problems; and section 5
summarizes the conclusions.

II. Job shop scheduling problem
definition

The JSP consists in a set of jobs that must be processed
in a limited set of M machines. In the JSP, the following
restrictions and assumptions are considered:

116
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

•	 Each machine is able to process one job at a time.

•	 Each job can be processed by only one machine
at a time.

•	 The sequence of machines that a job visits is
completely fixed, and has a linear precedence
structure.

•	 All jobs must be processed for each machine only
once, and there is a maximum of operations per
job.

•	 Machines are always available and never
interrupted.

•	 The processing time of all operations is known.

The JSP mathematical model is presented in equations
(1) through (7). Equation (1) represents the makespan
minimization function; meanwhile, equations (2-7)
represent the problem constraints.

𝑡𝑖𝑗: Beginning time of each operation

𝐽: Set of n jobs to be processed

𝑀: Set of m machines

𝑂𝑖𝑗: Job operation that must be processed by a machine
in an interrupted time

𝐶𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥(𝑡𝑖𝑗 + 𝜏𝑖𝑗): ∀ 𝐽 𝑖 ∈ 𝐽, 𝑀𝑗 ∈ 𝑀
(1)

Subject to:

•	 Starting time

𝑡𝑖𝑗 ≥ 0 {𝑖, 𝑝} ∈ 𝐽 {𝑗, ℎ} ∈ 𝑀 (2)

•	 Precedence

𝑡𝑖𝑗 − 𝑡𝑖ℎ ≥ 𝜏𝑖ℎ If 𝑂𝑖ℎ 𝑝𝑟𝑒𝑐𝑒𝑑𝑠 𝑂𝑖𝑗 (3)

•	 Disjunctive

𝑡𝑝𝑗 − 𝑡𝑖𝑗 + 𝐾(1 − 𝑦𝑖𝑝𝑗) ≥ 𝜏𝑖𝑗 𝑦𝑖𝑝𝑗 = 1, 𝑖𝑓 𝑂𝑖𝑗 𝑝𝑟𝑒𝑐𝑒𝑑𝑠
𝑂𝑝𝑗 (4)

𝑡𝑖𝑗 − 𝑡𝑝𝑗 + 𝐾(𝑦𝑖𝑝𝑗) ≥ 𝜏𝑝𝑗 𝑦𝑖𝑝𝑗 = 0, 𝐼𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒 (5)

Where (6)

 (7)

III. Memetic algorithm for the job
scheduling problem

The general procedure for the development of the
memetic algorithm (MA) is shown in the following
pseudo code.

The memetic process begins with the generation of
the initial population. For that purpose, the population
size parameters are established as well as the number
of generations, selection probability, and mutation.
The initial population is a set of solutions presented
as chromosomes that are decoded afterwards. A
searching method is then applied to these solutions
in order to generate adjacent (or neighbor) solutions.
Subsequently, each individual from the initial
population, as well as the chosen neighbors, are
decoded and evaluated to obtain the makespan value.
If the algorithm’s termination criterion has been
accomplished, the program stops and shows the best-
found solution; if not, a new population is generated
using the genetic operators’ application (selection,
crossing, and mutation) over the population. These
new individuals are known as a generation, and
the previous procedure is then repeated until the
breakdown criterion is accomplished. The following
sections describe each stage of the algorithm.

A. Chromosome coding and decoding

In the JSP solution using MAs, the coding is given
by a chromosome for each individual that represents
the programming or the schedule. The main purpose
is to generate feasible schedules, avoid any reparation
to individuals, and easily apply the genetic operators.
In this study, we used the representation based on
operations, which allows to code the schedule as an
operation sequence.

For a given problem of jobs and machines, a
chromosome is a permutation with job repetitions
and genes. The operations are represented by the
number of each job, and they appear several times in
the chromosome. Each appearance of a same number
indicates an operation within the programming

117
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

Henry Lamos-Díaz - Karin Aguilar-Imitola - Yuleiny Tatiana Pérez-Díaz - Silvia Galván-Núñez

sequence for the given job. This type of representation
always generates feasible programs. For example, a
chromosome [2 3 2 1 1 3 2 3 1] is given, where 1, 2, and 3
correspond to jobs. Each job is repeated as many times
as the number of machines the problem possesses, and
they represent the operations for each job. In figure 1,
by reading the chromosome from left to right, the first
gene (2) represents the first operation of the second job
to be processed first on the corresponding machine.
The second gene (3) represents the first operation of
the third job. Therefore, the third gene (2) represents
the second operation of the second job because it is the

second time this number appears in the chromosome.
In this way, the chromosome [2 3 2 1 1 3 2 3 1] is a
sequence (operation of job) that can be translated as
an operation vector 𝑂21 𝑂31 𝑂22 𝑂11 𝑂12 𝑂32 𝑂23 𝑂33 𝑂13.

The Gantt’s diagram, which is used for schedule
decoding, results from reading the genes in a
chromosome from left to right, and programming
operations considering the corresponding processing
times and machine sequences. Each operation is
assigned in the minimum possible time without
violating constraints.

Fig. 1. Example of chromosome interpretation.

B. Initial population

Different methods have been proposed to generate
the initial population: heuristics, as the mobile bottle
neck [10], priority dispatching rules [9], or random
approaches. This study uses the random generation
of individuals because any job permutation will be
a feasible schedule, due to the chosen representation
type. An individual is a vector that contains positions,
and is generated by randomly assigning the number
of each job. This is repeated until achieving the
population size.

C. Genetic operators

Genetic operators allow the population to evolve by
generating new individuals with the main purpose of
ameliorating the offspring, as well as exploring new
searching space solutions. The used operators are
selection, crossover and mutation.

The selection scheme combines both tourney and
roulette selection. Basically, it consists on choosing
the parents as a probability of the best population
individuals, but at the same time allowing some not-
so-good individuals to be part of the selected group.

The chosen chromosomes form half of the previous
population, and they are called parents.

In Crossover, first, a pair of parents (chromosomes) are
randomly selected from the mating pool, and then new
offspring is created by exchanging the parents’ genetic
information. Two parent strings are denoted as P1 and
P2, and two children strings are denoted as H1 and H2.
The procedure consists on randomly choosing one job,
any gene in the parent P1, which is then retained in the
same position in child H1; subsequently, the remaining
empty positions in child H1 are filled with the genes
of parent P2 that are different from the chosen job.
The second child is generated in the same way, but
exchanging the parent’s role (Fig. 2). This operator is
known as JOX (Job Order Crossover) [52].

Mutation introduces some extra variability into the
population, and prevents its premature convergence.
Each child generated with the crossing operator has
a mutation probability associated (random number
between 0 and 1), which is compared to a designated
parameter at the beginning of the algorithm. If the
mutation probability of a child is less or equal than the
probability parameter, the mutation is then executed;
otherwise, the individual is kept with no changes. The
mutation procedure exchanges the position of two

118
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

genes within the chromosome. For instance, in figure
3, the chosen numbers are 2 and 6, which means, they
are the positions to be exchanged. The first operation
for job 3 is found in position 2, which will be moved

to position 6, and the last operation for job 1 that is on
position 6 will be moved to position 2. In this way, a
child is altered, and the schedule is modified.

Fig. 2. Example of the JOX crossover procedure to generate children.

Fig. 3. Example of the mutation operator.

D. Local searching procedure

The memetic algorithm (MA) modifies the
neighborhood strategy proposed by Nowicki and
Smutnicki [51]. Nowicki and Smutnicki’s proposal
is based on the critical route, also known as N5.
However, in the MA, the decision on the schedule’s
critical route, in which local searching will be
applied, is not random; on the contrary, the decision
is made choosing the longest known route for that
programming. In other words, the chosen route is the
one with the largest number of critical operations. The
main purpose of applying this neighborhood structure
is to reduce the amount of movements by omitting
some movements (proposed by Van Laarhoven et al.
[19]) that will not immediately improve the makespan.
The operation exchanges are only made in the block
borders. The procedure consists on exchanging the
last two operations of the first critical block, and the
first two operations of the last block in the selected

critical route. To perform this operation, some of the
chosen blocks must contain at least two operations.

Using this local searching method, three neighbors (,
and) are obtained from the chosen route: one neighbor
per each executed exchange, and the third one from
the two simultaneous exchanges. If the chosen critical
route contains only one block, it is possible to generate
only one neighbor. Once the three neighbors are
found, the operations programming order is modified
in the schedule. Afterwards, a decoding is carried out
on Gantt’s diagram, where the neighbor with the best
fitness function value (makespan) will continue into
the procedure performed by the genetic operators. If
only one neighbor is generated, it will immediately
advance to the selection process.

The local searching pseudo code is presented as
follows:

119
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

Henry Lamos-Díaz - Karin Aguilar-Imitola - Yuleiny Tatiana Pérez-Díaz - Silvia Galván-Núñez

IV. Computational Results

A fractionated 2k-1 experiment was designed to
select the best parameters to execute the numerical
experiments. Population size, number of generations,
selection percentage, and mutation probability were
considered factors that may affect the computational
performance. The experiments were performed using
benchmark problems from Fisher et al., better known
as FT, and Lawrence’s, better known as LA, all of
them taken from the OR-Library [52-53]. For the first
experiment, low and medium complexity problems
(Ft06, La01, La06, La09, La11, La14, and La17) were
used; meanwhile, for the second experiment, problems
of high complexity (Ft10, Ft20, La16, La21, La 24,
La25, and La 38) were used. For low and medium
complexity instances, 8 replicates were made per each
combination or treatment, while 5 were made for high
complexity instances. The low and high values of
each factor used in the low and medium complexity
instances were population size {10, 30}, number of
generations {20, 30}, selection probability {0.7, 0.9},
and mutation probability {0.05, 0.1}. The values for
high complexity instances were population size {80,
150}, number of generations {100, 170}, selection
probability {0.8, 0.9}, and mutation probability {0.05,
0.1}. The numerical experiments were developed

in the Matlab® programming environment, in a PC
with an Intel Core i7 processor, 3.40GHz, and 8GB
memory. According to the analysis of variance
(ANOVA), population size, number of generations,
and selection percentage affect the solution; therefore,
the ANOVA results allowed to adjust these factors,
achieving a positive impact in most of the outputs. We
found that mutation probability has a low significance
in the evolutionary process, confirming the literature
findings regarding this operator [54].

Table 1 summarizes the results of the experiments.
The columns include the name of each test benchmark
problem (Problem), the size of the problem (Size),
the population size (POP), the number of generations
(GEN), the selection probability (SP), the mutation
probability (MP), the value of the best-known solution
for each problem (BKS), the value of the best solution
found by using the proposed MA (MA), and the
solution obtained from other evolutionary approaches
made by Hasan et al. [55], Gao et al. [52], and Wang
et al. [36]. The solutions marked with an asterisk
(*) are optimal. The proposed MA found the best-
known solution in 19 instances (63.3 %) among the
30 evaluated problems. Also, the propose MA found
10 solutions worse than other approaches; however,
the gap respect to BKS is less than 2 % in 87 % of the
evaluated problems (Table 1).

120
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

Table 1
Comparisons of the results between proposed MA, BKS and other memetic approaches

Problem Size PS GEN PS PM BKS MA MA(GR-RS)
[34] MA [54] AMGA [35]

Ft06 6x6 10 10 0.7 0.1 55 55* 55 55 -

Ft10 10x10 500 100 0.9 0.1 930 937 930 930 -

Ft20 20x5 500 80 0.9 0.1 1165 1182 1165 1165 -

La01 10x5 20 20 0.9 0.1 666 666* 666 666 666

La02 10x5 50 50 0.9 0.1 655 655* 655 655 655

La03 10x5 200 100 0.9 0.1 597 597* 597 597 597

La04 10x5 300 150 0.9 0.1 590 590* 590 590 590

La05 10x5 5 1 0.7 0.05 593 593* 593 593 593

La06 15x5 10 1 0.9 0.1 926 926* 926 926 926

La07 15x5 20 20 0.9 0.1 890 890* 890 890 890

La08 15x5 30 20 0.9 0.1 863 863* 863 863 863

La09 15x5 10 10 0.9 0.05 951 951* 951 951 951

La10 15x5 10 2 0.7 0.1 958 958* 958 958 958

La11 20x5 10 5 0.7 0.05 1222 1222* 1222 1222 1222

La12 20x5 10 5 0.9 0.1 1039 1039* 1039 1039 1039

La13 20x5 12 6 0.9 0.1 1150 1150* 1150 1150 1150

La14 20x5 10 5 0.7 0.05 1292 1292* 1292 1292 1292

La15 20x5 50 50 0.9 0.1 1207 1207* 1207 1207 1207

La16 10x10 PS0 170 0.8 0.1 945 946 945 945 945

La17 10x10 40 50 0.9 0.1 784 784* 784 784 784

La18 10x10 150 170 0.9 0.1 848 858 848 848 848

La21 15x10 150 170 0.9 0.1 1046 1081 1079 1055 1046

La22 15x10 300 80 0.9 0.1 927 954 960 927 -

La23 15x10 350 100 0.9 0.1 1032 1032* 1032 1032 -

La24 15x10 150 100 0.8 0.1 935 976 959 940 -

La25 15x10 300 100 0.9 0.1 977 999 991 984 -

La31 30x10 250 60 0.9 0.1 1784 1784* 1784 1784 1784

La32 30x10 250 100 0.9 0.1 1850 1868 1850 1850 -

La35 30x10 300 70 0.9 0.1 1888 1901 1888 1888 -

La38 15x10 250 100 0.8 0.1 1196 1258 1266 1216 -

121
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

Henry Lamos-Díaz - Karin Aguilar-Imitola - Yuleiny Tatiana Pérez-Díaz - Silvia Galván-Núñez

V. Conclusions

This study developed a memetic algorithm (MA)
to solve the Job Shop Scheduling Problem by using
the JOX method in the crossing operator, and a
new neighborhood structure for the local searching
procedure. This new neighborhood structure generated
three new solutions by exchanging operations in the
first and last block of the critical path. The MA takes
advantage of the genetic strategy that explores the
solution space, and the local searching method, which
intensifies the searching by exploiting every found
solution to avoid being trapped in a local optimum. The
random generation of initial individuals was successful
to diversify the population, and the decoding was the
process with the longest computational time. From the
ANOVA, we can conclude that the population size is
associated with the exploration capacity of the memetic
algorithm. The MA was evaluated in 30 benchmark
problems, and compared with the solutions obtained
in the literature; the computational results obtained
from the experiments demonstrated the efficiency of
the proposed memetic algorithm.

Author’s contributions

All authors contributed extensively to the work
presented in this paper.

H. Lamos Díaz conceived, designed, and supervised the
research, and critically reviewed the paper. K. Aguilar
Imitola and Y. Pérez Díaz designed and programmed
the algorithm, conducted the computational
experiments, analysis and data interpretation, and
drafted the manuscript. S. Galvan Núñez supervised
the algorithm design and the drafting of the manuscript,
and participated in the critical revision of paper.

References

[1]	 M. Frutos and F. Tohmé, “A Multi-objective Memetic
Algorithm for the Job-Shop Scheduling Problem,”
Oper. Res., vol. 13 (2), pp. 233–250, Jul. 2013. DOI:
http://doi.org/10.1007/s12351-012-0125-y.

[2]	 M. R. Garey and D. S. Johnson, Computer and
Intractability: A Guide to the Theory of NP-
Completeness. 1979.

[3]	 J. R. Jackson, “Scheduling a production to minimize
maximum tardiness,” Res. Report. Manag. Sci. Res.
Proj., vol. 43, 1955.

[4]	 S. M. Johnson, “Optimal two and three stage
production schedules with setup times included,”
Naval. Res. Logist. Quart., vol. 1 (1), pp. 61–68, Mar.
1954. DOI: http://doi.org/10.1002/nav.3800010110.

[5]	 S. B. Akers and J. Friedman, “A Non-Numerical
Approach to Production Scheduling Problems,”
Oper. Res., vol. 3 (4), pp. 429–442, 1955. DOI: http://
doi.org/10.1287/opre.3.4.429.

[6]	 B. Roy and B. Sussmann, “Les problems
d’ordonnancement avec constraintes disjonctives,”
Note D.S. 9, SEMA, 1964.

[7]	 E. Balas, “Machine Sequencing via Disjunctive
Graphs: An Implicit Enumeration Algorithm,” Oper.
Res., vol. 17 (6), pp. 941–957, Dec. 1969. DOI:
http://doi.org/10.1287/opre.17.6.941.

[8]	 D. Applegate and W. Cook, “A Computational Study
of the Job Shop Scheduling Problem,” ORSA J.
Comput., vol. 3 (2), pp. 149–156, May. 1991. DOI:
http://doi.org/10.1287/ijoc.3.2.149.

[9]	 P. Brucker, B. Jurisch, and B. Sievers, “A branch
and bound algorithm for the job-shop scheduling
problem.” Discr. Appl. Math., vol. 49, pp. 107–
127, 1994. DOI: http://doi.org/10.1016/0166-
218X(94)90204-6.

[10]	 C. Mencía, M. R. Sierra, and R. Varela, “Depth-first
heuristic search for the job shop scheduling problem,”
Ann. Oper. Res., vol. 206 (1), pp. 265–296, Jul. 2013.
DOI: http://doi.org/10.1007/s10479-012-1296-x.

[11]	 Y. Tan and Z. Jiang, “A branch and bound algorithm
and iterative reordering strategies for inserting
additional trains in real time: A case study in
Germany.” Math. Probl. Eng., vol. 2015, pp. 1–12,
2015. DOI: http://doi.org/10.1155/2015/289072.

[12]	 K. Hadavi, Y.-W. Hou, W.-L. Hsu, D. Levy, and
M. Pinedo, “Dispatching Issues in Job Shop
Scheduling,” in New Directions for Operations
Research in Manufacturing - Chapter 14, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp.
234–245. DOI: http://doi.org/10.1007/978-3-642-
77537-6_14.

[13]	 S. Yokoyama, H. Iizuka, and M. Yamamoto,
“Priority rule-based reconstruction for total weighted
tardiness minimization of job-shop scheduling
problem,” J. Adv. Mech. Des. Syst. Manuf., vol. 8
(5), pp. 1–6, 2014. DOI: http://doi.org/10.1299/
jamdsm.2014jamdsm0073.

[14]	 J. Adams, E. Balas, and D. Zawack, “The Shifting
Bottleneck Procedure for Job Shop Scheduling,”
Manage. Sci., vol. 34 (3), pp. 391–401, Mar. 1988.
DOI: http://doi.org/10.1287/mnsc.34.3.391.

[15]	 R. M. Silva, C. Cubillos, and D. Cabrera Paniagua,
“A Constructive Heuristic for Solving the Job- Shop
Scheduling Problem,” IEEE Latin Am Trans, vol.
14 (6), pp. 2758–2763, Jun. 2016. DOI: http://doi.
org/10.1109/TLA.2016.7555250.

[16]	 M. Dell’Amico and M. Trubian, “Applying tabu
search to the job-shop scheduling problem,” Ann.

122
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

Oper. Res., vol. 41 (1-4), pp. 231–252, Sep. 1993.
DOI: http://doi.org/10.1007/BF02023076.

[17]	 E. Nowicki and C. Smutnicki, “An advanced tabu
search algorithm for the job shop problem,” J. Sched.,
vol. 8 (2), pp. 145–159, Apr. 2005. DOI: http://doi.
org/10.1007/s10951-005-6364-5.

[18]	 C. Zhang, P. Li, Z. Guan, and Y. Rao, “A tabu search
algorithm with a new neighborhood structure for the
job shop scheduling problem,” Comput. Oper. Res.,
vol. 34 (11), pp. 3229–3242, Nov. 2007. DOI: http://
doi.org/10.1016/j.cor.2005.12.002.

[19]	 Y. K. Lin and C. S. Chong, “A tabu search algorithm
to minimize total weighted tardiness for the job
shop scheduling problem,” JIMO, vol. 12 (2), pp.
703–717, Jun. 2015. DOI: http://doi.org/10.3934/
jimo.2016.12.703.

[20]	 P. J. M. van Laarhoven, E. H. L. Aarts, and J.
K. Lenstra, “Job Shop Scheduling by Simulated
Annealing,” Operations Res., vol. 40 (1), pp.
113–125, Feb. 1992. DOI: http://doi.org/10.1287/
opre.40.1.113.

[21]	 M. Rojas-Santiago, P. Damodaran, S. Muthuswamy,
and M. C. Vélez-Gallego, “Makespan minimization
in a job shop with a BPM using simulated annealing,”
Int. J. Adv. Manuf. Technol., vol. 68 (9–12), pp.
2383–2391, Oct. 2013. DOI: http://doi.org/10.1007/
s00170-013-4858-4.

[22]	 R. Zhang and C. Wu, “A simulated annealing
algorithm based on block properties for the job
shop scheduling problem with total weighted
tardinessobjective,” Comput. Oper. Res., vol. 38
(5), pp. 854–867, May. 2011. DOI: http://doi.
org/10.1016/j.cor.2010.09.014.

[23]	 D. Merkle and M. Middendorf, “A New Approach
to Solve Permutation Scheduling Problems with Ant
Colony Optimization,” Springer Berlin Heidelberg,
2001, pp. 484–494. DOI: http://doi.org/10.1007/3-
540-45365-2_50.

[24]	 A. Udomsakdigool and V. Kachitvichyanukul,
“Multiple colony ant algorithm for job-shop
scheduling problem,” Int. J. Prod. Res., vol. 46
(15), pp. 4155–4175, Aug. 2008. DOI: http://doi.
org/10.1080/00207540600990432.

[25]	 Z. Rui, W. Shilong, Z. Zheqi, and Y. Lili, “An ant
colony algorithm for job shop scheduling problem
with tool flow,” Proc. Inst. Mech. Eng. Part B J. Eng.
Manuf., vol. 228 (8), pp. 959–968, Aug. 2014. DOI:
http://doi.org/10.1177/0954405413514398.

[26]	 P. Korytkowski, S. Rymaszewski, and T. Wisniewski,
“Ant colony optimization for job shop scheduling
using multi-attribute dispatching rules,” Int. J. Adv.
Manuf. Technol., vol. 67 (1-4), pp. 231–241, Jul.
2013. DOI: http://doi.org/10.1007/s00170-013-
4769-4.

[27]	 R. Eberhart and J. Kennedy, “A new optimizer using
particle swarm theory,” in Proceedings of the Sixth
International Symposium on Micro Machine and

Human Science, pp. 39–43, Aug. 2002. DOI: http://
doi.org/10.1109/mhs.1995.494215.

[28]	 D. Y. Sha and H.-H. Lin, “A multi-objective PSO for
job-shop scheduling problems,” Expert Syst. Appl.,
vol. 37 (2), pp. 1065–1070, Mar. 2010. DOI: http://
doi.org/10.1016/j.eswa.2009.06.041.

[29]	 T.-L. Lin et al., “An efficient job-shop scheduling
algorithm based on particle swarm optimization?,”
Expert Syst. Appl., vol. 37 (3), pp. 2629–2636,
Mar. 2010. DOI: http://doi.org/10.1016/j.
eswa.2009.08.015.

[30]	 F. Zhao, J. Tang, J. Wang, and Jonrinaldi, “An
improved particle swarm optimization with decline
disturbance index (DDPSO) for multi-objective
job-shop scheduling problem,” Comput. Oper. Res.,
vol. 45, pp. 38–50, May. 2014. DOI: http://doi.
org/10.1016/j.cor.2013.11.019.

[31]	 T. Watanabe, H. Tokumaru, and Y. Hashimoto, “Job-
shop scheduling using neural networks,” Control
Eng. Pract., vol. 1 (6), pp. 957–961, Dec. 1993. DOI:
http://doi.org/10.1016/0967-0661(93)90005-C.

[32]	 G. R. Weckman, C. V. Ganduri, and D. A. Koonce,
“A neural network job-shop scheduler,” J. Intell.
Manuf., vol. 19 (2), pp. 191–201, Apr. 2008. DOI:
http://doi.org/10.1007/s10845-008-0073-9.

[33]	 D. C. Mattfeld and C. Bierwirth, “An efficient
genetic algorithm for job shop scheduling with
tardiness objectives,” Eur. J. Oper. Res., vol. 155 (3),
pp. 616–630, Jun. 2004. DOI: http://doi.org/10.1016/
S0377-2217(03)00016-X.

[34]	 J.-T. Tsai, T.-K. Liu, W.-H. Ho, and J.-H. Chou, “An
improved genetic algorithm for job-shop scheduling
problems using Taguchi-based crossover,” Int. J.
Adv. Manuf. Technol., vol. 38 (9–10), pp. 987–994,
Sep. 2008. DOI: http://doi.org/10.1007/s00170-007-
1142-5.

[35]	 I. Essafi, Y. Mati, and S. Dauzere-Peres, “A genetic
local search algorithm for minimizing total weighted
tardiness in the job-shop scheduling problem,”
Comput. Oper. Res., vol. 35 (8), pp. 2599–2616, Aug.
2008. DOI: http://doi.org/10.1016/j.cor.2006.12.019.

[36]	 L. Wang, J.-C. Cai, and M. Li, “An adaptive multi-
population genetic algorithm for job-shop scheduling
problem,” Adv. Manuf., vol. 4 (2), pp. 142–149, Jun.
2016. DOI: http://doi.org/10.1007/s40436-016-
0140-y.

[37]	 P. Moscato and M. G. Norman, “A memetic approach
for the traveling salesman problem implementation
of a computational ecology for combinatorial
optimization on message-passing systems,” Proc.
Parallel Comput. Transputer Appl., vol. 28 (1), pp.
177–186, 1992.

[38]	 X. Guo, Z. Wu, and G. Yang, “A Hybrid Adaptive
Multi-objective Memetic Algorithm for 0/1 Knapsack
Problem,” Springer Berlin Heidelberg, 2005, pp.
176–185. DOI: http://doi.org/10.1007/11589990_20.

123
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 113-123. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

Henry Lamos-Díaz - Karin Aguilar-Imitola - Yuleiny Tatiana Pérez-Díaz - Silvia Galván-Núñez

[39]	 H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and
Y. Nojima, “Implementation of Multiobjective
Memetic Algorithms for Combinatorial Optimization
Problems: A Knapsack Problem Case Study,” Studies
in Computational Intelligence-Chapter 2, vol. 171,
pp. 27–49, 2009. DOI: http://doi.org/10.1007/978-3-
540-88051-6_2.

[40]	 A. Rezoug, D. Boughaci, and M. Badr-El-
Den, “Memetic Algorithm for Solving the 0-1
Multidimensional Knapsack Problem,” Springer
International Publishing, 2015, pp. 298–304.

[41]	 C. Prins and S. Bouchenoua, “A Memetic Algorithm
Solving the VRP, the CARP and General Routing
Problems with Nodes, Edges and Arcs,” Studies in
Fuzziness and Soft Computing-Chapter 4, vol. 166,
pp. 65–85, 2005. DOI: http://doi.org/10.1007/3-540-
32363-5_4.

[42]	 J. Schönberger, “Memetic Algorithm Vehicle
Routing,” in Operational Freight Carrier Planning,
Berlin/Heidelberg: Springer-Verlag, 2005, pp. 65–
76.

[43]	 J. Nalepa and M. Blocho, “Adaptive memetic
algorithm for minimizing distance in the vehicle
routing problem with time windows,” Soft Comput.,
vol. 20 (6), pp. 2309–2327, Jun. 2016. DOI: http://
doi.org/10.1007/s00500-015-1642-4.

[44]	 J.-F. Cordeau, M. Gaudioso, G. Laporte, and L.
Moccia, “A Memetic Heuristic for the Generalized
Quadratic Assignment Problem,” INFORMS J.
Comput., vol. 18 (4), pp. 433–443, Nov. 2006. DOI:
http://doi.org/10.1287/ijoc.1040.0128.

[45]	 U. Benlic and J.-K. Hao, “Memetic search for the
quadratic assignment problem,” Expert Syst. Appl.,
vol. 42 (1), pp. 584–595, Jan. 2015. DOI: http://doi.
org/10.1016/j.eswa.2014.08.011.

[46]	 T. Fischer and P. Merz, “A Memetic Algorithm
for the Optimum Communication Spanning Tree
Problem,” in Hybrid Metaheuristics, Springer Berlin
Heidelberg, pp. 170–184.

[47]	 H.-C. Cheng, T.-C. Chiang, and L.-C. Fu, “A two-
stage hybrid memetic algorithm for multiobjective
job shop scheduling,” Expert Syst. Appl., vol. 38
(9), pp. 10983–10998, Sep. 2011. DOI: http://doi.
org/10.1016/j.eswa.2011.02.142.

[48]	 M. R. Raeesi N. and Z. Kobti, “A memetic algorithm
for job shop scheduling using a critical-path-based
local search heuristic,” Memetic Comp, vol. 4 (3), pp.
231–245, Sep. 2012. DOI: http://doi.org/10.1007/
s12293-012-0084-0.

[49]	 Y. Yuan and H. Xu, “Multiobjective Flexible Job Shop
Scheduling Using Memetic Algorithms,” IEEE Trans
Automat Sci Eng, vol. 12 (1), pp. 336–353, Jan. 2015.
DOI: http://doi.org/10.1109/TASE.2013.2274517.

[50]	 R. Mencía, M. R. Sierra, C. Mencía, and R. Varela,
“Memetic algorithms for the job shop scheduling
problem with operators,” Appl. Soft Comput., vol. 34,
pp. 94–105, Sep. 2015. DOI: http://doi.org/10.1016/j.
asoc.2015.05.004.

[51]	 E. Nowicki and C. Smutnicki, “A Fast Taboo Search
Algorithm for the Job-Shop Problem,” Manage. Sci.,
vol. 42 (6), pp. 797–813, Jun. 1996. DOI: http://doi.
org/10.1287/mnsc.42.6.797.

[52]	 L. Gao, G. Zhang, L. Zhang, and X. Li, “An
efficient memetic algorithm for solving the job
shop scheduling problem,” Comput. Ind. Eng., vol.
60(4), pp. 699–705, May. 2011. DOI: http://doi.
org/10.1016/j.cie.2011.01.003.

[53]	 J. E. Beasley, “OR-Library: Distributing Test
Problems by Electronic Mail,” J. Oper. Res. Soc.,
vol. 41 (11), p. 1069, Nov. 1990. DOI: http://doi.
org/10.1057/jors.1990.166.

[54]	 M. A. González Fernández, Soluciones
metaheurísticas al ‘job-shop scheduling problem
with sequence-dependent setup times, 2011.

[55]	 S. M. Kumrul Hasan, R. Sarker, D. Essam, and D.
Cornforth, “Memetic algorithms for solving job-shop
scheduling problems,” Memetic Comp, vol. 1 (1),
pp. 69–83, Mar. 2009. DOI: http://doi.org/10.1007/
s12293-008-0004-5.

