
23
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

ISSN Impreso 0121-1129, ISSN Online 2357-5328, DOI: http://doi.org/10.19053/01211129.v26.n44.2017.5768

Juan Sebastián González-Sanabria - Juan Antonio Morente-Molinera - Alexander Castro-Ro-
mero

pp. 23-32

DOI: http://doi.org/10.19053/01211129.v26.n44.2017.5768

DeSoftIn: A methodological proposal for individual
software development

DeSoftIn: Propuesta metodológica para desarrollo de software
individual

DeSoftIn: Proposta metodológica para desenvolvimento de software
individual

Juan Sebastián González-Sanabria*

Juan Antonio Morente-Molinera**

Alexander Castro-Romero***

Abstract
Different Computer Engineering undergraduate programs over the world are demanding the students to present
individual works and, particularly, to present a degree project, which in most cases is related to software
development. However, when planning the projects, students find themselves with the problem of choosing a
method to develop the software, since existent methods involve team work, but the degree project is supposed to
be done individually, in order to evaluate the student’s acquired knowledge. This difficulty leads to projects that
fail either to achieve the proposed objectives or to finish on the expected time, among other difficulties. This paper
presents a methodological proposal for the development of individual software projects, mainly in academia,
named “DeSoftIn”, which will contribute to accomplish the project objectives, and will allow the students to
approach development methodologies since the beginning of their studies.

Keywords: Agile methods; Development methodology; Software quality; Software engineering.

Resumen
Los diferentes programas de pregrado de Ingeniería Informática en el mundo, exigen a sus estudiantes presentar
trabajos de manera individual y, particularmente, un proyecto de trabajo de grado, los cuales, en la mayoría de los
casos, están relacionados con el desarrollo de un software; sin embargo, al momento de planear dichos proyectos,
los estudiantes se encuentran ante la dificultad de escoger qué metodología utilizar, pues las metodologías de
desarrollo de software existentes suponen grupos de personas, y resulta que con el fin de evaluar los conocimientos
particulares adquiridos por cada estudiante, los trabajos de grado se deben hacer, generalmente, de manera
individual. La dificultad en la selección de la metodología lleva a que los proyectos no den como resultado
el objetivo propuesto o tarden más de lo programado, entre otras dificultades. El presente artículo plantea una

*	 M. Sc. (c) Universidad Pedagógica y Tecnológica de Colombia (Tunja-Boyacá, Colombia). juansebastian.gonzalez@uptc.edu.co. ORCID:
0000-0002-1024-6077.

**	 Ph. D. Universidad Internacional de La Rioja (La Rioja, España). jamoren@ decsai.ugr.es. ORCID: 0000-0002-2729-6900.
***	M. Sc. Universidad Pedagógica y Tecnológica de Colombia (Tunja-Boyacá, Colombia). alexander.castro01@uptc.edu.co. ORCID: 0000-

0001-9469-5445.

Fecha de recepción: 21 de febrero de 2017
Fecha de aprobación: 17 de abril de 2017

24
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

DeSoftIn: A methodological proposal for individual software development

propuesta metodológica para el desarrollo individual de proyectos de software, principalmente en la academia,
denominado DeSoftIn, que coadyuve al cumplimiento de los objetivos del proyecto y permita a los estudiantes
tener una aproximación al uso de metodologías de desarrollo, desde el inicio del programa de estudios.

Palabras clave: Calidad de software; Ingeniería de software; Metodologías ágiles; Metodologías de desarrollo.

Resumo
Os diferentes programas de graduação de Engenharia Informática no mundo, exigem a seus estudantes apresentar
trabalhos de maneira individual e, particularmente, um projeto de trabalho de graduação, os quais, na maioria dos
casos, estão relacionados com o desenvolvimento de um software; porém, ao momento de planejar tais projetos,
os estudantes encontram-se perante a dificuldade de escolher qual metodologia utilizar, pois as metodologias de
desenvolvimento de software existentes supõem grupos de pessoas, e acontece que para avaliar os conhecimentos
particulares adquiridos por cada estudante, os trabalhos de graduação devem ser feitos, geralmente, de forma
individual. A dificuldade na seleção da metodologia faz com que os projetos não deem como resultado o objetivo
proposto ou tardem mais do que foi programado, entre outras dificuldades. O presente artigo planteia uma
proposta metodológica para o desenvolvimento individual de projetos de software, principalmente na academia,
denominado DeSoftIn, que contribua ao cumprimento dos objetivos do projeto e permita aos estudantes ter uma
aproximação ao uso de metodologias de desenvolvimento, desde o início do programa de estudos.

Palavras chave: Qualidade de software; Engenharia de software; Metodologias ágeis; Metodologias de
desenvolvimento.

Cómo citar este artículo:
J. S. Gónzalez-Sanabria, J. A. Morente-Molinera, and A. Castro-Romero, “DeSoftIn: A methodological
proposal for individual software development,” Rev. Fac. Ing., vol. 26 (45), pp. 23-32, May. 2017.

25
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

Juan Sebastián González-Sanabria - Juan Antonio Morente-Molinera - Alexander Castro-Romero

I. Introduction

Since the appearance of computer engineering as an
academic discipline, models, frames and methodologies
that describe the “basic steps” or ideals to adequately
carry out software development projects have been
proposed. Nevertheless, the lack of homogeneity on
factors such as development styles, working teams,
and resources, among others, have resulted in the
existence of many methodologies, mainly focused on
team work (i.e., two or more people). Additionally,
the students interested in this discipline, during their
academic formation, are continually compelled to
conduct individual projects, mostly without orientation
or a methodology. Therefore, during this process, the
students continuously encounter problems and make
mistakes that are not detected until the resulting
product is turned in.

Current methodologies used to develop software
(eXtreme Programming –XP, Cascade, and Iteractiv,
among others) propose the conformation of teams with
at least 5 people, which constitutes the major difficulty
to apply them to individual projects. Moreover, in
these methodologies, each team person complies with
very specific functions, and in several phases there are
not transversal communications among them. On the
other hand, the delivery time is usually 15-30 days per
delivery, which means an estimated of 90-120 days
to have the final product; however, students do not
have that long in an academic project, since they are
given only 30 to 60 days to complete these projects.
Furthermore, a significant investment in financial and
physical resources is required, which is not taken into
account in most of the software development academic
projects.

Based on expert opinions, it can be deduced that an
individual software development methodology must
count with all the quality and efficiency aspects of
a product developed by a team. Such methodology

should provide the necessary phases and tools to offer
the versatility of the traditionally used methodologies,
complying with deadlines, objectives, and defined
scopes of the project.

With this motivation, in this paper, we formulate
a methodological proposal to develop software,
called “DeSoftIn”, which allows, mainly computer
engineering students, to have a reference point
when they have to work individually. To achieve
this, initially, we searched for current theories, and
compared the most used methodologies, which is
explained in the next chapter; subsequent chapters
describe the developed methodological proposal, the
evaluation of such proposal, and the conclusions and
recommendations.

II. Methodology

To develop this research, we defined three main
phases: 1) literature search to elaborate the state of the
art of the research topic; 2) selection and comparison
of the current most used methodologies, based on
widely known cases where they have been used,
plus experiences of professionals in the area; and 3)
proposal of a methodology to individually develop
software, application of such methodology in a study
case, and evaluation using the 4-DAT (4-Dimensional
Analytical Tool) method.

In the first phase, we carried out a systematic study on
the investigations conducted during the past five years,
focused on software development methodologies
and their applications in different contexts; for this,
we searched articles in different indexes, indicators,
and scientific data bases, such as Re0dalyc and IEEE
Xplore. After gathering the articles, we read those that
had more citations, with the objective to select the
ones most closely related to the objective of our study.
The most relevant selected articles are presented in
Table 1.

26
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

DeSoftIn: A methodological proposal for individual software development

Table 1
Literature Revision

Title Year Reference
Propuesta pedagógica: Una metodología de desarrollo de software para la enseñanza

universitaria
2011 [2]

Propuesta metodológica para desarrollo de software educativo en la Universidad de Holguín 2016 [3]
Taxonomía de los modelos y metodologías de desarrollo de software más utilizados 2012 [4]

Propuesta de metodología de desarrollo de software para objetos virtuales de aprendizaje
–MESOVA–

2011 [5]

Metodología ágil para equipos pequeños usando plataformas Microsoft 2011 [6]
Análisis de alternativas metodológicas para el desarrollo de software educativo 2014 [7]

El desarrollo de software dirigido por modelos en los repositorios institucionales 2014 [8]
Proceso para gestionar riesgos en proyectos de desarrollo de software 2013 [9]

Reflexiones acerca de la adopción de enfoques centrados en modelos en el desarrollo de
software

2011 [10]

In the second phase, we selected and categorized the
software development methodologies, particularly
those known as agile, searching in the selected literature
and interviewing professionals in the area; this with the
goal of establishing a comparison that would allow us
to detect failures in those methodologies when applied
to the projects individually developed.

Once we identified the advantages and disadvantages
that the selected developing methodologies have
when applied to individual projects, we extracted
their most relevant characteristics, and those with the
best reception among developers; thanks to this, we
were able to propose a methodology supported by
experiences, successful cases, and expert opinions.
This methodological proposal was applied in a study
case, with the aim to evaluate its performance in
relation to methodologies with longer trajectory and
success; additionally, it was evaluated by the 4-DAT
method.

III. Methodological proposal
“DeSoftIn”

In this section, we formulate the methodological
proposal, explaining the necessaries phases, roles,
abilities, and skills necessary to successfully
accomplish the individual projects.

A. Phases

1) Planning and analysis: The main action to be
accomplished in this phase is the definition of the
project scope, which should be accompanied with
the analysis of requirements, in order to establish or
estimate times, as well as to evaluate the required
knowledge on tools, technics, and technologies to be
used.

In order to plan and control the time, it is important to
differentiate in the analysis between what it should be
done and what can be achieved, since it is necessary
to take into account the customer limitations and
restrictions, mainly at the resources level. Once this is
clear, the activities that will be carried out in each one of
the sprints are defined, according to their prioritization.
These activities will be represented on a timeline that,
taking into account the “Last Planner System” [11],
is revised backwards from end to beginning, with the
goal of supplying and disposing the required resources
beforehand, and thus, avoiding waiting until the last
minute to search for such resources. Posteriorly,
a deadline to complete the development must be
set, which should include the necessary time to get
qualified or to learn any of the required aspects that
are not yet mastered by the developer.

It is important to include, like in any development,
risk planning, in order to identify those responsible
to apply the defined answers for each risk during the
application development. Lastly, the requirements

27
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

Juan Sebastián González-Sanabria - Juan Antonio Morente-Molinera - Alexander Castro-Romero

should be a priority, so that the design can begin with
those that are the most important and transversal to the
whole project; this will allow to have, after the first
delivery, a functional product.

It should be pointed out that the requirements, contrary
to the proposal for the documentation of the rest of the
methodologies, are not presented with the traditional
forms; instead, we propose to use a checklist of the
customer required functionalities, linking them to the
system roles (Fig 1). In the checklist, those users that
intervene in a specific functionality are marked with
an X, which simplifies for the developer the unified
control over the permissions, roles, and functionalities
of the project.

Role 1 Role 2 … Role n
Requirement 1 X X
Requirement 2 X

…
Requirement n X

Fig. 1. Checklist for requirement gathering.

The planning and analysis phase is not compulsory
taken as incremental, due that, by nature, the academic
projects determine from the beginning all the
requirements. In case of including new requirements
during the project development, it is suggested to end
the initially defined requirements, and then to include
an iteration of this phase to introduce them.

2) Design: Once the requirements are defined
(previous phase), they are gradually included in each
design delivery, according to their priorities. Also, in
this phase, the necessary information for the optimum
implementation of the requirements must be compiled
and complemented.

To make the different diagrams, we suggest to use
the BPMN (Business Process Model and Notation);
nevertheless, it is left to the designer’s judgment the
elaboration of a diagram that provides a global vision
of the business. Additionally, the interphase prototypes
should be made in this phase, so they can be validated
with the customer, and can be approved and improved
to pass to the next phase.

3) Development: The development phase is the one
that implies the major responsibilities within the
interactive phases, because in this one, the approved

requirements should be “coded”, in order to obtain a
functional result; likewise, in this phase the developer’s
self-criticism and expertise are tested.

After the first delivery, or first sprint if it gets associated
with SCRUM, additional recommendations made by
the consultant or the client, as well as the requirements
to be developed in each one of the deliveries are
included. Both in the design and in the development,
the form shown in figure 1 can be used, including
a color range that indicates the progress of the
fulfillment of each requirement. In figure 2, the color
green indicates a developed requirement that has been
approved by the client; orange, a requirement that is
in evaluation phase; yellow, a requirement that is in
development; and red, those functionalities that have
not yet been initiated.

Role 1 Role 2 … Role n
Requirement 1
Requirement 2

…
Requirement n

Fig. 2. Requirement advance control.

4) Implementation: Once development is complete,
the prototype must be applied, validated, and tested. In
these three processes, attention should be paid to the
recommendations and suggestions found in norms and
standards on software quality models, such as ISO/IEC
15504 [12]. Likewise, regarding the testing process,
guidance from standards and norms on information
security, such as the ISO 27000, is suggested.

Additionally, in this phase, the functionalities
developed at each delivery must be integrated, and the
respective quality and integration tests must be carried
out. It is important to include in this phase the issues
related with risk management, in order to establish
monitoring and control strategies. Also, the impact of
every established risk should be taken into account,
which requires great ability and knowledge from the
developer, along with notable communication skills
to alert the customer about such risks without causing
alarm.

On the other hand, in case the developed software needs
to be integrated into other system, the corresponding
integration tests should be conducted during each

28
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

DeSoftIn: A methodological proposal for individual software development

one of the iterations, with their respective developed
functionalities.

5) Evaluation: At the end of each phase, which
should not take longer than 10 days, a joint evaluation
between the developer “team” and the customer
should be carried out, in order to evaluate whether the
developed and implemented product complies with
the planned. Also, a meeting with the consultant or
adviser is suggested, with the aim to obtain opinions,
from a technical point of view, about the quality of the
product that will be turned in. Figure 3 shows the flow
among the described phases.

Fig. 2. Phase flow of “DeSoftIn”.

B. Roles

Given that the projects are developed individually, it is
not clear to talk about the roles; nevertheless, two roles
are proposed within this methodology: the project
team (a one-person team) and the consultant.

1) Project equipment: In the development of the
methodology proposed here, the project team is
composed by one person, who is responsible for all
the different proposed duties, as the project leader,
developer, tester, and architect, among others;
additionally, he/she has the responsibility to decide
how to organize the fulfillment of the proposed
objectives for each iteration.

2) Consultant: Although the methodology is proposed
as individual, it is suggested to have an external
collaborator with specific knowledge on the project
subject. This is included because the methodological
proposal is oriented, firstly to undergraduate
developments, in which the consultant labor can be
performed by the student’s advisor. Such consultant
may contribute with ideas and experiences that would

enrich the product, and since his/her work is less
active, the dedication need is minimum.

C. Abilities and dexterities

This aspect presents the major difficulty for the
methodological proposal because the same person
should have too many abilities, both technical and
personal. Among the main abilities that should stand
out in those persons applying the methodology are the
following:

•	 Active and patient communications skills to be
able to abstract and retain the information given
by the client during the requirements phase.
Also, the person should be able to explain every
decision made throughout the process, in order to
clearly explain the obtained results.

•	 Ability to work individually without supervision,
since the person should be able to challenge
himself and control his own time, which demands
a high level of discipline.

•	 Excellent formation and knowledge regarding the
tools and technics to be used. Furthermore, the
person should have a quick and effective learning
capacity or “curve”, in case there is a need for
making adjustments or changes in a technology
that was not contemplated at the beginning of the
project.

•	 Knowledge on tests and software quality and safety
tests. This ability is key in the methodological
proposal, and the difficulty in its application
consists in that is the same developer who conducts
most of the evaluation to find errors and failures,
both at code and functionalities levels, which may
generate personal conflicts of interest.

•	 Capacity to determine, manage, and control risks
in different environments, including, at the code
level, natural disasters, and attacks, among others.

D. Devices and tecniques

Below, we present the techniques and devices that
complement the forms presented in figures 1 and 2.

1) Sprints from 3 to 10 days: By using short sprints,
it is possible to make quicker changes, and to have at
the beginning small functional versions that allow the
customer to have an idea of the product’s direction.
Additionally, the delivery time is defined in this
lapse, since the time limit is shorter for individual

29
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

Juan Sebastián González-Sanabria - Juan Antonio Morente-Molinera - Alexander Castro-Romero

developments in the academy (less than two months).
It is convenient and relevant to use continuous
deliveries, to allow a permanent control by either the
advisor or the customer.

2) Breaks between Sprints: Taking into account
that the development will be carried out by only one
person, it is convenient to define breaks between
deliveries; this with the goal of giving some rest to
the developer, so he/she can neutrally look at the
development in process, and does not get overloaded
with responsibilities. In these pauses, it is suggested to
include or alternate the resting time with courses that
allow acquiring new abilities to apply in the project.

3) Logbook: The developer should have a diary or
logbook with the tasks that are being completed in the
application. Because the developer is not interacting
with other people, a logbook is the best way of
efficiently control the changes and inclusions that are
being done in the project, in addition to be the best
way to evaluate the actions and fulfillment of tasks
throughout the project flow.

4) CRC Cards: The CRC cards (Class-Responsibility-
Collaborator) allow to control the assignment of
responsibilities and the collaboration with other
objects. Usually, there is one card per class, which
summarizes the class responsibilities and the list of
objects with which it collaborates to function [13].

5) Meetings: Once a deliver is finalized, first, a meeting
with the customer should take place, followed by a
meeting with the consultant, in order to either finish
the sprint or plan the necessary adjustments. In both
the meetings and the project planning, the dedication
should be estimated.

6) Estimation of the dedication: Given that both
roles, project leader and developer, fall under the
responsibility of the same person, she/he is subject
to an elevated level of discipline. Therefore, she/he
should clearly differentiate between available work
hours, and dedication hours, being the main difference
between the two, the leisure hours. For this reason,
it is suggested to take into account the formula (1)
proposed in [13]:

VE=DHD * FD (1)

Where DHD is the available days-man; FD, the
dedication factor; and VE, the estimated advance speed
of the project. The dedication factor is an estimation;
in the case of individual development, it refers to the
concentration level of the project developer; if this
factor is low, it means that the person is susceptible to
distractions and impediments (including familiar and
personal distractions, among others) that would delay
the project delivery time.

E. Tools

Despite most methodologies and metholodological
proposals suggest the use of particular tools to control
and manage the project, the present methodological
proposal leaves this to the developer’s own judgment;
this with the goal of avoiding any bias in his criterion,
and allowing him/her to use the tools he/she is already
familiar with and feels more comfortable using, hence
preventing him/her to invest time in learning new
tools.

IV. Evaluation of “DeSoftIn” with
4-DAT

The 4-DAT method evaluates, among other aspects,
whether a software developing methodology has taken
into account the principles of the agile manifesto,
in other words, whether it prioritizes people, has
a communication orientation, is flexible (easy
adaptability), fast (quick and iterative with functional
versions of the product), efficient (short time and good
quality), adaptable (proper reaction to changes), and
has learning capacities (it can be improved during and
after the development) [14].

30
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

DeSoftIn: A methodological proposal for individual software development

Table 2
 Evaluation of DeSoftIn with 4-DAT

“DeSoftIn” FY SD LS LG RS Total
(i) Phases
Planning and Analysis 1 1 1 1 0 4
Design 1 1 1 1 1 5
Development 1 1 0 1 1 3
Application 1 0 0 1 1 4
Evaluation 1 0 0 1 1 4
Total 5 3 2 5 4 19
Agility Grade (AG) 5/5 3/5 2/5 5/5 4/5 19/25
(ii) Practices
Interactive and incremental development by short iterations 1 1 1 1 1 5
Coupling 0 0 0 0 0 0
Tests 1 1 0 1 1 4
40 weekly hours 0 0 0 0 0 0
Quick feedback 0 1 0 1 1 3
Simple design 1 1 0 1 0 3
Refactoring 1 1 1 1 1 5
Active participation of all project members 1 1 0 1 1 4
Constant reuse 1 1 0 1 1 4
Programing style 1 0 0 1 1 3
Meeting to evaluate the finished iteration and to plan de next
one 1 1 1 1 0 4

Progress report 1 1 1 1 1 5
Customer availability 1 1 1 1 1 5
Use of exclusive devices 1 1 1 1 1 5
Total 11 11 6 12 10 50
Agility Grade (SD) 11/14 11/14 6/14 12/14 10/14 50/70

The analysis of the results showed that one of the
failures of the methodological proposal corresponds
to the efficiency, underlining that the study case
presented the most pessimistic values in this regard,
that is, assuming that the person who will develop the
project needs to learn some of the tools that will be
used for it. Furthermore, when averaging the grades
presented in Table 2, we obtained the values shown in
in Table 3. Finally, Table 4 shows the obtained values
when comparing the methodology proposal, XP, and
Scrum [15].

Table 3
Average grades for DeSoftIn

Accomplished characteristics Average

Phases 19/25 0.76

Practices 50/70 0.71

Average 0.74

31
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

Juan Sebastián González-Sanabria - Juan Antonio Morente-Molinera - Alexander Castro-Romero

Table 4
comparison of XP, SCRUM and DeSoftIn

DeSoftIn XP SCRUM
Phases 0.76 0.70 0.60
Practices 0.71 0.73 0.80
Average 0.74 0.72 0.70

Taking into account the results shown in Table 4, even
if DeSoftIn obtains a better grade than SCRUM, it is
convenient to reiterate that this is a framework, which
implies a low grade in the phases’ part. Regarding the
practices, SCRUM excels notably, and XP is superior
to DeSoftIn, which implies that the proposed projected
practices should be included or improved.

Although the grade obtained for the methodological
proposal, based on dimension 2 of the 4-DAT method,
is high, it is noticeable the low efficiency level
obtained, which is due to the pessimistic panorama
chosen when evaluating the methodology. These faults
are complemented by the lack of control provided by
an academic peer, and the need of higher dedication
and commitment from only one person.

V. Conclusions

Despite we only present here a software development
methodological proposal, and are aware it still needs to
be tested under different environments to be improved,
we can conclude the following regarding the “DeSoftIn”
application:

•	 Minus is more: This is one of the proposal premises,
due that it is based on having only the necessary
documentation, without the use of the rigid and
unnecessary forms, in some cases.

	 The use of traditional methodologies and models is
becoming inefficient due to small work teams, or
the work at small scale, particularly because of the
amount of forms, designs, and other artifacts that
require a lot of time for their elaboration.

	 Additionally, the use of complex, or even technical,
language occasionally hampers the documentation
understanding by third parties or by people in the
team who did not participate in its writing. Therefore,
the use of a logbook that records all the actions that
take place in the project will allow a more simplified
control.

•	 Quantity is not quality: In reference to the
development teams, having big teams hinders
communication, whereas within small teams,
comprehension and understanding among its
members is better. Therefore, although it could be
risky that this proposal relies on only one person,
when considering individual projects, this person
tends to show more responsibility and personal
commitment; additionally, in this methodology, we
suggest the recurrent advise of an expert, which
guides the developer about the actions that must be
taken.

•	 Does the client always have the reason? Despite
this is a well-known concept within the commercial
circle, in the software development area, experts
and professionals suggest the contrary: most of
the customers do not really know what they want,
and therefore, it is necessary to explain them what
is possible, and help them to be realistic with their
expectations.

	 DeSoftIn answers to this necessity, and because
it does not include the Planning and Analysis
phase within the development cycle, it avoids the
occurrence of abrupt changes in the requirements;
nevertheless, it is possible to consider the client’s
opinions and criteria on the functionality designs
obtained in the requirement analysis.

•	 Continuous learning: When the technologies and
tools are imposed by the client, and the developer
does not know them, it is necessary the decisive
interest of the developer to learn them quickly;
this, besides helping him to widen his knowledge
on tools and techniques, encourages the continuous
practice and update when no projects are under
development.

•	 Development of qualities: One of the most criticized
factors in the computation area is their professionals’
insensibility; nevertheless, this methodological
proposal achieves a great sense of responsibility
and commitment in the developer, due that his/her
reputation “is in play”, which additionally allows to
value the team work.

•	 Prioritization of simple and short functionalities,
and continuous deliveries: This premise gives the
developer a sense of increasing productivity, and
allows a constant approximation between the client
and the system, facilitating the client’s contributions

32
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (45), pp. 23-32. Mayo-Agosto, 2017. Tunja-Boyacá, Colombia.

DeSoftIn: A methodological proposal for individual software development

and opinions that will prompt the success of the final
product.

•	 Risks reduction: When the deliveries are far apart,
the difference between the client’s expectations
and the developed product may be quite distant.
Therefore, when the deliveries are set to be closer
in time, the product can be realigned in real time,
and therefore, the control and management of risks
can be agilely determined. Although short times
are an advantage in all agile methodologies, using
continuous delivery practices reduce the time from
15 to 5 days, and even less, under the throwing
modality.

This paper contributes to emphasize that DeSoftIn
may become an academic formation element for
computing students, given that, contrary to the rest of
the methodologies, models and frameworks proposed
for software development, it is centered in an academic
context.

References

[1]	 J. P. Gamboa, and A. Rosado, “Diseño de un
método ágil de desarrollo de software basado en XP,
SCRUM, OPENUP y validado con la herramienta de
análisis 4-DAT,” Ingenio, vol. 8, pp. 19-31, 2015.

[2]	 E. Gottberg, G. Noguera, and M. A. Noguera,
“Propuesta pedagógica: Una metodología
de desarrollo de software para la enseñanza
universitaria,” Universidades, vol. LXI (50), pp. 49-
57, 2011.

[3]	 C. J. Madariaga-Fernández, Y. Rivero-Peña, and
A. R. Leyva-Téllez, “Propuesta metodológica para
desarrollo de software educativo en la Universidad
de Holguín,” Ciencias Holguín, vol. XXII (4), pp.
1-17, 2016.

[4]	 J. Cervantes, and M. C. Gómez, “Taxonomía de los
modelos y metodologías de desarrollo de software
más utilizados,” Universidades, vol. LXII (52), pp.
37-47, 2012.

[5]	 E. Parra, “Propuesta de metodología de desarrollo
de software para objetos virtuales de aprendizaje
-MESOVA,” Revista Virtual Universidad Católica
del Norte, nº 34, pp. 113-137, 2011.

[6]	 A. F. Loboguerrero, L. Castañeda Bueno, and
H. F. Arboleda, “Metodología Ágil para equipos
pequeños usando plataformas Microsoft,” Sistemas
& Telemática, vol. 9 (18), pp. 83-99, Sep. 2011. DOI:
http://doi.org/10.18046/syt.v9i18.1078.

[7]	 I. Marcano, and G. Benigni, “Análisis de alternativas
metodológicas para el desarrollo de software
educativo,” SABER - Revista Multidisciplinaria
del Consejo de Investigación de la Universidad de
Oriente, vol. 26 (3), pp. 297-304, 2014.

[8]	 J. Texier, M. De Guisti, and S. Gordillo, “El
desarrollo de software dirigido por modelos en los
repositorios institucionales,” Dyna, vol. 81 (184), pp.
186-192, Apr. 2014. DOI: http://doi.org/10.15446/
dyna.v81n184.37164.

[9]	 O. Pérez, and Y. Zulueta, “Proceso para gestionar
riesgos en proyectos de desarrollo de software,”
Revista Cubana de Ciencias Informáticas, vol. 7 (2),
pp. 206-221, 2013.

[10]	 J. Bernardo-Quintero, and J. F. Duitama-Muñoz,
“Reflexiones acerca de la adopción de enfoques
centrados en modelos en el desarrollo de software,”
Ingeniería y Universidad, vol. 15 (1), pp. 219-243,
2011.

[11]	 L. F. Botero, and M. E. Álvarez, “Last planner, un
avance en la planificación y control de proyectos
de construcción. Estudio del caso de la ciudad de
Medellín,” Ingeniería y Desarrollo, nº 17, pp. 148-
159, 2005.

[12]	 A. Alarcón-Aldana, J. S. González-Sanabria,
and S. L. Rodríguez-Torres, “Guía para pymes
desarrolladoras de software, basada en la norma ISO/
IEC 15504,” Revista Virtual Universidad Católica
del Norte, nº 34, pp. 285-313, 2011.

[13]	 E. Ávila-Domenech, A. Abad, and V. De la Cruz,
“Delfdroid: metodología ágil de desarrollo de
software para dispositivos móviles,” Revista
Ingeniería UC, vol. 20 (3), pp. 59-70, 2013.

[14]	 A. Qumer, and B. Henderson-Sellers, “Measuring
agility and adoptability of agile methods: a
4-Dimensional Analytical Tool,” in IADIS
International Conference Applied Computing, San
Sebastián, España, 2006.

[15]	 A. Qumer, and B. Henderson-Sellers, “Comparative
evaluation of XP and SCRUM using the 4d analytical
tool (4-DAT),” in European and Mediterranean
Conference on Information Systems (EMCIS), Costa
Blanca, Alicante, España, 2006.

