Modelo para la recuperación de información con expansión de consulta y perfil de preferencia de los usuarios
Resumen
Comprender la intención de búsqueda del usuario permite identificar y extraer los resultados de búsqueda más relevantes y personalizados de la información disponible según sus necesidades. En el presente artículo se plantea un algoritmo para la recuperación de información relevante que combina las preferencias del perfil del usuario y la expansión de consulta para obtener resultados de búsqueda relevantes y personalizados. El proceso de recuperación de información se valida mediante las métricas de Precision, Recall y Mean Average Precision (MAP) aplicadas a un conjunto de datos que contiene los documentos estandarizados y los perfiles de preferencias. Los resultados permitieron demostrar que el algoritmo mejora el proceso de recuperación de información al arrojar documentos con mejor calidad y relevancia según las necesidades de los usuarios.
Palabras clave
Recuperación de información personalizada, expansión de consulta, perfil de usuario, anotación semántica
Citas
- H. Viltres, P. Leyva, J. P. Febles, V. Sentí, “Information retrieval with semantic annotation,” in 17th LACCEI International Multi-Conference for Engineering, Education, and Technology, 2019. https://doi.org/10.18687/LACCEI2019.1.1.308 DOI: https://doi.org/10.18687/LACCEI2019.1.1.308
- T. Rafa, S. Kechid, “Semantic Representation of a Geo-Social User Profile for a Personalised Information Retrieval,” Journal of Information and Knowledge Management, vol. 20, no. 4, e2150044, 2021. https://doi.org/10.1142/S0219649221500441 DOI: https://doi.org/10.1142/S0219649221500441
- P. P. Joby, “Expedient information retrieval system for web pages using the natural language modeling,” Journal of Artificial Intelligence, vol. 2, no. 2, pp. 100-110, 2020. https://doi.org/10.36548/jaicn.2020.2.003 DOI: https://doi.org/10.36548/jaicn.2020.2.003
- S. Sengan, G. K. Kamalam, J. Vellingiri, J. Gopal, P. Velayutham, V. Subramaniyaswamy, “Medical information retrieval systems for e-Health care records using fuzzy based machine learning model,” Microprocessors and Microsystems, In-Press, e103344, 2020. https://doi.org/10.1016/j.micpro.2020.103344 DOI: https://doi.org/10.1016/j.micpro.2020.103344
- V. Suma, “A novel information retrieval system for distributed cloud using hybrid deep fuzzy hashing algorithm,” JITDW, vol. 2, no. 3, pp. 151-160, 2020. https://doi.org/10.36548/jitdw.2020.3.003 DOI: https://doi.org/10.36548/jitdw.2020.3.003
- A. Jalilifard, V.F. Caridá, A. F. Mansano, R. S. Cristo, F. P. C. da Fonseca, “Semantic sensitive TF-IDF to determine word relevance in documents,” in Advances in Computing and Network Communications, 2021, pp. 327-337. https://doi.org/10.1007/978-981-33-6987-0_27 DOI: https://doi.org/10.1007/978-981-33-6987-0_27
- S. Zhuang, H. LI, G. Zuccon, “Deep query likelihood model for information retrieval,” in European Conference on Information Retrieval, 2021. pp. 463-470. https://doi.org/10.1007/978-3-030-72240-1_49 DOI: https://doi.org/10.1007/978-3-030-72240-1_49
- X. Liao, Z. Zhao, “Unsupervised approaches for textual semantic annotation, a survey,” ACM Computing Surveys, vol 52, no. 4, pp. 1-45, 2019. https://doi.org/10.1145/3324473 DOI: https://doi.org/10.1145/3324473
- D. Di Caprio, F. J. Santos-Arteaga, M. Tavana, “An information retrieval benchmarking model of satisficing and impatient users' behavior in online search environments,” Expert Systems with Applications, vol. 191, e116352, 2022. https://doi.org/10.1016/j.eswa.2021.116352 DOI: https://doi.org/10.1016/j.eswa.2021.116352
- S. Albukhitan, A. Alnazer, T. Helmy, “Framework of semantic annotation of Arabic document using deep learning,” Procedia Computer Science, vol. 170, pp. 989-994, 2020. https://doi.org/10.1016/j.procs.2020.03.096 DOI: https://doi.org/10.1016/j.procs.2020.03.096
- W. Wei, Q. Wu, D. Chen, Y. Zhang, W. Liu, G. Duan, X. Luo, “Automatic image annotation based on an improved nearest neighbor technique with tag semantic extension model,” Procedia Computer Science, vol. 183, pp. 616-623, 2021. https://doi.org/10.1016/j.procs.2021.02.105 DOI: https://doi.org/10.1016/j.procs.2021.02.105
- H. K. Azad, A. Deepak, “Query expansion techniques for information retrieval: a survey,” Information Processing and Management, vol. 56, no. 5, pp. 1698-1735, 2019. https://doi.org/10.1016/j.ipm.2019.05.009 DOI: https://doi.org/10.1016/j.ipm.2019.05.009
- S. Dahir, A. “El Qadi, A query expansion method based on topic modelling and DBpedia features,” International Journal of Information Management Data Insights, vol. 1, no. 2, e100043, 2021. https://doi.org/10.1016/j.jjimei.2021.100043 DOI: https://doi.org/10.1016/j.jjimei.2021.100043
- S. Jain, K. R. Seeja, R Jindal, “A fuzzy ontology framework in information retrieval using semantic query expansion,” International Journal of Information Management Data Insights, vol. 1, no. 1, e100009, 2021. https://doi.org/10.1016/j.jjimei.2021.100009 DOI: https://doi.org/10.1016/j.jjimei.2021.100009
- S. Malik, U. Shoaib, S. A. C. Bukhari, H. El Sayed, M. A. Khan, “A hybrid query expansion framework for the optimal retrieval of the biomedical literature,” Smart Health, vol. 23, e100247, 2022. https://doi.org/10.1016/j.smhl.2021.100247 DOI: https://doi.org/10.1016/j.smhl.2021.100247
- S. Abri, R. Abri, S. Çetin, “Group-based personalization using topical user profile,” in 28th ACM Conference on User Modeling, Adaptation and Personalization, 2020, pp. 181-186. https://doi.org/10.1145/3386392.3399559 DOI: https://doi.org/10.1145/3386392.3399559
- Z. Ma, Z. Dou, Y. Zhu, H. Zhong, J. R Wen, “One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 555-564. https://doi.org/10.1145/3404835.3462828 DOI: https://doi.org/10.1145/3404835.3462828
- D. Zhou, X. Wu, W. Zhao, S. Lawless, J. Liu, “Query expansion with enriched user profiles for personalized search utilizing folksonomy data,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 7, pp. 1536-1548, 2017. https://doi.org/10.1109/TKDE.2017.2668419 DOI: https://doi.org/10.1109/TKDE.2017.2668419
- M. Bravo, A. Aldea, L. F. Hoyos-Reyes, “Automated Ontology Population and Enrichment of Scientific Publications,” Journal of Physics: Conference Series, vol. 1, e012139, 2021. https://doi.org/10.1088/1742-6596/1828/1/0121 DOI: https://doi.org/10.1088/1742-6596/1828/1/012139
- K. Gupta, N. Sachdeva, V. Pudi, “Explicit modelling of the implicit short term user preferences for music recommendation,” in European Conference on Information Retrieval, 2018. pp. 333-344. https://doi.org/10.1007/978-3-319-76941-7_25 DOI: https://doi.org/10.1007/978-3-319-76941-7_25
- J. Choudhary, D. S. Tomar, D. P. Singh, “An Efficient Hybrid User Profile Based Web Search Personalization Through Semantic Crawler,” National Academy Science Letters, vol. 42, no. 2, pp, 105-108, 2019. https://doi.org/10.1007/s40009-018-0686-2 DOI: https://doi.org/10.1007/s40009-018-0686-2
- F. Zarrinkalam, H. Fani, E. Bagheri, “Extracting, Mining and Predicting Users' Interests from Social Networks,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 1407-1408. https://doi.org/10.1145/3292500.3332279 DOI: https://doi.org/10.1145/3331184.3331383
- S. Gauch, M. Speretta, A. Chandramouli, A. Micarelli, “User profiles for personalized information access,” in The adaptive Web, 2007, pp. 54-89. https://doi.org/10.1007/978-3-540-72079-9_2 DOI: https://doi.org/10.1007/978-3-540-72079-9_2
- E. Vicente-López, L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, “Use of textual and conceptual profiles for personalized retrieval of political documents,” Knowledge-Based Systems, vol. 112, pp. 127-141, 2016. https://doi.org/10.1016/j.knosys.2016.09.005 DOI: https://doi.org/10.1016/j.knosys.2016.09.005
- A. K. Nandanwar, J. Choudhary, D. P. Singh, “Web search personalization based on the principle of the ant colony,” Procedia Computer Science, vol. 189, pp. 100-107, 2021. https://doi.org/10.1016/j.procs.2021.05.073 DOI: https://doi.org/10.1016/j.procs.2021.05.073
- F. T. da Silva, J. E. Maia, “Query Expansion in Text Information Retrieval with Local Context and Distributional Model,” Journal of Digital Information Management, vol. 17, no. 6, e313, 2019. https://10.6025/jdim/2019/17/6/313-320 DOI: https://doi.org/10.6025/jdim/2019/17/6/313-320
- M. Pereira, E. Etemad, F. Paulovich, “Iterative learning to rank from explicit relevance feedback,” in Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020, pp. 698-705. https://doi.org/10.1145/3341105.3374002 DOI: https://doi.org/10.1145/3341105.3374002
- J. Serrano-Guerrero, F. P. Romero, J. A. Olivas, “A relevance and quality-based ranking algorithm applied to evidence-based medicine,” Computer methods and programs in biomedicine, vol. 191, e105415, 2020. https://doi.org/10.1016/j.cmpb.2020.105415 DOI: https://doi.org/10.1016/j.cmpb.2020.105415
- J. Wang, M. Pan, T. He, X. Huang, X. Wang, X. Tu, “A Pseudo-relevance feedback framework combining relevance matching and semantic matching for information retrieval,” Information Processing and Management, vol. 57, no. 6, e102342, 2020. https://doi.org/10.1016/j.ipm.2020.102342 DOI: https://doi.org/10.1016/j.ipm.2020.102342
- S. Neji, T. Chenaina, A. M. Shoeb, L. B. Ayed, “HIR: a hybrid IR ranking model,” in IEEE 45th Annual Computers, Software, and Applications Conference, 2021. pp. 1717-1722. https://10.1109/COMPSAC51774.2021.00256 DOI: https://doi.org/10.1109/COMPSAC51774.2021.00256
- B. Selvalakshmi, M. Subramaniam, “Intelligent ontology based semantic information retrieval using feature selection and classification,” Cluster Computing, vol. 22, no. 5, pp. 12871-12881, 2019. https://doi.org/10.1007/s10586-018-1789-8 DOI: https://doi.org/10.1007/s10586-018-1789-8
- G. J. Hahm, M. Y. Yi, J. H. Lee, H. W. Suh, “A personalized query expansion approach for engineering document retrieval,“ Advanced Engineering Informatics, vol. 28, no 4, pp. 344-359, 2014. https://doi.org/10.1016/j.aei.2014.04.002 DOI: https://doi.org/10.1016/j.aei.2014.04.002
- B. Xu, H. Lin, L. Yang, K. Xu, Y. Zhang, D. Zhang, Z. Yang, J. Wang, Y. Lin, F. Yin, “A supervised term ranking model for diversity enhanced biomedical information retrieval,” BMC bioinformatics, vol. 20, no 16, e590, 2019. https://doi.org/10.1186/s12859-019-3080-2 DOI: https://doi.org/10.1186/s12859-019-3080-2