Efectos auditivos en la percepción háptica durante la simulación de perforación con taladro

Autores/as

  • Yair Valbuena Universidad Militar Nueva Granada
  • Álvaro Uribe-Quevedo Universidad Militar Nueva Granada
  • Alexandra Velasco-Vivas Universidad Militar Nueva Granada

DOI:

https://doi.org/10.19053/1900771X.v17.n2.2017.7179

Palabras clave:

Fidelidad, háptica, simulación

Resumen

La realidad virtual ha proporcionado inmersión e interacción a través de entornos generados por computador que intentan reproducir experiencias de la vida real a través de estímulos sensoriales. El realismo puede lograrse a través de interacciones multimodales que pueden mejorar la inmersión y las interacciones si se diseñan adecuadamente. Los avances más notorios están relacionados con la computación gráfica, donde el foto-realismo es la tendencia actual. Asimismo, se tienen otros avances relacionados con el sonido, la háptica y en menor medida, el olfato y el gusto. En la actualidad, las características de los sistemas de realidad virtual (sonido visual-háptico) se están utilizando masivamente en entretenimiento (por ejemplo, cine, videojuegos, arte) y en otros escenarios (por ejemplo, inclusión social, educación, capacitación, terapia y turismo). Por otra parte, la reducción de costos de las tecnologías de realidad virtual ha dado lugar a la disponibilidad a nivel de consumo, de varios tipos de dispositivos hápticos. Dichos dispositivos ofrecen experiencias de baja fidelidad debido a las propiedades de los sensores, pantallas y otros dispositivos electromecánicos, que pueden no ser adecuados para experiencias de alta precisión o en situaciones reales que requieran destreza. Sin embargo, se han realizado investigaciones sobre cómo superar o compensar la falta de fidelidad para proporcionar una experiencia de usuario atractiva utilizando historias, interacciones multimodales y elementos de juego.
Nuestro trabajo se centra en analizar los posibles efectos de la percepción auditiva sobre la retroalimentación háptica dentro de un escenario de perforación con taladro, que implica interacciones multimodales. Esta tarea tiene múltiples aplicaciones en medicina, elaboración y construcción. Comparamos dos escenarios en los que dos grupos de participantes tuvieron que perforar madera mientras escuchaban sonidos contextuales y no contextuales. Además, recopilamos su percepción utilizando una encuesta después de completar la tarea. A partir de los resultados, establecemos que el sonido influye en la percepción háptica, pero se requieren más experimentos para comprender mejor las implicaciones y posibles aplicaciones médicas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

R. Riener, M. Frey, T. Proll, F. Regenfelder and R. Burgkart, “Phantom-based multimodal interactions for medical education and training: the Munich knee joint simulator,” in IEEE Transactions on Information Technology in Biomedicine, vol. 8, no. 2, pp. 208-216, June 2004. doi: https://doi.org/10.1109/TITB.2004.828885. DOI: https://doi.org/10.1109/TITB.2004.828885

Aïm, Florence et al., “Effectiveness of Virtual Reality Training in Orthopaedic Surgery”, in Arthroscopy: The Journal of Arthroscopic & Related Surgery 32.1: 224-232, January 2016. doi: https://doi.org/10.1016/j.arthro.2015.07.023. DOI: https://doi.org/10.1016/j.arthro.2015.07.023

Otaduy, Miguel A, Allison Okamura, and Sriram Subramanian, “Haptic technologies for direct touch in virtual reality”, in ACM SIGGRAPH 2016 Courses 24: 13, July 2016. doi: https://doi. org/10.1145/2897826.2927307. DOI: https://doi.org/10.1145/2897826.2927307

Azmandian, Mahdi et al., “Haptic Retargeting Video Showcase: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experience”, in Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems: 3-3, May, 2016. doi: https://doi. org/10.1145/2858036.2858226. DOI: https://doi.org/10.1145/2851581.2889441

J. M. Loomis, “Presence in Virtual Reality and Everyday Life: Immersion within a World of Representation,” in Presence, vol. 25, no. 2, pp. 169174, Nov. 1 2016. doi: https://doi.org/10.1162/ PRES_a_00255. DOI: https://doi.org/10.1162/PRES_a_00255

Heilig, M., “Beginnings: sensorama and the telesphere mask”, in Digital illusion. ACM Press/Addison-Wesley Publishing Co. pp. 343-351, January, 1998. [7] Page, Ray L., “Brief History of Flight Simulation”, inProceedings of SimTecT 2000 Conference, Sydney, 2000.: 11-17.

Rosen, Kathleen R., “The history of medical simulation”, in Journal of critical care 23.2: 157166, June 2008. doi: https://doi.org/10.1016/j. jcrc.2007.12.004. DOI: https://doi.org/10.1016/j.jcrc.2007.12.004

Sutherland, I. E. (1965). The ultimate display. Multimedia: From Wagner to virtual reality.

Algazi, V. R., Duda, R. O., & Thompson, D. M. (2004). Motion-tracked binaural sound. Journal of the Audio Engineering Society, 52(11), 1142-1156.

Lyu, SR., Lin, YK., Huang, ST. et al. BioMed Eng OnLine, 2013 12: 63. doi: https://doi.org/10.1186/1475-925X-12-63 DOI: https://doi.org/10.1186/1475-925X-12-63

Abdulmotaleb El Saddik, et al. Haptics: General Principles, in Haptics Technologies, Part of the series Springer Series on Touch and Haptic Systems pp 1-20, August 2011. DOI: https://doi.org/10.1007/978-3-642-22658-8_1

T. R. Coles, D. Meglan and N. W. John, “The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art,” in IEEE Transactions on Haptics, vol. 4, no. 1, pp. 51-66, January-March 2011. doi: https://doi.org/10.1109/TOH.2010.19. DOI: https://doi.org/10.1109/TOH.2010.19

Federico Avanzini, Davide Rocchesso. “Controlling material properties in physical models of sounding objects”, in Proc. Int. Computer Music Conf., La Habana: 91-94, 2001.

M. Strese; C. Schuwerk; A. Iepure; E. Steinbach, “Multimodal Feature-based Surface Material Classification,” in IEEE Transactions on Haptics, vol. PP, no.99, pp.1-1. doi: https://doi.org/10.1109/ TOH.2016.2625787

Ming-Dar Tsai, Ming-Shium Hsieh, Chiung-Hsin Tsai, “Bone drilling haptic interaction for orthopedic surgical simulator”, Computers in Biology and Medicine, Volume 37, Issue 12, December 2007, Pages 1709-1718. doi: https://doi.org/10.1016/i. compbiomed.2007.04.006 DOI: https://doi.org/10.1016/j.compbiomed.2007.04.006

Andreas Petersik, Bernhard Pflesser, Ulf Tiede, Karl-Heinz Höhne, and Rudolf Leuwer, “Realistic haptic interaction in volume sculpting for surgery simulation”, in Proceedings of the 2003 international conference on Surgery simulation and soft tissue modeling (IS4TM’03), Nicholas Ayache and Hervé Delingette (Eds.). Springer-Verlag, Berlin, Heidelberg, 194-202, 2003. DOI: https://doi.org/10.1007/3-540-45015-7_19

Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ., “The role of haptic feedback in laparoscopic simulation training.”, in Journal of Surgical Research 156.2: 312-316, 2009. doi: https://doi. org/10.1016/i.iss.2009.04.018 DOI: https://doi.org/10.1016/j.jss.2009.04.018

John, Nigel W, and Robert J Stone, “Mastoidectomy simulation with combined visual and haptic feed

Yair Valbuena Álvaro Uribe-Quevedo Alexandra Velasco-Vivas

Audio effects on haptics perception during drilling simulation

Rev. I2+D. Vol.17 (2). Julio-Diciembre. 2017, pp. 6-15. ISSN 1900-771X e-ISSN 2422-4324 DOI: https://doi.org/10.19053/1900771X.v17.n2.2017.7179

back” in Medicine Meets Virtual Reality 02/10: Digital Upgrades, Applying Moore’s Law to Health 85: 17, 2002.

The Columbia Electronic Encyclopedia. [Online] Available at: http://encyclopedia2.thefreedictionar y.com/Perception [2016, December 19].

Lerner, Michelle A et al., “Does training on a virtual reality robotic simulator improve performance on the da Vinci® surgical system?”, in Journal of Endourology 24.3: 467-472, 2010. DOI: https://doi.org/10.1089/end.2009.0190

Benjamin Zendejas, Amy T. Wang, Ryan Brydges, Stanley J. Hamstra, David A. Cook, Cost: The missing outcome in simulation-based medical education research: A systematic review, Surgery, Volume 153, Issue 2, February 2013, Pages 160-176. doi: https://doi.org/10.1016/j.surg.2012.06.025 DOI: https://doi.org/10.1016/j.surg.2012.06.025

Thomas, Geb et al., “The design and testing of a force feedback dental simulator”, in Computer methods and programs in biomedicine 64.1: 5364, 2001. DOI: https://doi.org/10.1016/S0169-2607(00)00089-4

doi: https://doi.org/10.1016/S01692607(00)00089-4

Tse, Brian et al. “Design and development of a haptic dental training system-haptel”, in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications: 101-108, July 2010. doi: https://doi.org/10.1007/978-3-64214075-4_15 DOI: https://doi.org/10.1007/978-3-642-14075-4_15

P. A. Heng et al., “A virtual-reality training system for knee arthroscopic surgery,” in IEEE Transactions on Information Technology in Biomedicine, vol. 8, no. 2, pp. 217-227, June 2004. doi: 10.1109/ TITB.2004.826720 DOI: https://doi.org/10.1109/TITB.2004.826720

A. M. Okamura, C. Simone and M. D. O’Leary, “Force modeling for needle insertion into soft tissue,” in IEEE Transactions on Biomedical Engineering, vol. 51, no. 10, pp. 1707-1716, Oct. 2004. Doi: https://doi.org/10.1109/TBME.2004.831542 DOI: https://doi.org/10.1109/TBME.2004.831542

Maran, NJ, and RJ Glavin, “Low-to high-fidelity simulation–a continuum of medical education?” in Medical education 37.s1: 22-28, 2003. doi: https:// doi.org/10.1046/i.1365-2923.37.s1.9.x DOI: https://doi.org/10.1046/j.1365-2923.37.s1.9.x

Norman, Geoff, Kelly Dore, and Lawrence Grierson, “The minimal relationship between simula

tion fidelity and transfer of learning”, in Medical education 46.7: 636-647, 2012. doi: https://doi. org/10.1111/j.1365-2923.2012.04243.x DOI: https://doi.org/10.1111/j.1365-2923.2012.04243.x

Wiriyacosol, S, and EJ Armarego, “Thrust and torque prediction in drilling from a cutting mechanics approach”, in CIRP Annales: 87-91, 1979.

Todd, Robert H, Dell K Allen, and Leo Alting, “Manufacturing processes reference guide”, Industrial Press Inc, 1994.

Ravikiran B. Singapogu and Timothy C. Burg, “Haptic virtual manipulatives for enhancing K-12 special education”, in Proceedings of the 47th Annual Southeast Regional Conference (ACMSE 47), ACM, New York, 2009. DOI: https://doi. org/10.1145/1566445.1566547 DOI: https://doi.org/10.1145/1566445.1566547

Shah, A. V., Teuscher, S., McClain, E. W., & Abbott, J. J., “How to build an inexpensive 5-dof haptic device using two novint falcons”, In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Springer Berlin Heidelberg, pp. 136-143, July 2010. doi:https:// doi.org/10.1007/978-3-642-14064-8_21 DOI: https://doi.org/10.1007/978-3-642-14064-8_21

Martin, S, & Hillier, N, “Characterisation of the Novint Falcon haptic device for application as a robot manipulator”, In Australasian Conference on Robotics and Automation (ACRA), pp. 291-292, December 2009.

A. Uribe-Quevedo, D. Rojas and B. Kapralos, “Customization of a low-end haptic device to add rotational DOF for virtual cardiac auscultation training,” 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), Chalkidiki, 2016, pp. 1-6. DOI: https://doi.org/10.1109/IISA.2016.7785431 DOI: https://doi.org/10.1109/IISA.2016.7785431

Conti, F., Morris, D., Barbagli, F., & Sewell, C., “CHAI 3D” in http://www. chai3d. org, 2006.

Urbaniak, G.C., &; Plous, S. (2013). Research Randomizer (Version 4.0) [Computer Software]. Retrieved on June 22, 2013, from http://www.randomizer.org/

Melaisi, M., Nguyen, M., Uribe-Quevedo, A., Kapralos, B., “The Effect of Sound on Haptic Fidelity Perception”, in EDUCON 2017. To appear. DOI: https://doi.org/10.1109/EDUCON.2017.7942926

Descargas

Publicado

2017-07-04

Cómo citar

Valbuena, Y., Uribe-Quevedo, Álvaro, & Velasco-Vivas, A. (2017). Efectos auditivos en la percepción háptica durante la simulación de perforación con taladro. Ingeniería Investigación Y Desarrollo, 17(2), 6–15. https://doi.org/10.19053/1900771X.v17.n2.2017.7179

Métrica