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Abstract 

In the Project Scheduling Problem (PSP), the solution robustness can be 

understood as the capacity that a baseline has to support the disruptions 

generated by unplanned events (risks). A robust baseline of the project can be 

obtained from redundancy based methods, which are considered proactive 

methods to solve the stochastic project scheduling problem.  In this research, three 

redundancy based methods are evaluated and their performance is compared in 

terms of robustness. These methods add extra time to the original activities 

duration in order to face the eventualities that may appear during the project 

execution. In this article a new indicator to analyze the solution robustness to the 

Project Scheduling Problem with random duration of activities is proposed. This 

indicator called Relative Average Deviation (RAD) is defined as the margin of 

deviation of the activities’ start times in relation to their durations. The RAD is 

based in a traditional concept that seeks to minimize the value of the differences 

between the planned start times and the real executed start times. The planned 

start times were obtained from the project baseline generated by each redundancy 

based method and the real executed start times were obtained from a simulation 

process based on Monte Carlo technique. The new indicator was used to evaluate 

the robustness of three baselines generated by different methods but applied to the 
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same case study. Finally, the results suggest that the Relative Average Deviation 

(RAD) facilitates the interpretation of the robustness concept because it focuses on 

analyzing the deviation margin associated with an activity.  

Keywords: linear programming; project management; risk analysis; 

robustness; scheduling; simulation. 

 

Desviación relativa promedio como medida de robustez para el problema de 

programación de proyectos estocástico 

Resumen  

En el problema de programación de proyectos, la robustez de una solución 

puede entenderse como la capacidad que posee una línea-base para 

soportar las disrupciones generadas por eventos no planeados (riesgos). Una 

linea-base robusta de un proyecto puede ser obtenida a partir de métodos 

basados en redundancia, los cuales son considerados métodos proactivos, 

que permiten resolver el problema de programación estocástica de proyectos. 

En esta investigación son evaluados tres métodos basados en redundancia y 

su desempeño es comparado en términos de robustez. Estos métodos 

adicionan tiempo extra a la duración original de las actividades, con el fin de 

enfrentar las eventualidades que pueden aparecer durante la ejecución del 

proyecto. En este artículo se propone un indicador, denominado desviación 

media relativa (RAD, por su sigla en inglés), el cual permite analizar la 

robustez de las soluciones obtenidas para el Project Scheduling Problem 

(PSP), con duración aleatoria de actividades. La desviación media relativa 

(RAD) se define como el margen de desviación de los tiempos de inicio de las 

actividades de un proyecto, con relación a sus duraciones. La RAD está 

basada en el concepto tradicinal que busca minimizar la diferencia entre los 

tiempos de inicio planeados y los tiempos de inicio realmente ejecutados. Los 

tiempos de inicio planeados fueron obtenidos a partir de la línea-base 

generada para el proyecto, y los tiempos de inicio realmente ejecutados 

fueron obtenidos a partir de un proceso de simulación basado en la técnica de 

Monte Carlo. El nuevo indicador fue utilizado para evaluar la robustez de tres 
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líneas-base generadas por diferentes métodos, pero aplicados a un mismo 

caso de estudio. Al final pudo concluirse que la desviación media relativa 

(RAD) facilita la interpretación del concepto de robustez, debido a que se 

focaliza en analizar el margen de desviación por actividad en cada línea-base.  

Palabras clave: administración de proyectos; análisis de riesgos; 

programación lineal; robustez; simulación. 

 

Desvio relativo médio como medida de robustez para o problema de 

programação de projetos estocástico 

Resumo  

No problema de programação de projetos, a robustez de uma solução pode 

entender-se como a capacidade que possui uma linha-base para suportar as 

perturbações geradas por eventos não planejados (riscos). Uma linha-base 

robusta de um projeto pode ser obtida a partir de métodos baseados em 

redundância, os quais são considerados métodos proativos, que permitem 

resolver o problema de programação estocástica de projetos. Nesta pesquisa 

são avaliados três métodos baseados em redundância e seu desempenho é 

comparado em termos de robustez. Estes métodos adicionam tempo extra à 

duração original das atividades, com o fim de enfrentar as eventualidades que 

possam aparecer durante a execução do projeto. Neste artigo propõe-se um 

indicador, denominado desvio médio relativo (RAD, por sua sigla em inglês), 

o qual permite analisar a robustez das soluções obtidas para o Project 

Scheduling Problem (PSP), com duração aleatória de atividades. O desvio 

médio relativo (RAD) define-se como a margem de desvio dos tempos de 

início das atividades de um projeto, com relação a suas durações. O RAD 

está baseado no conceito tradicional que busca minimizar a diferença entre 

os tempos de início planejados e os tempos de início realmente executados. 

Os tempos de início planejados foram obtidos a partir da linha-base gerada 

para o projeto, e os tempos de início realmente executados foram obtidos a 

partir de um processo de simulação baseado na técnica de Monte Carlo. O 

novo indicador foi utilizado para avaliar a robustez de três linhas-base 
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geradas por diferentes métodos, mas aplicados a um mesmo caso de estudo. 

Ao final pode-se concluir que o desvio médio relativo (RAD) facilita a 

interpretação do conceito de robustez, devido a que se focaliza em analisar a 

margem de desvio por atividade em cada linha-base.  

Palavras chave: administração de projetos; análise de riscos; programação lineal; 

robustez; simulação. 
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I. INTRODUCTION 

The Stochastic Project Scheduling Problem (SPSP) is a type of mathematical 

optimization problem that incorporates stochastic parameters within the decision 

process. The activities duration has been one of the main random parameters 

considered in optimization models of this type. 

The study of the scheduled activities of a project with random duration of activities 

begins with the Program Evaluation and Review Techniques (PERT) released 

during the end of the 1950s [1]. From that moment, the methodological proposals 

to deal with the PSP are diverse. In 2000, Pontrandolfo [2] proposed an algorithm 

based on a set of equations to compute the total duration of a project, taking as 

input data the mean and the variance of each activity, and the probability of 

occurrence of each path or possible route of the project. Then in 2005, Lee [3] 

developed a software support on Monte Carlo simulation techniques, to estimate 

the probability of completing a project by a deadline. 

The critical chain method was designed in 1997 by Goldratt [4], in order to treat the 

uncertainty in the scheduling of projects. This method inserts extra time (buffers) in 

some strategic points within the project network. Based on Goldratt, Van De 

Vonder, Demeulemeester, Herroelen, and Leus [5] evaluated whether it was better 

to create feed and project buffers or to insert scattered buffers along the project 

baseline. In 2009, Rezaie, Manouchehrabadi, and Shirkouhi [6]  defined the buffer 

size of the project from the coefficient of variation associated with the activities 

duration. Subsequently, Bie, Cui, and Zhang [7] determined the buffer size taking 

into account the degree of dependence and the dependency factor among the 

activities of the project. 

The PSP with random duration of activities has also been solved through Genetic 

Algorithms. In 2005, a genetic algorithm within a simulation process was proposed 

by Hua Ke and Baoding Liu [8]. This procedure was applied to three different 

models: the expected cost model, which minimizes the expected cost taking into 

account the time constraints of the project, the α-cost model where the cost is 

minimized and the contraints are met with at least some given confidence level and 

finally the probability maximization model, where the probability that the total cost 
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does not exceed the budget is maximized and the probability of finishing the 

project before the due date should be larger than a predetermined confidence 

level. In 2012, Ke, Ma, and Chen [9] proposed a method based on a genetic 

algorithm, which determines the critical path of the project bearing in mind the 

appearance of random delays. 

Exact methods of solution have been applied by other authors: Gutjahr, Strauss, 

and Wagner [10] developed a variant of the Branch and Bound algorithm focused 

on the selection of strategies to reduce the activity durations. Jaskowski and Biruk 

[11] presented a robust methodology based on both simulation process and mixed 

integer linear programming model, to determine buffer size and the appropiate 

location of the buffers within the project linebase. 

On the other hand, in the scientific literature, some procedures have been specially 

designed to solve the PSP with random duration of activities: Valadares-Tavares, 

Antunes-Ferreira, and Silva-Coelho [12] studied the project’s risks from an 

uncertainty function that depends on both cost and activities duration. Mizuyama 

[13] formulated the PSP as a probabilistic decision-making process in multiple 

stages. Mitchell and Klastorin [14] designed an algorithm to decide how much to 

compress the activities in order to minimize the expected total cost. Creemers, 

Leus, and Lambrecht [15] used a Markov process supported in a detailed division 

of the state space. Other solution algorithms were identified in this literature review: 

the cloud model [16], the Petri networks [17], the cross-entropy method [18-19], 

and the dependent structure matrix [20-22]. 

Solution procedures to solve PSP were classified by Brčić, Kalpic, and Fertalj [23], 

according to three specific approaches: first, a predictive strategy that takes the 

average activities duration as input data and creates a project baseline. Second, a 

proactive strategy that takes into account the variation of the activities duration, 

generating a robust baseline for the project. Third, a reactive strategy that re-

schedules the original schedule when an unexpected event takes place. However, 

Rostami, Creemers and Leus [24] presented an alternative reactive strategy, called 

purely reactive strategy, on-line strategy, and also known as stochastic scheduling, 
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one that does not generates a project baseline, requiring the design of a policy or 

decision rule to schedule the activities.  

In the proactive scheduling case, a robust solution should be provided by the 

mathematical model, in other words, the baseline generated will require few 

adjustments every time that the disruptions affect the estimated times. For this 

reason, several robustness measures have been designed to evaluate the 

performance of the proposed procedures to solve the PSP with non-deterministic 

activities duration. 

In this article, a new measure to evaluate the robustness is presented. This 

measure is based in a traditional concept that seeks to minimize the value of the 

differences between the planned start times in the project baseline and the real 

executed start times. 

In Section 1, a relevant literature review for the robustness measures are 

addressed. Subsequently, a basic description of both Project Scheduling Problem 

and solution strategy are presented in Section 2. In Section 3, the Relative 

Average Deviation (RAD) as a robustsness measure is presented. After, a study 

case is developed in Section 4 and finally conclusions are given in Section 5. 

 

II. RELEVANT LITERATURE REVIEW 

A robust scheduling is a feasible solution with a minimum deviation from the 

optimal values of each scenario generated by the random parameters of the 

model. In project scheduling, quality robustness and solution robustness are the 

most common measures of robustness. In the first case, the capacity to support 

the disruptions that affect the project deadline are analized. In the second, the 

ability to support the disruptions that affect the activities start times are examined 

[25]. 

Herroelen and Leus [25] developed a model to solve the PSP with non-

deterministic activity durations and obtained a robust solution using a robustness 

measure based on the previous research of Leon, Wu, and Storer [26]. This 

measure, called the expected weighted deviation, computes the value of 

differences between the planned start times and the real executed start times. The 
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expected weighted deviation is one of the most used measures to evaluate the 

robustness of the baselines generated by the optimization algorithms. 

However, with a different approach, Chtourou and Haouari [27] proposed twelve 

surrogate robustness measures, all based on the activity free slack. According to 

the authors, the free slacks indicate the time that an activity can be delayed without 

affecting the start time of their successors, while maintaining the viability of the 

resources. Subsequently, Hazır, Haouari and Erel [28] designed new robustness 

measures based on the same concept of free slack. These measures consider the 

weighted slack, a slack utility function, the dispersion of slacks, the percentage of 

potentially critical activities and the project buffer size. 

In 2013, Khemakhem and Chtourou [29] proposed efficient measures to evaluate 

the robustness of the baseline obtained for the Resource Constraint Project 

Scheduling Problem with random duration of activities. The new measures were 

statistically evaluated and applied to the solutions obtained to the standard set j30 

[30]. Additionally, a particular disruption scheme was taken into account. Finally, 

Xiong, Liu, Chen, and Abbass [31] designed a new surrogate robustness measure 

that took into account the presence of hybrid effects on the project duration, the 

cost, and the precedences. This new measure was used to solve a particular type 

of problem called Stochastic Extended Resource Investment Project Scheduling 

Problem. 

 

III. THE PSP WITH RANDOM DURATION OF ACTIVITIES 

 

A. Description 

The Project Scheduling Problem (PSP) is a typical problem of the scientific 

literature related with scheduling. The PSP refers to a set of n activities that must 

be executed according to a precedence order specified for the project. Each 

activity is represented by a subscript (i or j), which takes values between 1 and n. 

For practical programming reasons, 1 and n are almost always fictitious activities 

whose durations are zero. The time horizon T where these activities will be 
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scheduled, is divided into partial periods, each one is represented by the subscript 

t. 

The optimal solution is found by comparing the possible combinations to schedule 

the activities of the project. This comparison requires an iterative process that 

becomes complex when the number of activities increases. The solution to the 

problem will provide information related to the planned start time for each activity 

(Si) and the minimum value of the objective function (Sn), which represents the due 

date of the project.  

The PSP mathematical formulation can be expressed as a linear program: 

Minimize          Sn                                                                                                (1) 

Subject to:  

Sj =≥ pij ∙ (Si + di)                ∀(𝑖, 𝑗) ∈ E                              (2) 

Sj ≥ 0                                                                                          (3) 

The decision variable Si represents the planned start time of each activity i, di 

represents its random duration and pij corresponds to a binary parameter, which is 

equal to 1 if activity i precedes activity j. Finally, E refers to the set of precedences 

between project activities. 

 

B. Proactive strategy to solve the PSP with random duration of activities 

A proactive strategy is supported in procedures that seek to generate baselines 

capable to face the disruptions that may occur during the execution of projects. 

Within this approach, three types of solution are grouped [23]: the redundancy 

based methods, the robust scheduling methods and contingent scheduling. 

The redundancy based methods add extra time to the original duration of each 

project activity, therefore, if any eventuality ocurrs, this extra time can be 

consumed. As is detailed below, a possibility to compute the extra time, require to 

identify the potential risks of the project and quantify their impact on each activity. 

In 2004, Ökmen, and Özta developed a risk analysis model called Judgmental Risk 

Analysis Process [32]. The Judgmental Risk Analysis Process was defined as a 

pessimistic risk analysis methodology because the extra time is obtained from the 

worst scenarios generated by a simulation process based on Monte Carlo 
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techniques. In 2007, a model to evaluate the project’s risks, to propose mitigation 

actions, to evaluate their impact in different scenarios and to establish the project 

duration was presented by Zafra-Cabeza, Ridao, and Camacho [33]. The extra 

time of each activity was obtained bearing in mind both the risk occurrence 

probability and its impact. 

On the other hand, Mansoorzadeh, Yusof, Mansoorzadeh, and Zeynal [34] 

proposed a framework based on the integration of risk management and Critical 

Chain Project Management. The extra time of each activity was estimated from the 

fuzzy failure mode and effect analysis technique. Finally, Zhang, Shi, and Díaz [35] 

proposed a procedure based on the gray prediction model to monitor and control 

the software projects. In this case, the extra time of each activity was based on the 

risk occurrence probability, the estimated impact and the project manager’s risk 

aversion. 

Similar to the previous proposals, the three methods presented in this article all 

have the following phases: 

• Identifying the risks associated with each project activity. 

• Determining the extra time required to face with disruptions. 

• Obtaining the project baseline throught the linear program presented in section III, 

literal A. In this article, the linear program was programmed in GAMS. 

Subsequently, in order to select the most robust baseline, a new robustness 

measure called Relative Medium Deviation (RAD) will be applied. 

 

IV. ROBUSTNESS MEASURE PROPOSED 

Based on the definition of Herroelen and Leus [25] and the work of Cervantes [36], 

the deviation between planned start times and executed start times (obtained by 

simulation) was determined: 

∆Si =
∑ |SLB − 𝑺𝑹|𝑚

1

𝑚
                    (4) 

In equation (4), SLB corresponds to the planned start time in the project baseline for 

each activity i, SR represents the executed start time (obtained through a 
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simulation process with m scenarios) and ∆Si the average deviation of each 

activity. 

Once ∆Si is obtained, the duration of all project activities (∑bi) are determined and 

the Relative Average Deviation (RAD) is calculated by means of equation (5). 

𝑅𝐴𝐷 =  
∑ ∆Si

𝑛
1

∑ bi
𝑛
1

                                (5) 

In equation (5), n refers to the number of project activities and bi represents the 

nominal duration of each activity, which can be associated with its deterministic 

duration (duration free of risks). 

As can be observed, the Relative Average Deviation (RAD) utilizes the duration of 

project activities (∑bi) as a reference to standardize the expression ∑∆Si. Then, 

this measure avoids that the robustness has been analized in absolute terms, as 

would occur if only the expression ∑∆Si is taken into account. 

The RAD could also be expressed as: 

RAD =

∑ ∆Si
𝑛
1

𝑛⁄

∑ bi
𝑛
1

𝑛⁄
                                   (6) 

In the equation (6), the numerator reflects the average deviation of the start times 

per activity and the denominator the average duration per activity. Therefore, the 

RAD refers to the fraction of time that the start times of the activities can deviate in 

relation to their duration. 

 

V. THE RELATIVE AVERAGE DEVIATION APPLIED IN A CASE STUDY 

Initially, three methods to solve the PSP with random duration of activities will be 

described and then a case study will be presented. Later, the case study will be 

solved by each method and finally the robustness of the three baselines generated 

will be evaluated. 

 

A. Three methods used to solve the PSP with random duration of activities 

To begin, it is necessary to identify the following information: 

 Basic activity duration (bi): Expressed as a probability distribution associated 

to the duration free of risk, in other words, the appeareance of risk during the 
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execution activity is not assumed. Therefore, the variance of this probability 

distribution can only be attributed to small changes in the level of productivity 

of the people who perform the work. 

 Risk identification: A list with the risks that may affect each activity must be 

prepared. Changes in weather conditions, delay in delivery of materials or 

resignation of employees are typical examples of risks. 

 Risk occurrence probability (Prki): For each risk k that affects the activity i, the 

risk occurrence probability must be defined. In this article, the risks are 

assumed as independent of each other and the risk occurrence probability 

along the project planning horizon is considered constant. 

 Extra task: The appearance of an extra task is a consequence of the 

occurrence of unwanted events (risks). An extra task associated with the risk 

k and that affects the activity i, will have a duration denoted as hki. This 

duration is also represented by a new probability distribution. 

Based on the above information, a matrix to relate both activities and risks must be 

built. Table 1 presents an example created by the authors, where the basics 

activity durations and the extra task durations are represented by probability 

distributions. In this example, the risk 3 affects the project activities numbers 1 and 

2, but its probability of occurrence and its duration (impact) are different. 

 

Table 1. Risk Activity matrix. 

Activities Basic 
activity 

duration (d) 

Risk 1  Risk 2  Risk 3  Risk 4  

  Extra task 
1  

 Extra task 
2  

 Extra task 
3 

 Extra task 
4 

 

  Risk 
ocurrence 
probability 

Extra task 
duration (h) 

Risk 
ocurrence  
probability 

Extra task 
duration (h) 

Risk 
ocurrence 
probability 

Extra task 
duration (h) 

Risk 
ocurrence 
probability 

Extra task 
duration (h) 

Activity 1 N(20,2.1) 0.1 N(4,1) - - 0.3 N(3,0.4) - - 

Activity 2 N(12,1) - - - - 0.4 N(2,0.3) 0.3 N(3,0.6) 

Activity 3 N(16,2) - - 0.51 N(3,0.2) - - - - 

 

Considering the previous information, the activity durations (di) can be computed 

following the guidelines of some redundancy based methods. In this article, the 

methods used to calculate di follow the guidelines of the Judgmental Risk Analysis 
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Process [32] and the model applied by Zafra-Cabeza, Ridao, and Camacho [33] in 

their work on risk analysis and mitigation. 

 

Method A: In this case, the estimated duration (di) corresponds to the highest 

value obtained after a simulation process: 

di = 𝑀𝐴𝑋 [ 𝐛𝐢 + ∑ (Prki × 𝒉ki)
k
1  ]         (7) 

In equation (7), bi refers to the expected duration of basic activity i, Prki indicates 

the probability that the risk k appears in the activity i and hki is a simulated value for 

the extra task duration (hki). The hki values are generated according to the 

probability distribution showed in the Risk Activity Matrix. 

Method B: The estimated duration is calculated from the equation (8): 

di = 𝐛𝐢 + PR × [ ∑ (𝐡ki) ]k
1          (8) 

Here, PR represents the average value of the risk occurence probabilities. 

Method C: In this case, the estimated duration (di) is obtained from the equation 

(9): 

di = 𝐛𝐢 + ∑ (Prki × 𝐡ki)
k
1  ]          (9) 

 

B. Case study 

The case study has been designed by the authors and is based on the construction 

project of a recreational park. The activities required, their duration expressed in 

hours and the precedence relationships are listed in Table 2. 

 

Table 2. List of activities. 

Activities Duration (hours) Precedessor 

1. Cleaning of the land N(100,3) - 

2. Transfer of materials N(50,2) 1 

3. Perimeter fence N(100,3) 1 

4. Construction of the materials shed N(50,3) 3 

5. Leveling of the terrain N(200,4) 2, 4 

6. Excavations N(250,4) 5 

7.  Construction of the social room N(400,10) 6 

8. Excavation for electrical and sanitary installations N(60,2) 6 

9.  Electrical and sanitary installations N(60,1) 6, 8 

10. Construction of pedestrian paths N(300,3) 6 

11. Installation of benches and games N(120,3) 9, 10 
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Activities Duration (hours) Precedessor 

12. Planting of trees N(150,2) 10 

13. Installation of gardens and green areas N(180,3) 7, 10 

14. Final finishes  N(80,1) 7, 11,  13 

15. Cleaning N(60,2) 12,  14 

 

The network diagram used is presented in Figure 1. 

 

 

Fig. 1. Case study network diagram. 

 

In Table 3, the risks that can affect the project are detailed, and the risk activity 

matrix appears in Table 4. In this example, the risk occurrence probability is the 

same when the same risks affect two different activities. 

 

Table 3. Case study risks list. 

Risk Id. Description Duration (Mean/Std) 

Risk 1 Unavailability of tipper truck 20/1 

Risk 2 Unavailability of workers 30/2 

Risk 3 Leaves and authorizations 25/1 

Risk 4 Unavailability of equipments 20/1 

Risk 5 Inadequate quality of work 30/2 

Risk 6 Accident risks 30/2 

Risk 7 Delays in material delivery 20/1 

Risk 8 Inexperienced subcontractor 40/2 

Risk 9 Design errors 30/1 

Risk 10 Control deficiencies 10/1 

Risk 11 Different job site conditions 40/2 

Risk 12 Additional works 18/1 

Risk 13 Release of funds 25/2 
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Table 4. Case study Risk Activity matrix. 

  Probability of Occurrence (Prki) 

  Risk 1 Risk 2 Risk 3 Risk 4 Risk 5 Risk 6 Risk 7 Risk 8 Risk 9 Risk 10 Risk 11 Risk 12 Risk 13 

  0.4 0.3 0.2 0.35 0.1 0.3 0.1 0.1 0.15 0.05 0.15 0.3 0.2 

Activities Duration Extra task duration (hki) 

Activity 1 N(100,3)              
Activity 2 N(50,2) N(20,1)             
Activity 3 N(100,3)  N(30,2) N(25,1)           
Activity 4 N(50,3)              
Activity 5 N(200,4)   N(25,1) N(20,1)  N(30,2)        

Activity 6 N(250,4)      N(30,2)        

Activity 7 N(400,10)       N(20,1) N(40,2) N(30,1)     

Activity 8 N(60,2)         N(30,1) N(10,1)    

Activity 9 N(60,1)     N(30,2)         

Activity 10 N(300,3)           N(40,2)   

Activity 11 N(120,3)              

Activity 12 N(150,2)            N(18,1)  

Activity 13 N(180,3)             N(25,2) 

Activity 14 N(80,1)              

Activity 15 N(60,2)              

 

C. Case study solution 

Method A: Based on Table 4, 1000 random data were generated in order to apply 

equation (7), and to obtain the highest value (di) for each activity. The estimated 

durations (expressed in hours) and the start times after solving the linear problem 

showed in section III literal A were obtained and collected in Table 5. 

 

Table 5. Estimated durations and start times – Method A. 

Activities-> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Duration (di) 100 59.2 116.2 50 223 260.9 411.3 65.6 63.6 306.9 120 156.3 186.2 80 60 

Si 0 100 100 216.2 266.2 489.2 750.1 750.1 815.7 750.1 1227.6 1271.3 1161.4 1347.6 1427.6 

 

In addition, the due date of the project (Sn) was obtained. In this case, Sn = 1487.6. 

Method B: Based on Table 4 and applying the equation (8), the total extra task 

duration per activity and the average risk occurrence probability were computed 

(PR=0.209). The estimated duration and the start times obtained are to solve the 

linear program described in section III literal A, and are collected in Table 6. 

 

 

https://doi.org/10.19053/01211129.v28.n52.2019.9756


Relative Average Deviation as Measure of Robustness in the Stochastic Project Scheduling Problem 

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 28 (52), pp. 77-97. Julio-Septiembre 2019. Tunja-Boyacá, 
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328, DOI: 
https://doi.org/10.19053/01211129.v28.n52.2019.9756 

 

Table 6. Estimated durations and start times – Method B. 

Activities-> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Duration (di) 100 54.2 111.5 50 215.7 256.3 418.8 68.4 66.3 308.4 120 153.8 185.2 80 60 

Si 0 100 100 211.5 261.5 477.2 733.5 733.5 801.9 733.5 1217.5 1263.7 1152.3 1337.5 1417.5 

 

In this case, the baseline finish is Sn= 1477.5. 

Method C: Table 7 presents the estimated duration (di) obtained from equation (9) 

and the start times are obtained by solving the linear program described in the 

section III literal A. 

 

Tabla 7. Estimated durations and start times – Method C. 

Activities-> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Duration (di) 100 58 114 50 221 259 410.5 65 63 306 120 155.4 185 80 60 

Si 0 100 100 214 264 485 744 744 809 744 1219.5 1264.1 1154.5 1339.5 1419.5 

 

This new solution indicates that the baseline finish is Sn = 1479.5. 

 

D. Comparation between baselines generated 

The best baseline is selected from the best robustness indicator. In this case, the 

best solution will be the baseline with the lowest value in the Relative Average 

Deviation (RAD). 

Initially, a simulation process was carried out in order to generate 10000 different 

scenarios for the activities duration. Then the start times (SR) for each scenario, 

were obtained using a simulation model developed in GAMS. 

Based on this information, each value ∆Si was computed and subsequenty the 

value ∑∆Si for each method applied. Table 8 includes the results obtained. 

 

Table 8. Robustness measure. 

 ∑∆Si ∑bi RAD 

Method A 348.04 2160 0.161 

Method B 342.01 2160 0.158 

Method C 339.32 2160 0.157 
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The comparative analysis indicates that the baseline generated by method C is 

slightly more robust than methods A and B. The result is evident from the analysis 

of ∑∆Si. However, this comparison (in absolute terms) does not allow the 

demonstration of the closeness between the methods, neither the relation of 

percentage of deviation with respect to the activity durations.  

In this case study, the RAD shows that the baselines generated by the three 

methods have a similar robustness. Additionally, their percentage of deviation with 

respect to the activity durations is between 15.7 % and 16.1 %.  

Then, if the decision maker considers the RAD of method C (15.7 %) acceptable, 

the solution of method C could be adopted as a baseline for the project. Otherwise, 

a new method must be developed to generate baselines evaluating the robustness 

again. 

 

VI. CONCLUSION 

In this article, an indicator to measure the solution robustness for the PSP with 

random duration of activities was proposed. The new robustness measure is 

supported in a simulation process and establishes the margin of deviation of the 

activities’ start times of a project in relation to its durations. 

The new indicator, called Relative Average Deviation (RAD), has been applied in a 

case study. Then, it was necessary to develop three methods to solve the PSP 

with the random duration of activities and to compute and compare the RADs of 

the three baselines generated. All solution methods showed have taken into 

account the risk occurrence probability and their impacts. Each baseline was 

generated through an optimization process based on linear programming. 

The RAD is an indicator that evaluates the deviation in the start times (planned and 

executed) in relative terms, which is important because it allows assess the 

proximity between the different methods that were applied. On the other hand, the 

analysis about the margin of precision of each baseline generated is easier to 

understand when the percentage of deviation in relation to the activity durations is 

computed. 
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