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Abstract 
A full multiobjective approach is employed in this paper to deal with a stochastic 
multiobjective capacitated vehicle routing problem (CVRP). In this version of the 
problem, the demand is considered to be deterministic, but the travel times are 
assumed to be stochastic. A soft time window is tied to every customer and 
there is a penalty for starting the service outside the time window. Two 
objectives are minimized, the total length and the time window penalty. The 
suggested solution method includes a non-dominated sorting genetic algorithm 
(NSGA) together with a variable neighborhood search (VNS) heuristic. It was 
tested on instances from the literature and compared to a previous solution 
approach. The suggested method is able to find solutions that dominate some 
of the previously best known stochastic multiobjective CVRP solutions. 
 
Keywords: genetic algorithms; heuristic algorithms; multiobjective 
programming; random processes; vehicle routing. 
 
El problema de enrutamiento de vehículos con ventanas de tiempo suave 

y tiempos de viaje estocásticos 
 
Resumen 
Un enfoque totalmente multiobjetivo es usado en este artículo para estudiar un 
problema de enrutamiento de vehículos capacitado (CVRP), estocástico y 
multiobjetivo. En esta versión del problema, la demanda se considera 
determinística, pero los tiempos de viaje son asumidos como estocásticos. Una 
ventana de tiempo suave es asociada con cada cliente y hay una penalización 
por iniciar el servicio por fuera de esta. Dos objetivos son minimizados, la 
distancia total recorrida y la penalización por no cumplir con la ventana de 
tiempo. El método de solución propuesto incluye un algoritmo genético con 
ordenamiento no dominado (NSGA) y una heurística de búsqueda de vecindad 
variable (VNS). Se probó en problemas de la literatura y se comparó con un 
enfoque previo de solución. El método propuesto es capaz de encontrar 
soluciones que dominan algunas de las mejores soluciones conocidas para el 
CVRP multiobjetivo. 
 
Palabras clave: algoritmos genéticos; algoritmos heurísticos; optimización 
multiobjetivo; proceso aleatorio; ruteo de vehículos. 
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O problema de roteamento de veículos com janelas de tempo suave e 
tempos de viagem estocásticos 

 
Resumo 
Um enfoque totalmente multiobjetivo é usado neste artigo para estudar um 
problema de roteamento de veículos capacitado (CVRP), estocástico e 
multiobjetivo. Nesta versão do problema, a demanda considera-se 
determinística, mas os tempos de viagem são assumidos como estocásticos. 
Uma janela de tempo suave é associada com cada cliente e tem uma 
penalização por iniciar o serviço por fora desta. Dois objetivos são 
minimizados, a distância total recorrida e a penalização por não cumprir com a 
janela de tempo. O método de solução proposto inclui um algoritmo genético 
com ordenamento não dominado (NSGA) e uma heurística de busca de 
vizinhança variável (VNS). Provou-se em problemas da literatura e comparou-
se com um enfoque prévio de solução. O método proposto é capaz de 
encontrar soluções que dominam algumas das melhores soluções conhecidas 
para o CVRP multiobjetivo. 
 
Palavras chave: algoritmos genéticos; algoritmos heurísticos; optimização 
multiobjetivo; processo aleatório; roteamento de veículos. 
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I. Introduction 
The capacitated vehicle routing problem (CVRP) is a well-known problem in 
transportation proposed in 1959 [1]. It is defined over an undirected graph 

𝐺(𝑉, 𝐸), where 𝑉 = 𝑣0, … , 𝑣𝑁  is a set of vertices and 𝐸 = (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 , 𝑣𝑗  ∈ 𝑉, 𝑖 < 𝑗 

is a set of edges. There is a symmetric matrix 𝐶 = [𝑐𝑖𝑗] that correspond to the 

travel costs along edge (𝑣𝑖𝑣𝑗). Vertex 𝑣0 represents the depot where there is a 

homogeneous fleet of 𝑚 vehicles with capacity 𝑄. A set of customers 𝑉\𝑣0 with 
a non-negative known demand 𝑑𝑖 must be served. A solution to the CVRP 
consists of m delivery routes with some specific conditions. Each route must 
start and end at the depot. Each customer must be visited once by exactly one 
vehicle. The summation of the demands of the customers in the same route, 

must be less than or equal to 𝑄. A different approach where the demand 
corresponds to items that must be collected from the customers leads to an 
equivalent problem. The classic objective is minimization of total travel costs [2]. 
 
The previous definition holds for the deterministic CVRP, however it is expected 
that in the real world one or more of the elements of the CVRP will be uncertain. 
Such elements are included in the models in the form of stochastic parameters. 
This variant of the problem became known as stochastic (capacitated) vehicle 
routing problem (SVRP or SCVRP) [3, 4]. 
 
Delivery reliability defined as the on-time delivery of products and services is a 
major competitive arena for many companies [5]. The travel time between two 
customers may be affected by the congestion in the road and other 
eventualities, such as accidents, making the CVRP with stochastic travel times 
a relevant problem to study. This paper deals with a stochastic multiobjective 
vehicle routing problem with soft time windows (TW). The penalty for servicing 
the customers outside the time windows is included as objective, in addition to 
the traditional minimization of the total length. The travel times are assumed to 
be stochastic. This problem is known as the VRP with soft time windows and 
stochastic travel times (SVRPSTW).  

 
Real-world transportation planning is a multiobjective problem [6]. It can be 
expected that including additional relevant objectives into the model will make it 
more realistic. In a multiobjective optimization problem (MOP) several functions 
are optimized (minimized or maximized) subject to the same set of constraints. 
As a general rule, no single solution can minimize all objectives simultaneously. 
Instead of that, a solution to a MOP is given by a set of solutions, which are 
called tradeoff solutions [7], Pareto optimal solutions or Pareto Set [8].  
 
The tradeoff solutions consist of the set of non-dominated solutions. A solution  

y with objective function values (𝑓1(𝑦), 𝑓2(𝑦), … , 𝑓𝑛(𝑦)), dominates a solution 𝑧,

𝑦 ≺ 𝑧, if and only if, the solution 𝑧 does not perform better than 𝑦 in any 
objective function, but it performs worse in at least one.  
 
When dealing with stochastic MOP the dominance may be evaluated in different 
ways [9], the expected values of the objective functions are used here to 
compare. A multiobjective model for the SVRPSTW was formulated in [5]. 
However, their solution approach was not entirely multiobjective. In contrast, we 
attempt to approximate the Pareto set. 
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A. Problem definition 
A multiobjective approach to the CVRP with soft time windows and stochastic 
travel times (SVRPSTW) is found in [5]. In SVRPSTW the demand is known in 
advance, and there is a deterministic service time and a time window [𝑒𝑖𝑙𝑖] 
associated with each customer 𝑖. Starting service outside the time window is 
allowed at a cost, either for earliness or lateness. The problem is modeled as 
stochastic programming with recourse (SPR), the recourse being the cost for 
servicing outside the time windows. The development of the mathematical 
model to the problem is explained in detail in [5]. 
 
Even though the problem is modeled as a multiobjective problem, just two 
potentially Pareto solutions are found. The three objective functions are 
combined into a weighted single objective which is later minimized by the tabu 
search algorithm. Tests were performed using two different sets of weights, one 
solution is found in every case. 

 
A bi-objective reformulation of the SVRPSTW is presented here, where both the 
expected total distance and the expected penalty cost (for starting the service 
outside the time windows) are minimized. The Number of vehicles is given as 
parameter, in principle it is possible to use the value found in [5]. However, it is 
possible to set different values to the number of vehicles and solve the bi-
objective problem for each value. In that case, the obtained sets of solutions will 
approximate the Pareto set to the original SVRPSTW. 
 
The obtained solution sets are compared against the solutions presented in [5]. 
The fact that the solution to the problem is presented in a form of approximation 
to the Pareto set, becomes one main contribution of this work. Since no 
previous attempts have been made to approximate its Pareto set. Another 
contribution is the algorithm that succeeds in finding such approximation. 

 
B. Travel time and closed-form expressions for the penalties  
The travel times are considered to follow a shifted gamma (𝛼, 𝛽, δ) distribution, 

where 𝛼 is restricted to take only integer values. This condition on the travel 
time allows the exact penalty computation, at the cost of generality. The arrival 
time at customer 𝑖, 𝜏𝑖, is equal to the cumulative travel times plus the sum of the 

service times of all preceding customers. The earliness penalty at customer 𝑖, 
𝛯𝑖, was expressed in [5] as in Equation (1). 
 

Ξi =  𝛼𝛽2 [[(
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𝛽
) − 𝛼′]

2
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Where 𝐸𝑖 = 𝑒𝑖 − 𝑤𝑖 −  𝛿 ∑ 𝑑𝑗𝑗′𝑗 ∈𝑃𝑖𝑘
− ∑ (𝑠𝑗 + 𝑤𝑗)𝑗 ∈𝑃𝑖𝑘

,  𝛼′ = 𝛼 ∑ 𝑑𝑗𝑗′𝑗 ∈𝑃𝑖𝑘
, 

𝛼 ∈  ℤ+, 𝛽 ∈ ℝ+, 𝛿 ∈  ℝ0
+, 𝛼 is a weight coefficient, 𝑗′ is the customer 

immediately following 𝑗 in route 𝑘, 𝑃𝑖𝑘 is the set of customers served before 𝑖 in 

route 𝑘. 
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On the other hand the tardiness penalty at customer 𝑖, 𝛬𝑖, can be expressed as 
in Equation (2). 
 

𝛬𝑖 =  𝑏𝛽2 [𝛼′ [(𝛼′ + 1) +  (𝛼′ − 1) (
𝐿𝑖

𝛽
)] +  ∑

𝑟(𝑟−1)(
𝐿𝑖
𝛽

)
𝛼′+1−𝑟

(𝛼′+1−𝑟)!

𝛼′−1
𝑟=2 ] 𝑒

−
𝐿𝑖
𝛽    

 (2) 
 

Where 𝐿𝑖 = 𝑙𝑖 − 𝑤𝑖 −  𝛿 ∑ 𝑑𝑗𝑗′𝑗 ∈𝑃𝑖𝑘
− ∑ (𝑠𝑗 + 𝑤𝑗)𝑗 ∈𝑃𝑖𝑘

, 𝑏 is a weight coefficient. 

 

The weight coefficients 𝑎 in earliness and 𝑏 in the tardiness penalty are 
assumed to be equal to one. The penalty for serving the customers outside the 
time windows is assumed to be a quadratic loss function, in that way, larger 

deviations will cause progressively larger losses. If the service at customer 𝑖 
starts at time 𝜏𝑖 and 𝜏𝑖 < 𝑒𝑖, the earliness penalty will be equal to 𝑎(𝑒𝑖 − 𝜏𝑖)2. 

The lateness penalty would be equal to 𝑏(𝜏𝑖 − 𝑙𝑖)
2, in case that 𝜏𝑖 > 𝑙𝑖. A 

discussion on other alternatives for penalty functions and their mathematical 
expressions can be found in [5]. 

 
The waiting time before each customer, including the depot, is a decision 
variable. So once a vehicle arrives to a customer, it can immediately serve the 
customer or it can wait. In [5] this decision is done in a post processing 
procedure, since the main algorithm assumes zero waiting time.  
 
C. Literature review 
There are several variants of the SVRP. One of such variants is modeled using 
the times as stochastic parameters. It can either be the travel times, service 
times or both. In [10] a CVRP with soft time windows and stochastic travel and 
service times was solved by means of a tabu search algorithm. A variant of the 
previous problem, without stochastic travel times and no time windows, was 
presented in [11], a generalized variable neighborhood search (GVNS) was 
proposed to solve it. In [12] the CVRP with stochastic travel time and 
simultaneous pick-ups and deliveries was solved using a scatter search 
heuristic. Other methods have been used to solve a variant of the last problem 
see [13, 14]. In [15] a VRP with stochastic travel and service time is described. 
A robust CVRP with deadlines and travel time/demand uncertainty is studied in 
[16]. For a more detailed summary on different SVRP, see [3, 17, 18]. 
 
There is scant literature on multiobjective SVRP, to the best of the author`s 
knowledge examples can be found in [5, 19, 20, 21]. A multiobjective approach 
of the CVRP with stochastic demands (CVRPSD) was formulated in [21]. In [20] 
the CVRPSD is not explicitly presented as a bi-objective problem, but a tradeoff 
between the total expected cost and the probability of the solution suffering a 
route failure (reliability) is taken into consideration. An extension of the CVRP 
including location, allocation and routing under the risk of disruption is 
introduced in [19]. A multiobjective CVRP with soft time windows and stochastic 
travel times (SCVRPSTW) is found in [5].  
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II. Methods 
Evolutionary algorithms (EA) have been used for dealing with different types of 
VRP. In [22] an EA was used for solving a multiobjective CVRP. Memetic 
algorithms have been used to deal with different versions of the stochastic VRP 
[23, 24]. In [21] an EA was used to approximate the Pareto set of a 
multiobjective SVRP. This may be an indication of the potential of the EA for 
dealing with multiobjective VRPs and SVRPs.  

 
The target aiming Pareto search (TAPaS) algorithm [8] takes an approximation 
PSappr to a Pareto set and improves it by using a tabu search.  An algorithm that 

follows the same principle as TAPaS, is proposed here, where starting from the 
approximation obtained from a EA, a local search procedure is applied to 
improve the quality of the solution. An implementation of the NSGA-II [25], using 
particular characteristics for the CVRP [26] will be used as EA.  
 
A local search that uses different neighborhood structures, as in generalized 
variable neighborhood search [11] is applied after the EA. Different 
neighborhoods are used to attempt to optimize the different objectives and will 
be applied sequentially. Moves leading to solutions that dominate the incumbent 
solution are accepted. In [11] the best improvement rule is applied, in this case 
the application of such rule can be complex and expensive, so the first 
improvement rule is applied here.  

 
A. Construction of initial solutions  
A set of initial solutions is required. We propose a simple deterministic 
construction heuristic. Most likely high quality solutions will not be obtained, but 
it can be one step ahead of the randomly constructed set. This heuristic is 
based on the one used in [27], which is a modified version of a classical 
insertion heuristic proposed in [28]. An initial diverse set of VRP solutions is 
constructed with priority shifting from TW penalty to total length. This is 
achieved by solving a sequence of deterministic hard time-windows problems, 
where the original (soft) time windows are extended by a varying slack 
parameter while the distance is minimized as a single objective. 
 
B. Evolutionary Algorithm (EA) 
The evolutionary algorithm used here is an implementation of NSGA-II [25], 
where two crossover operators are used, Split [26] and RBX [29]. The mutation 
operator will be Or-opt as in [8, 22]. The move that dominates all the others is 
accepted. The comparison is done among the neighbors, without considering 
the initial solution. If no move dominates all the others, among the non-
dominated moves, the selection will be done comparing the normalized values 
of the objective functions. 
 
A 2-opt procedure is included as local search. Such procedure has been used 
before in [8, 22], but here it deals with two objective functions and include the 

domination criteria. Given two possible moves, the first lead to solution y and 
the second to solution 𝑥, if they are non dominated, ∃ 𝐴 ⊂ {1,2, … , 𝑛}: ∀𝑖 ∈
𝐴 𝑓𝑖(𝑦) < 𝑓𝑖(𝑥), and ∃ 𝐵 ⊂ {1,2, … , 𝑛}: ∀𝑗 ∈ 𝐵 𝑓𝑗(𝑦) > 𝑓𝑗(𝑥),  𝑦 will be preferred if 

∑ (1 − 𝑓𝑖(𝑦)/𝑓𝑖(𝑥)) >𝑖∈𝐴  ∑ (𝑓𝑗(𝑦)/𝑓𝑗(𝑥) − 1)𝑗∈𝐵 . If there is no inequality, one 

solution is selected randomly.  
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C. Local search  
Once the EA has been executed, every found potentially non-dominated 
solution is subject to a local search procedure, based on the GVNS heuristic in 
[11]. In the local search just moves that lead to a solution that dominates the 
incumbent solution are accepted.  
 
The local search (VNS) performs the search using different neighborhood 
structures. As in [11], there are inter- and intra-route operations. However, the 
number of neighborhood structures used in the local search is lower, since the 
computational requirements are higher. For accepting the moves, the first 
improvement rule is applied. It assumed that a move will improve the incumbent 
solution if it leads to a neighbor solution that dominates it or to a solution that 
does not dominate it, but the improvement in one of the objectives is greater 
than the deterioration in the other one, as percentage of the current values. A 
random inter-route swap move is used as a shaking operator. The different 
neighborhoods are: intra-route insertion moves, intra-route swap moves, inter-
route swap moves and Or-opt procedure. 
 
D. Post-optimization 
The waiting time at every node, including the depot, is a decision variable. 
Departure from the depot can be postponed as well as the beginning of the 
service at every customer. In [5] this decision is done in a postprocessing 
procedure, since the main algorithm assumes zero waiting time at customers, 
not at the depot. Waiting times at the depot are computed based on the 
expected travel times to the first customer in the routes. If the expected travel 
time from the depot to the next customer is shorter than the early TW parameter 
associated to such customer, the waiting time at the depot will be equal to the 
difference, zero otherwise. The postprocessing procedure may change that 
value. The generalized reduced gradient method is used to deal with such 
variables in [5]. In our approach the decisions regarding waiting times are also 
part of a postprocessing procedure. We rely on the quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [30] in Scilab for doing such 
procedure, since we find very convenient to access it from C++ and it is an 
open source package. 
 
E. Solution evaluation 
The equations used by [5] to compute the exact value of the penalties and 
previously described in Section 1.2, require massive computation, since they 
deal with transcendental functions and operations with large integers. Such 
operations can eventually lead to an integer overflow. As a mechanism to avoid 
such condition, natural logarithm transformations are used, which increases the 
computational requirements. An evaluation strategy is proposed looking to 
overcome such difficulty. The evaluation of the solutions is done in different 
ways along the search process, an idea borrowed from [31]. Let us say that the 

EA has a maximum number of generations 𝐺𝐸𝑁. This total number of 
generations is divided into three parts from zero to 𝑔𝑒𝑛1, from 𝑔𝑒𝑛1 to 𝑔𝑒𝑛2 and 
from 𝑔𝑒𝑛2 to 𝐺𝐸𝑁. During the execution of the algorithm, while running within 
the first part of the generations, the solutions and the moves are evaluated 

using deterministic values, and the travel time from a customer 𝑖 to a customer 𝑗 
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is given by the expected value (𝛼𝛽 + 𝛿)𝑑𝑖𝑗. In the second part of the 

generations the solutions and moves are evaluated using sample scenarios. 
And only in the third part of the generations, the exact value for the expected 
penalties is computed using the closed-form in equations 1 and 2. Lookup 
tables were implemented for some of the computations, as a mechanism to 
reduce the processing time. 
 
Using scenarios for evaluating the solutions has an additional advantage in a 
different context. If the expected values of the objective functions are unknown, 
this can be approximated with scenario evaluation. The values would not be 
exact, but the algorithm becomes independent of the probability distributions of 
the stochastic parameters. This is out of the scope of this work, however, it is an 
aspect worth of comment. 
 
F. Test environment 
The same instances as in [5] are used. These are a modified version of 
Solomon instances [28]. Four base test problems are used, R101, R102, R103 
and R109. Four different sets of parameters for the travel time probability 

distribution (𝛼, 𝛽 and 𝛿) are used with each instance, (1.00, 0.25, 0.75), (1.00, 
0.50, 0.50), (1.00, 0.75, 0.25) and (1.00, 1.00, 1.00), identified as S1, S2, S3 
and S4 respectively. The number of vehicles is also predefined and is set to be 
the same as in [5], which means that there may be two versions of the same 
instance, with a different number of vehicles available. As an illustration, we can 
say that the instance R101-S3-18V, corresponds to the instance R101, where 
the parameters of the travel time probability distribution are given by the set 
(1.00, 0.75, 0.25) and there are 18 vehicles available. In total there are 27 
instances for computational experiments. Ten different runs per instance were 
performed. 
  
The parameters of the algorithm were tuned by means of preliminary testing. A 
subset of eight test instances was used for the tuning. Each instance had 100 
customers, but different set of parameter for the travel time probability 
distribution and different number of vehicles. Different values were tested for the 
parameters and these leading to better results, in the first 100 generations, 
were selected. In some cases, as in the number of generations or population 
size, also the execution time was taken into account. Regarding the number of 
generations, several values were tested, including 100. Unless stated 
otherwise, the values given to these parameters are: number of generations for 

the NSGA, 𝐺𝐸𝑁 = 300; population size for NSGA, 150; probability of applying 

RBX crossover operator, 𝑝𝑟𝑜𝑏𝑐𝑜 = 0.5; probability of mutation, 𝑝𝑟𝑜𝑏𝑚𝑡 = 0.4; 
number of iterations for VNS, 100; randomization factor of construction 
procedure, 𝑙𝑓 = 5; number of generations evaluated deterministically, 𝐺𝐸𝑁1 =

0.5𝐺𝐸𝑁; number of generations evaluated by scenarios, 𝐺𝐸𝑁2 − 𝐺𝐸𝑁1 =
0.25𝐺𝐸𝑁; number of scenarios, 20 (stability tests were carried out [32]); and 
maximum number of consecutive customers to move in the Or-opt procedure, 3. 
All computational experiments were conducted on a computer with processor 
Intel (R) Xeon (R) CPU E31270 @ 3.40 GHz and 16.0 GB of RAM. 
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III. Results and discussion 
The suggested approach (NSGA&VNS) can find solutions that dominate the 
solutions reported in [5]. In 12 out of 27 instances such solutions are found even 
without applying the postprocessing procedure. Once the postprocessing 
procedure is applied, solutions dominating the ones in [5] are found in 18 out of 
27 instances, however in one of the instances, R109-S3-12V, just one of the two 
solutions is dominated. Results are presented in Table 1. It is emphasized that 
the NSGA&VNS solutions in Table 1 do not correspond to the approximation of 
the Pareto set, these solutions are only a subset of the solutions that 
NSGA&VNS is able to find. 
 

Table 1. Solutions after postprocessing that dominate solutions reported in [5]. 

Instance  
         

Solutions found in [5] Solutions found by NSGA & VNS 

  Total length  TW penalty       Total length   TW penalty  

R101-S1-17V  1 806.24   
  
  

  667.44   
    
    

  1 598.32     653.79  

  1 718.13     630.79  

  1 786.99     354.26  

R101-S1-18V  2 104.32   
  
  

  212.90   
    
    

  1 947.11     208.07  

  1 996.94     190.44  

  2 046.90     143.67  

R101-S2-18V  2 088.24   
  
  

  646.84   
    
    

  1 851.43     639.15  

  1 874.96     592.95  

  2 006.97     491.64  

R101-S3-16V  1 820.28   
  
  

  2 255.89   
    
    

  1 583.34     2 246.78  

  1 705.52     1 814.89  

  1 782.88     1 650.55  

R101-S3-18V  2 164.59   
  
  

  1 910.68   
    
    

  1 717.20     1 859.80  

  1 676.35     1 615.93  

  1 948.05     1 272.16  

R102-S1-16V  1 585.93   
  
  

  225.82   
    
    

  1 520.03     207.48  

  1 568.09     158.72  

  1 583.70     131.88  

R102-S1-17V  1 792.34   
  
  

  161.54   
    
    

  1 557.97     156.34  

  1 647.29     108.10  

  1 788.42     47.33  

R102-S2-15V  1 695.51   
  
  

  977.96   
    
    

  1 387.17     955.11  

  1 544.09     476.55  

  1 689.35     336.09  

R102-S2-17V  1 826.80   
  
  

  308.07   
    
    

  1 690.62     299.84  

  1 737.33     284.80  

  1 825.78     250.39  

R102-S3-16V  1 661.68   
  
  

  1 138.40   
    
    

  1 484.02     1 129.57  

  1 522.54     972.05  

  1 648.77     764.54  

R102-S3-17V  1 871.34   
  
  

  920.66   
    
    

  1 573.11     911.66  

  1 596.70     863.65  

  1 683.94     743.77  

R103-S1-12V  1 465.64   
  
  

  375.41   
    
    

  1 190.59     323.63  

  1 254.98     104.59  

  1 406.24     55.15  

R103-S2-12V  1 398.88   
  

  671.46   
    

  1 197.69     617.22  

  1 208.97     565.55  
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The instance R103-S1-14V is an example of the instances where solutions 
dominating the solution reported in [5] were not found. Figure 1 shows a section 
of the Pareto set approximation including both, NSGA&VNS approximation and 
the solution in [5]. On the other hand, the Figure 2 shows a section of the 
Pareto set approximation for the instance R101-S2-18V, where it is possible to 
see that the solution in [5] is dominated by solutions in NSGA&VNS 
approximation. 
 

 
Fig. 1. Our approach finds solutions that do not dominate solution found by [5] in 

instance R103-S1-14V. 

 

        1 389.65     211.84  

R103-S2-14V  1 466.74   
  
  

  142.02   
    
    

  1 385.06     141.56  

  1 450.25     132.55  

  1 459.81     122.86  

R103-S3-13V  1 372.24     689.17     1 292.44     542.00  

1 462.45   
  

  556.55   
    

  1 296.76     530.46  

  1 394.20     431.25  

R109-S1-12V  1 215.22     11.54     1 195.56     5.51  

1 216.62   
  

  6.25   
    

  1 203.26     4.83  

  1 213.38     2.29  

R109-S2-12V  1 216.82     42.95     1 215.84   
    

  42.49  
   1 224.31     28.36   

R109-S3-12V  1 219.31     138.23     1 230.62     93.34  

1 230.82 110.43 
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Fig. 2. Our approach finds solutions that dominate solution found by [5] in instance 

R101-S2-18V. 

 
Table 2. Running time (in minutes). 

Instance  Running 
time in [5] 

 Total time 
NSGA&VNS   

Instance  Running 
time in [5] 

 Total time 
NSGA&VNS   

R101-S1-17V  22.16     2 095.92  R102-S4-16V  351.45     3 280.14  

R101-S1-18V  32.03     2 165.31  R102-S4-17V  318.90     3 310.86  

R101-S2-17V  87.71     2 935.91  R103-S1-12V  22.43     3 506.49  

R101-S2-18V  98.17     3 102.98  R103-S1-14V  48.43     3 922.59  

R101-S3-16V  226.78     6 827.92  R103-S2-12V  150.33     4 945.21  

R101-S3-18V  245.24     6 776.74  R103-S2-14V  173.30     5 145.21  

R101-S4-17V  312.11     2 566.68  R103-S3-13V  657.13*     6 275.71  

R101-S4-20V  234.79     2 705.96  R103-S4-12V  398.44     3 014.48  

R102-S1-16V  34.05     3 265.88  R103-S4-13V  392.86     3 079.51  

R102-S1-17V  40.19     3 377.51  R109-S1-12V  45.43*     2 403.43  

R102-S2-15V  114.19     5 201.53  R109-S2-12V  229.06*     3 730.62  

R102-S2-17V  127.70     5 691.37  R109-S3-12V  698.97*     4 732.10  

R102-S3-16V  261.21     7 872.40  R109-S4-12V  977.02*     2 273.78  

R102-S3-17V  257.76     7 601.28     

*The algorithm finds two independent solutions. Time computed by adding both running times. 

 
The running time of NSGA&VNS  is much longer than in [5], as it can be seen in 
Table 2. This can be explained by the fact that while in [5] one solution, at most 
two, are found per instance, we find an approximation to the Pareto set. As 
expected, the quality of the Pareto set approximation is improved by the 
postprocessing procedure. Using the average value of the S metric [22, 33, 34] 
to compare the two approximations to the Pareto set, before and after the 
postprocessing procedure, it was found that the average improvement over all 
instances is 0.96%. Russell and Urban [5] reported average improvement 
above 20%, but such improvement is measured over the objective function 
value; in contrast, the improvement of the Pareto set is measured here.  
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A. Impact of NSGA and VNS procedure on the results 
A second set of experiments was conducted looking to assess the impact of the 
NSGA and the VNS procedure in the quality of the obtained solutions. All 
instances were used in these experiments and ten runs per instance were 
performed. Three different configurations of the algorithm were compared: the 
original algorithm described in the former Section (NSGA&VNS) and two 
algorithms, each consisting in one of the main components of the previous, 
NSGA and VNS procedure. The running time of the NSGA&VNS was reduced 
by setting the number of generations for the NSGA component to 30 and the 
iterations for the VNS to 10. The number of generations of the algorithm 
consisting of just the NSGA was set to 140, so its running time becomes not 
shorter than the one used by NSGA&VNS. For the case of the tests using the 
VNS procedure, the number of iterations was set to 120. 
 

Results were compared using the 𝑆 and the 𝐶 metric, as in [22]. It is worth 

remarking that given two sets of solutions (𝑅, 𝑋), the 𝐶 metric measures the 
ratio of solutions in 𝑋 weakly dominated by solutions in 𝑅. Using the average 
value of the metrics, NSGA&VNS performs better than NSGA in 15 out of 27 
cases. In six instances is not possible to say which configuration has a better 
performance since the two metrics are contradictory. On the other hand 
NSGA&VNS performs better than VNS in 17 out of 27 instances. In eight cases 
the two metrics lead to contradictory conclusions. 
 
It was observed that VNS is able to find extremal solutions, that do not 
necessary dominate the solutions found by the other two configurations, but in 
some cases are good enough to dominate the solutions found in [5]. The NSGA 

provides a denser set of solutions, which is reflected positively in the 𝑆 metric. 
In the NSGA&VNS the solutions found by NSGA are used by VNS afterwards. 
The latter can improve the solution set by either finding dominating solutions or 
improving the extremal solutions, outperforming the solutions sets found by 
NSGA and VNS when executed individually. In conclusion, these experiments 
indicate that the combination NSGA&VNS works better than each individual 
method. 
  
IV. Conclusions 
The Pareto solutions to a known multiobjective SVRP were approximated for a 
first time. Obtained results were compared to previously reported individual 
potentially Pareto solutions. In most of the tested instances, the suggested 
approach is able to find solutions that dominate the existing solutions, in 
addition to a wide range of solutions where priority shifts from one objective to 
the other.  
 
The suggested approach provides good results in most of the tested instances, 
but still there is room for improvement and several directions can be applied for 
further research. The efficacy of our approach is decreased when dealing with 
problems that present a high coefficient of variation. A different construction of 
initial solutions or local search operators could be adapted to deal with this 
particular type of instances. A different aspect to consider is the running time, 
the closed-form expressions for computing the expected value of the TW 
penalties require a large number of algebraic operations. Perhaps such 
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expressions could be approximated using a method more efficient than the 
scenarios, but less demanding than the closed-form. Taking waiting times into 
consideration during the execution of the main algorithm is likely to improve the 
solutions. This, however, will increase the complexity of the problem. Further 
work can be done dealing with such complexity and testing the impact on 
results. 
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