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Abstract
Scheduling of activities in manufacturing and service enterprises should perform efficiently, since it impacts 
both productivity and competitiveness. This study analyzes a real case of green wood dryers in a sawmill in 
Chile, with a set of ten parallel machines with three different technologies, with 161 jobs, on a monthly planning 
horizon. The methodology considered two stages: first, the products were grouped by density and fiber type; 
second, a mathematical model was proposed based on linear programming, which was modeled with AMPL 
software. In addition, we conducted a statistical analysis to evaluate the solution quality and the computing times, 
using the CPLEX and GUROBI commercial solvers. The results of the computational experiment showed a 
reduction in the makespan of 8.5 %, allowing us to conclude that the solver CPLEX is better than the solver 
GUROBI, regarding CPU time and number of instances optimally solved in 59.3 % of the analyzed cases. The 
most influential parameters for computing time were GUROBI cuts (evaluated at 0), CPLEX mipcuts (evaluated 
at 2), and repeatpresolve (evaluated at 0). The time difference in the latter parameter was statistically significant.
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Resumen

La programación de actividades en empresas manufactureras y de servicios debe funcionar de manera eficiente, ya 
que afecta la productividad y la competitividad. Este estudio analiza un caso real de programación en secadores de 
madera verde en un aserradero de Chile, con un conjunto de 10 máquinas paralelas con tres tecnologías diferentes, 
con 161 trabajos, en un horizonte de planificación mensual. La metodología considera dos etapas: en primer lugar, 
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los productos se agrupan por densidad y tipo de fibra, y en segundo lugar, se propone un modelo matemático 
basado en la programación lineal, que es modelado con el software AMPL. Se realiza un análisis estadístico 
sobre la calidad de la solución y el tiempo de cómputo, con los programas comerciales CPLEX y GUROBI. Los 
resultados del experimento computacional permiten reducir el makespan en un 8,5 %, concluyendo que el solver 
CPLEX resultó ser mejor que el solver GUROBI, respecto al tiempo de CPU y al número de instancias resueltas 
al óptimo, en el 59,3 % de los casos analizados. Los parámetros más influyentes para el tiempo de cálculo fueron: 
“cuts” en GUROBI (evaluados en 0), “mipcuts” en CPLEX (evaluados en 2) y repeatpresolve (evaluados en 0). 
La diferencia en tiempo de este último parámetro es estadísticamente significativa.

Palabras clave: Máquinas paralelas; Parametrización; Programación de la producción.

Resumo
A programação de atividades nas empresas manufatureiras e de serviços deve funcionar de maneira eficiente, já 
que afeta a produtividade e a competitividade. Este estudo analisa um caso real de programação em secadores 
de madeira verde em uma serraria do Chile, com um conjunto de 10 máquinas paralelas com três tecnologias 
diferentes, com 161 trabalhos, em um horizonte de planificação mensal. A metodologia considera duas etapas: em 
primeiro lugar, os produtos se agrupam por densidade e tipo de fibra, e em segundo lugar, propõe-se um modelo 
matemático baseado na programação linear, que é modelado com o software AMPL. Realiza-se uma análise 
estatística sobre a qualidade da solução e o tempo de cômputo, com os programas comerciais CPLEX e GUROBI. 
Os resultados do experimento computacional permitem reduzir o makespan em um 8,5 %, concluindo que o 
solver CPLEX resultou ser melhor que o solver GUROBI, a respeito do tempo de CPU e do número de instâncias 
resolvidas ao ótimo, em 59,3 % dos casos analisados. Os parâmetros mais influentes para o tempo de cálculo 
foram: “cuts” em GUROBI (avaliados em 0), “mipcuts” em CPLEX (avaliados em 2) e repeatpresolve (avaliados 
em 0). A diferença em tempo deste último parâmetro é estatisticamente significativa.

Palavras chave: Máquinas paralelas; Parametrização; Programação da produção.
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I. Introduction

Scheduling of activities in manufacturing and service 
enterprises should perform efficiently, due to its impact 
on productivity and competitiveness. Scheduling 
should contribute to have a greater control of the 
productive system operations to achieve the proposed 
goals, and thus to gain a competitive advantage in 
the market [1-6]. Regarding scheduling, difficulties 
arise from the lack of balance between the production 
capacity and the capacity of meeting the client’s 
demands in an opportune way [2, 7-11].

Production planning is an optimization problem 
[5]. The literature presents cases of activity 
programming in areas like textile, transport, office, 
aluminum metallurgy, semiconductor production, 
molding plastics, and printed circuit boards, among 
others [12]. Further, optimization contributes to 
the allocation, transport, cutting of materials, plant 
distribution, forecasts, classification of inventories, 
production planning, and production scheduling [2, 
3, 13]. For sequencing and programming tasks in 
automated cells, scheduling of storage with muffling 
in intermediate stages, operations sequence in an 
assembly system, or for scheduling of tasks in parallel 
machines with deadlines, it is necessary to minimize 
the total processing time (makespan), the total time of 
the system tasks flow, the satisfactory delivery times, 
the efficient use of resources, the idle time of servers 
or machines, and the completeness of orders, among 
others [14].

In industrial production processes, it is possible to 
work in one or more of the productive stages with 
parallel machines, which contributes to improve 
the work execution and to distribute a job between 
several resources or type of products. All problems of 
allocation and sequencing in parallel machines, which 
seek a proximate way to assign and perform jobs on 
different machines, belong to the NP-Hard class and 
are fundamental in manufacturing industries [1, 4, 9, 
12-13, 15-19].

The literature depicts heuristics solutions, 
metaheuristics, and exact methods that consider 
Branch and Bound, Branch Price algorithms, Columns 
Generation, Benders and Danzig Wolf decomposition, 

linear and lagrangian relaxation, Giffler and Thompson 
(for active problems and without machines delay), 
Johnson (for flow shop problems of 2 and 3 machines), 
Johnson (for job shop problems of 2 machines and 
multiple jobs), Page’s method, CDS algorithm, NEH 
algorithm , Gupta method, and IG algorithm [2, 8] .

Our case study considered ten drying chambers 
(machines) in parallel, of three different technologies, 
with different temperatures, capabilities and times. 
More than 40 different products that entered the dryers 
as requirements were differentiated for avoiding the 
mix up of density and type of fiber (central or lateral).

In this study, a mathematical model, based on linear 
programming, is proposed using AMPL software. In 
addition, a statistical analysis is conducted to evaluate 
the quality of the solutions provided by the CPLEX 
and GUROBI commercial solvers. The following 
section describes the two-phase procedure used in the 
wood drying industry to formulate the model, which 
is subsequely validated with two commercial solvers. 
Additionally, the computing time is improved through 
a process of parameter analysis, and validated by an 
exhaustive statistical analysis.

II. Methods and materials

The methods were divided into two stages. In the 
first stage, the products were grouped by density 
and fiber type, considering a tolerance range of 3 
mm of difference in density; the data were obtained 
from the SAP system of the company; and the loads 
were composed according to the maximum capacity 
of the dryer, with each load consisting of 30 lots of 
the same density and type; however, in some cases, 
due to optimization of sawmill production, it was 
not possible to form a load, hence mixtures were 
formed. In the second stage, the mathematical model 
was formulated, and sets, parameters, variables, and 
constraints were defined.

The first stage consisted in grouping products and 
adjusting loads. To group products, we obtained the 
history of the sawmill production, which accounted 
for a total of 69 products. We classified these products 
into 45 groups, which we assigned to the adjustment 
of the loads, according to quality conditions.
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III. Formulation of the 
mathematical model

The requirements to formulate the model in the 
drying area considered ten drying chambers, with 
a volume dependent on the product type. Chamber 
technologies were classified into three types: three 
dryers of UHT, six of ACTH, and one of ACTH-
DT type. Dryer technologies were differentiated by 
temperature, processing time, and capacity; and the 
69 products, by type and density. The idea is that the 
maximum capacity of the dryer contains just one type 
of product to avoid a wood mix up that may alter the 
drying process. The processing times, according to 
the type of product and drying, were provided by the 
management and validated by the times of the drying 
control system. Products delivered by sawmills cannot 
be exposed to environmental conditions for more than 
three days, i.e., the maximum date to enter the dryer is 
(k + 3), where k represents the product’s storage day by 
drying area. The programming horizon was monthly.

The model was formulated to propose a solution to the 
problem of production scheduling in the drying area, 
focused on making the decision of what, when, and 
how much product to program, and on which machine 
perform the operation. Sets, parameters, objective 
variables function, and restrictions were defined.

A. Sets

The model has two sets M and N, where M = {1,..,m} 
represents the set of available parallel machines, and 
N= {1,..,n}, the set of jobs, which fluctuates according 
to the monthly load.

B. Parameters

A set of four parameters were identified for the model. 
Pij is the process (drying) time of job j in machine i. 
Bij, the possibility of processing job j in machine i; 
this paramenter is established by the technology of 
the dryer, via a compatibility index. Each job has a 
reception time, denoted by Kj that corresponds to the 
time at which the product is stored in the courtyard 
prior to starting the drying process. Jobs have an 
expiration time defined as Dj, since, according to the 
quality standard, the products cannot be exposed for 
more than three days to the environmental conditions.

C. Variables

The binary type variable  takes a value of 1 if it 
assigns job j to machine i.

: Maximum time of completion for all jobs

The continuous decision variable determines the 
maximum time of completion of the last job j processed 
on machine i.

: Entering time of job j in machine i

The continuous variable determines the starting date 
of job j in the dryer.

D. Objective Function

The Objective Function establishes that the maximum 
time of completion of those processes should be 
minimized.

E. Restrictions
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Restriction (1) ensures that each job j can only be 
scheduled and processed by a single machine i 
of m available machines. Restriction (2) ensures 
compatibility and possibility to process job j on each 
machine i, according to the conditions of each type of 
dryer technology, i.e., relating each machine i with jobs 
j. Restriction (3) establishes the maximum competition 
time (Cmax) as the greatest amount of processing 
time on each machine. Restriction (4) establishes 
sequencing of loads, i.e., the time at which job j enters 
into machine i plus its processing time, which must 
be less than the entering time of consecutive jobs j 
into the same machine i for all machine i and every 
job j. Restriction (5) refers to the entry time of job j 
into machine i, establishing when job j is assigned to 
machine i; the entering time of this job j into machine 
i must be greater than or equal to the time when j 
was received; this is for all i belonging to the set M 
of machines and all j belonging to the set N of jobs. 
Restriction (6) assures that time of job j entering into 
machine i does not exceed job j maturity time, when 
assignation occurs; this is for all i belonging to the set 
M of machines and for all j belonging to the set N of 
jobs. Restriction (7) defines the nature of the decision 
variable, being of binary type. Restrictions (8) and 
(9) establish the non-negativity of the variables. The 
L parameter corresponds to a very large, but finite 
number according to the Big M method.

IV. Results

All experiments were processed on a computer with 
4 GB RAM, processor Intel Core i5, model 3570, 
3.4 GHz, Windows 7 Professional 32-bit. The model 
was implemented in AMPL [20], executing 108 
combinations of instances and parameters.

A. Scheduling of parallel machines

Manually programming of the ten dryers, in a horizon 
of six days, resulted in a makespan of 132.23 hours; 
whereas, programing with the proposed model 
resulted in a shorter makespan of 121 hours, that 
is, an improvement of 8.5 %. Moreover, the model 
decreased the dead time from 454 to 203 hours, and 
increased the total loads from 31 to 38 loads for the 
first week of the horizon analyzed.

B. Solver analysis

To analyze the parameters that impact the computing 
time, nine instances were generated, with computing 
times ranging from 300 to 5000 (s) and from 6 to 11000 
(s), in CPLEX version 12.6.3.0 and GUROBI 6.5.0, 
respectively. Table 1 presents the instance, objective 
function value (Z Value), time resolution (T (s)), and 
last improvement time (Tl(s)) for both solvers.

Table 1
Summary Gurobi and CPLEX Solver

CPLEX GUROBI
Test No. Z T(s) Tl(s) Z T(s) Tl(s)

1 122.25 2618.83 610.92 122.25 3669.64 75.00
2 121.00 327.64 317.48 121.00 2960.18 2930.00
3 121.00 5648.53 5609.27 121.00 366.59 366.00
4 134.00 2524.16 2510.42 134.00 5.99 5.00
5 134.00 421.77 413.72 134.00 28.97 28.00
6 122.25 1669,52 1065.08 122.25 176.89 11.00
7 122.25 400.72 395.07 122.25 272.14 109.00
8 122.25 319.93 241.46 122.25 11590.47 11590.00
9 131.00 806.87 17.58 131.00 353.98 1.00
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Fig. 1. Graph Instance Resolution No. 1.

Fig. 1 shows the evolution of the upper dimension 
(Whole Solution) and the lower dimension (Best 
Bound) for instance No. 1. Upper and lower 
domensions slowly converge, accounting for most of 
the improvements for the whole solution (Incumbent) 
in the first explored nodes, after which, it is only 
necessary to enumerate nodes up to achieving to 
close the difference between both levels (GAP), and 
thus obtain the optimal certificate for the solution, 
producing only minor improvements in the last nodes.

C. Analysis of parameters with CPLEX and 
GUROBI

108 instances and parameter combinations were 
executed to record times, and to comparatively study 
the GUROBI and CPLEX parameters. In CPLEX, 
the following parameters were assessed: Mipcuts 

evaluated at (-1), i.e., does not generate cuts, and 
Mipcuts evaluated at (2), i.e., aggressively generates 
cuts. Mipemphasis (0) emphasizes feasibility 
over optimality, and Mipemphasis (2) emphasizes 
optimality over feasibility. Repeatpresolve (0) 
deactivates, represolve (3) repeats pre-processing 
of the root node and allows new cuts. In GUROBI, 
Cuts evaluated at (0) does not generate cuts, and 
Cuts evaluated at (3) aggressively generates cuts. 
Mipfocus (1) emphasizes feasibility over optimality, 
and Mipfocus (2) emphasizes optimality over 
feasibility. Presolve (0) disables the preprocessing of 
the model, and Presolve (2) pre-processes the model 
in a more aggressive way.

The computing times (s), according to each parameter, 
are shown in Table 2; tests are bounded by 3600 (s), 
and thus avoid significant deviations stemming from 
excessive times.

Table 2
Computing Times for Parameters Studying the CPLEX and GUROBI Solver

CPLEX GUROBI

Test No. Normal 
Model

MIP-
CUTS

(-1)

MIP-
CUTS

(2)

MIP-
EMPHA-

SIS (1)

MIP-
EMPHA-

SIS (2)

REPEAT-
PRE-

SOLVE 
(0)

REPEAT-
PRE-

SOLVE 
(3)

Normal 
Model

CUTS
(0)

CUTS
(3)

MIP-
FOCUS 

(1)

MIP-
FOCUS 

(2)

PRE-
SOLVE 

(0)

PRE-
SOLVE 

(2)

1 2618.83 605.96 366.76 *3600.00 *3600.00 695.58 2222.23 3696.64 224.47 *3600.00 *3600.00 1573.59 1024.77 362.12
2 327.64 40.95 *3600.00 199.98 145.83 67.21 *3600.00 2960.18 *3600.00 *3600.00 *3600.00 *3600.00 *3600.00 *3600.00
3 5648.53 15.94 16.40 2192.33 9.44 16.38 208.77 366.59 12.09 *3600.00 3549.01 19.41 *3600.00 28.83
4 2524.16 18.58 12.39 1809.24 9.75 606.41 *3600.00 5.99 37.92 27.63 23.40 18.10 *3600.00 9.41
5 421.77 375.51 12.99 174.32 0.92 4.18 11.19 28.97 85.29 7.61 3.87 10.92 67.11 7.63
6 1669.52 1068.75 516.44 *3600.00 *3600.00 694.03 *3600.00 176.89 369.17 3483.35 *3600.00 3172.01 1069.16 397.46
7 400.72 *3600.00 1443.23 *3600.00 174.64 158.15 *3600.00 272.14 854.98 286.57 *3600.00 *3600.00 1250.73 1260.25
8 319.93 *3600.00 568.13 *3600.00 *3600.00 457.47 *3600.00 11590.00 818.88 *3600.00 *3600.00 1005.87 857.50 528.73
9 806.87 43.32 1787.60 637.17 827.87 1027.89 *3600.00 353.98 430.98 *3600.00 *3600.00 2494.82 *3600.00 467.17

Average 1637.55 1041.00 924.88 2157.00 1353.35 414.14 2671.35 2161.26 714.86 2422.80 2797.36 1721.64 2074.36 740.18
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D. Statistical analysis

The statistical analysis was performed via hypothesis 
testing, using the difference between the base 
model and each parameter; the null and alternative 
hypotheses were defined as  and 

, respectively.

Table 3 summarizes the statistical analysis. The only 
case in which the parameter mean is less than the base 
model is repeatpresolve valuated at zero for the rest of 
the cases. The null hypothesis is accepted, therefore, 
there is no statistical evidence that the averages of the 
parameters in the evaluated models have less times 
than the basic model of each solver.

Table 3
Statistical Analysis Parameters Studying CPLEX and GUROBI Solver

Model 1 Model 2 α Statistic t t critical Conclusion

Base 
Model 

CPLEX

mipcuts (-1) 0.05 0.7737 1.7459 H0 NOT rejected
mipcuts (2) 0.05 1.0044 1.7459 H0 NOT rejected

mipemphasis (1) 0.05 -0.6682 1.7459 H0 NOT rejected
mipemphasis (2) 0.05 0.3421 1.7459 H0 NOT rejected

repeatpresolve (0) 0.05 2.0330 1.7459 H0 rejected
repeatpresolve (3) 0.05 -1.3300 1.7459 H0 NOT rejected

Base 
Model 

GUROBI

cuts (0) 0.05 1.0968 1.7459 H0 NOT rejected
cuts (3) 0.05 -0.1880 1.7459 H0 NOT rejected

mipfocus (1) 0.05 -0.4645 1.7459 H0 NOT rejected
mipfocus (2) 0.05 0.3221 1.7459 H0 NOT rejected
presolve (0) 0.05 0.0640 1.7459 H0 NOT rejected
presolve (2) 0.05 1.0764 1.7459 H0 NOT rejected

E. GUROBI vs. CPLEX analysis

All instances were resolved with feasible solutions for 
the problem of scheduling parallel machines. CPLEX 
solved more instances to the optimum. The time of the 
parameter of CPLEX repeatpresolve is emphasized; in 
deactivated mode, it records the lowest time in most of 
instances.

F. Analysis of cuts with CPLEX and GUROBI

The average time of the mipcuts parameter evaluated 
at -1 was 1041.00 (s), and two of the nine instances 
failed to be resolved to the optimum. When evaluating 
the parameter at 2, the average time was 924.88 (s), 
and only one of the nine instances failed to be resolved 
to the optimum. As for time and number of decisive 
instances, conducting aggressive cuts yielded better 
results.

In GUROBI, the cuts parameter in deactivated mode 
worked slightly better, recording a time average of 
714.86 (s) with only a single instance not resolved. 

Evaluating the parameter at 3 resulted in an average 
time of 2422.80 (s), with five instances failing to be 
resolved to the optimum.

G. Analysis of mipemphasis and mipfocus with 
CPLEX and GUROBI

In CPLEX, with the mipemphasis parameter evaluated 
at 1, the average time increased by 31.72 %, and four 
instances did not converge to the optimum. When 
evaluating the parameter at 2, the time average 
was reduced by 17.3 %, and three instances did not 
obtain the optimum. On GUROBI, with the mipfocus 
parameter evaluated at 1, the average time increased 
by 29.43 %, in addition, nine of six instances failed to 
resolve to the optimal. For the case of evaluating the 
parameter at 2, the time average fell by 20.37 %, and 
two instances did not resolve to the optimum.

Notably, with the mipemphasis parameter evaluated at 
2, for a group of instances (2, 3, 4, 5, 7), times declined 
considerably. Moreover, in instances 3, 4, and 5, the 
problems resolved almost instantly.
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H. Analysis of presolve with CPLEX and GUROBI

The parameter repeatpresolve evaluated at zero 
recorded an average of 414.14 (s) and all instances 
resolved to the optimum; the best being the basic 
CPLEX model, with a decrease of 75 % in the 
resolution average time. For this case, with a level of 
significance of 0.05, the null hypothesis is rejected, 
statistically supporting that the basic CPLEX model 
has times of resolution higher than the repeatpresolve 
(0) model. Evaluating the parameter at 3, genereated 
6 instances that did not resolve to the optimal, and an 
average computing time that raised to 2671.35 (s).

In GUROBI, evaluating the presolve parameter at zero 
generated six unresolved instances to the optimum, 
and an average time of 2074 (s). When assessing the 
parameter at two, the aggressive reformulations and 
cuts on the root node helped solving the problem, 
resulting in a single instance that could not be resolved 
to the optimum, and a considerable decrease in the 
average time to 740.18 (s).

V. Conclusions

Regarding the execution of the model, we obtained 
favorable results for the input of 38 loads. Applying 
the model, the dead times decreased to 203 hrs and 
a total of 38 loads for the first week of December, 
according to the data of the dry area. With manual 
programming, however, based on the data downloaded 
from the control system of the dryers, a dead time of 
454 hrs and a total of 31 loads were obtained. We can 
conclude that implementing a model of production 
programming positively influences the productive 
process.

When the size of the instances is superior to 38 
loads, the model increased the computing time; 
quick solutions of good quality to resolve these cases 
exist; however, the greater amount of time is used 
to demonstrate that this is the optimal solution. We 
conducted an experiment to find out which parameters 
can improve this behavior; for this, we analyzed two 
types of solvers, CPLEX and GUROBI.

Of the108 instances executed in AMPL and the 54 
CPLEX instances, 60 % experienced improvements 
regarding time. As for the 54 instances in GUROBI, 
only 33 % improved the behavior of the model. 
Furthermore, CPLEX achieved more instances 

resolved to the optimum, which leads us to conclude 
that the solver CPLEX is better than the solver 
GUROBI, in terms of the number of instances 
resolved.

Regarding the average of each parameter, the only 
one that presented improvements was repeatpresolve 
in deactivated mode, which considerably reduced 
the computing times. Also, in the hypothesis testing, 
repeatpresolve in deactivated mode was the only 
parameter whose average differences were significant.

VI. Recommendations and future 
work

The model showed symmetry given more than one 
machine with the same technology, and therefore, 
it presented equal processing times. We suggest 
exploring new formulations based on representatives 
and cut planes that actively exploit this condition to 
improve computing times. In the future, heuristic 
techniques based on mathematical models (math-
heuristics) could help to reduce computing time and 
efficiently explore the solution space.
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