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SOME APPLICATIONS OF FUZZY MEASURES WITH CODING THEORY 

AAKANKSHA DWIVEDI1* , RAM NARESH SARASWAT 2 

 

Abstract: A Fuzzy measure have been seen to take part in 

developing various methods for the creation of fuzzy mean 

codeword lengths. This approach is taken by the current 

communication, which providing the application of fuzzy 

entropy measurements for the creation of novel fuzzy 

codeword lengths. Additionally, we want to provide more 

light on the problems of correspondence between weighted 

mean and possible weighted fuzzy entropy using fuzzy 

measures. 

Keywords: Fuzzy entropy, Fuzzy mean codeword length, 

Weighted mean, Monotonic function. 
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Algunas Aplicaciones de Medidas Difusas con la Teoría de 

Codificación 

Resumen: Se ha visto que las medidas difusas participan en el desarrollo de varios 

métodos para la creación de longitudes de codecs difusas medias. Este enfoque es el que 

adopta la presente comunicación, que proporciona la aplicación de medidas difusas de 

entropía para la creación de nuevas longitudes difusas de codecs. Además, queremos 

aportar más luz sobre los problemas de correspondencia entre la media ponderada y la 

posible entropía difusa ponderada utilizando medidas difusas. 

Palabras clave: Entropía difusa, longitud media difusa de la palabra clave, media 

ponderada, función monótona.
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1 INTRODUCTION 

Fuzziness and uncertainty are the basic nature of human thinking and many real-world 

objectives. Fuzziness is found in our decision, in our language and in the way of process 

information. The main objective of information is to remove uncertainty and fuzziness. In 

fact, we measure information supplied by the amount of probabilistic uncertainty removed 

in an experiment and the measure of uncertainty removed is also called as a measure of 

information, while measure of fuzziness is the measure of vagueness and ambiguity of 

uncertainties. 

Fuzzy entropy is a concept that combines fuzzy set theory and information theory 

(Singh & Sharma, 2019), particularly in coding theory. Fuzzy entropy measures are 

mathematical tools used to quantify the uncertainty or randomness in a system where data 

might be imprecise, uncertain or fuzzy. They extend traditional entropy measures by 

incorporating the concept of fuzziness, which is particularly useful in dealing with real-

world problems where information is not always precise. One of the many applications of 

fuzzy entropy measures in the literature will be to the problem of efficient coding of 

messages to be sent over a noiseless channel.  

Fuzzy entropy can be applied to improve data compression algorithms.  Traditional 

entropy-based methods, like Huffman coding or arithmetic coding, rely on precise 

probability distributions of symbols. However, in many real-world scenarios, the exact 

probabilities of symbols may not be well-defined or may vary over time. Fuzzy entropy 

allows for a more flexible representation of these probabilities, accounting for the 

uncertainty and variability in the data. 

Fuzzy entropy can be used to develop adaptive coding schemes that adjust to the 

changing statistics of the data. By incorporating fuzzy sets into the entropy calculation, 

the coding algorithm can more effectively handle variations in the data stream, leading to 
better compression ratios. In image and video compression, where the data is often noisy 

and imprecise, fuzzy entropy can improve the performance of lossy compression 

algorithms like JPEG or MPEG. By considering the fuzziness in pixel values, the 

compression algorithm can achieve higher compression rates while maintaining 

acceptable quality. In communication systems, error correction codes are essential for 

ensuring data integrity over noisy channels. Fuzzy entropy measures can enhance the 

design of these codes by accounting for uncertainties in the error patterns. Traditional 

error correction techniques like Reed-Solomon or Turbo codes can be improved using 

fuzzy logic principles. Fuzzy entropy can be used to model the uncertainty in the received 

signal and enhance the decoding process (Germe Demamu et al., 2023) making it more 

robust to noise and errors. Fuzzy entropy can be used to model the characteristics of 

communication channels, especially those with uncertain or time-varying conditions. This 

modeling can lead to the development of more efficient and adaptive error correction 

schemes that perform better under varying channel conditions. For example: Imagine a 

scenario where you are transmitting data over a wireless network with varying signal 
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quality. Traditional entropy-based methods might not efficiently compress the data due to 

the changing statistics of the signal. By applying fuzzy entropy, you can create a 

compression algorithm that adapts to these variations, achieving better compression ratios 

and reducing the overall data transmission time. Similarly, for error correction, a fuzzy 

entropy-based decoder can more effectively handle the uncertainties in the received data, 

leading to fewer errors and a more reliable communication system (Ouahada, & Ferreira, 

2019). For data compression, fuzzy entropy-based algorithms compress data more 

effectively. Fuzzy entropy enhances cryptographic security. Fuzzy entropy analysis 

optimizes channel capacity. 

Let's assume that a random variable K determines the messages to be conveyed and 

that each value of 𝐾𝑘, 𝑘 = 1, 2, … , ℏ must be denoted by a limited order of codes picked 

at random from the 𝑂1, 𝑂2, ………𝑂𝜌. 

In discussing fuzzy coding theory, (Kraft, 1949) inequality plays a crucial ℏ𝑘 aspect. 

℘ and provide the length of the code word related to this inequality as well as the size of 

the alphabet. 

∑ ℘−ℏ𝑘ℏ
𝑘=1 ≤ 1 , (1) 

We frequently encounter codes in communication theory that reduce the length of 

these particular fuzzy code words: 

ℵ = ∑ (ℑ𝑡𝑘
+ (1 −ℏ

𝑘=1 ℑ𝑡𝑘
))ℏ𝑘 , (2) 

(Guiasu & Picard, 1971) determined the measure as the weighted mean codeword 

length by (Belis & Guiasu, 1968) fuzzy entropy: 

ℵ(𝜔) =
∑ (ℑ𝑡𝑘

+(1−ℏ
𝑘=1 ℑ𝑡𝑘

))ℏ𝑘𝜛𝑘

∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜛𝑘

 , (3) 

exponentiated mean was provided for the value = 1, and another exponentiated mean 

was provided for the value =. 

ℵ𝜙 =
1

𝜙−1
𝑙𝑜𝑔℘ (

∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜙℘(𝜙−1)ℏ𝑘

∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜙

) , (4) 

(Kapur, 1998) has well-researched a number of measures and their uses to coding 

theory. In coding theory, the topic of mistake correction is typically ignored in favour of 

maximizing the quantity of messages. So, given a specified limit on codeword lengths, we 

get the least value of a mean codeword length.  

There has been extensive discussion of various measures and how they apply to coding 

theory by (Frumin et al., 2017; Hayashi, 2019; Joshi, & Kumar,2018; Kawan & Yüksel, 

2018; Lee & Chung, 2018; Ouahada & Ferreira. 2019). A new approach of generalization 

of Renyi’s entropy of parameter β has been discussed by Rakhi Gupta and Satish Kumar 

(Gupta & Kumar 2022). Surender Singh and Sonam Sharma introduce a generalized fuzzy 
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entropy measure and demonstrate its effectiveness in Multiple Attribute Decision Making 

(MADM) (Singh & Sharma 2019). Gereme and Demamu updated properties of Hamming 

distance of binary fuzzy codes over fuzzy vector space (Germe et al. 2023). They also 

discussed binary fuzzy codes and some properties of Hamming distance of fuzzy codes 

(Guiasu, & Picard, 1971). 

2 FUZZY MEASURES AND FUZZY CODING THEORY 

Fuzzy entropy measures provide a powerful tool for optimizing coding and 

compression in communication systems by effectively handling uncertainties and 

imprecise information. This leads to more efficient data transmission, better compression 

ratios, and improved error correction capabilities, making it a valuable approach in the 

design of modern communication systems. In the example below, we show how fuzzy 

entropy values and fuzzy codeword lengths are related. 

2.1 Fuzzy codeword lengths through fuzzy measures 

In the context of communication systems, the concept of using fuzzy measures to 

determine codeword lengths can significantly enhance coding efficiency by better 

accommodating uncertainty and imprecise information. This approach involves utilizing 

fuzzy entropy measures to optimize the length of codewords, ensuring that the coding 

scheme is both robust and adaptable to varying data characteristics. Here, we create a few 

fuzzy exponentiated mean codeword lengths that are previously known in the coding 

theory literature. 

Theorem 2.1: If 𝜎1 , 𝜎2, … 𝜎𝑛 ,measurements of a FUDC. 

ℵ𝜈,𝜗,𝜐 ≥ [𝑧𝜗
𝜈(𝜏)]𝜐 −

𝜐(1−𝜗)−(1−𝜈)

𝜗−𝜈
𝑙𝑜𝑔℘ ∑ ℘−ℏ𝑘ℏ

𝑘=1  , (5) 

Here, 

ℵ𝜈,𝜗,𝜐 =
1

𝜈−𝜗
[(𝜈 − 1)ℵ𝜈 − 𝜈(𝜗 − 1)ℵ𝜗], (6) 

𝜐 is constant, 𝜈, 𝜗 are real parameters, 𝑧𝜗
𝜈(𝜏) is Kapur’s (1967) fuzzy entropy and 

ℵ𝜈 =
1

𝜈 − 1
𝑙𝑜𝑔℘ (

∑ (ℑ𝑡𝑘
+ (1 −ℏ

𝑘=1 ℑ𝑡𝑘
))𝜈℘−ℏ𝑘(1−𝜈)

∑ (ℑ𝑡𝑘
+ (1 −ℏ

𝑘=1 ℑ𝑡𝑘
))𝜈

) 

ℵ𝜗 =
1

𝜗−1
𝑙𝑜𝑔℘ (

∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜗℘−ℏ𝑘(1−𝜗)

∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜗

), 

(7) 

are Kapur’s fuzzy mean codeword lengths. 
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Proof. Due to (Kapur,1994) the following measure has occurred. 

Ε(𝑡, 𝑠) =
1

𝜙−𝜑
𝑙𝑜𝑔℘ (

∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜈(ℑ𝑠𝑘

+(1−ℑ𝑠𝑘
))1−𝜈

(∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜗(ℑ𝑠𝑘

+(1−ℑ𝑠𝑘
))1−𝜗)

𝜐) , 𝜈 ≠ 1, 𝜗 ≠ 1, 𝜈, 𝜗 > 0, 𝜐 > 0 , (8) 

Ε(𝑡, 𝑠) ≥ 0, letting (ℑ𝑠𝑘
+ (1 − ℑ𝑠𝑘

)) =
℘−ℏ𝑘

∑ ℘−ℏ𝑘ℏ
𝑘=1

 then, (9) 

1

𝜈−𝜗
[(𝜈 − 1)ℵ𝜈 − 𝜐(𝜗 − 1)ℵ𝜗] ≥

1

𝜗−𝜈
𝑙𝑜𝑔℘ (

∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜈

(∑ (ℑ𝑡𝑘
+(1−ℏ

𝑘=1 ℑ𝑡𝑘
))𝜗)

𝜐) −
𝜐(1−𝜗)−(1−𝜈)

𝜗−𝜈
𝑙𝑜𝑔℘ ∑ ℘−ℏ𝑘ℏ

𝑘=1 , (10) 

ℵ𝜈,𝜗,𝜐 ≥ [𝑧𝜗
𝜈(𝑡)]𝜐 −

𝜐(1−𝜗)−(1−𝜈)

𝜈−𝜗
𝑙𝑜𝑔℘ ∑ ℘−ℏ𝑘ℏ

𝑘=1  , (11) 

Exceptional Points: 

1. If 𝑣 = 1 , (12) 

i.e. 

ℵ𝜈,𝜗 ≥ 𝑧𝜗
𝜈(𝑡) − 𝑙𝑜𝑔℘ ∑ ℘−ℏ𝑘ℏ

𝑘=1 , (13) 

Here: 

ℵ𝜈,𝜗 =
1

𝜈−𝜗
[(𝜈 − 1)ℵ

𝜈 − (𝜗 − 1)ℵ
𝜗], (14) 

As of order 𝜈 and type 𝜗, ℵ𝜈,𝜗 is the exponentiated mean, and 𝑧𝜗
𝜈(𝑡) is Kapur's fuzzy 

entropy (Kapur, 1986). 

Now, Relation (13) is the lies between 𝑧𝜗
𝜈(𝑡) and 𝑧𝜗

𝜈(𝑡) + 1. 

2. For 𝜐 = 1, 𝜗 =1, (10) (15) 

i.e.  

ℵ
𝜈 ≥ ℑ𝜈(𝑡) − 𝑙𝑜𝑔℘ ∑ ℘−ℏ𝑘ℏ

𝑘=1 , (16) 

Here ℵ𝜈is of order 𝜈 and ℑ𝜈(𝑡) is Renyi’s fuzzy entropy (Renyi, 1961). 

So,ℵ𝜈lower bound lies between ℑ𝜈(𝑡) and ℑ𝜈(𝑡) + 1  

(ii) Calculating current fuzzy codeword lengths 

We include fuzzy Shannon's (1948) and (Campbell, 1965) fuzzy code-word lengths 

here. 

Theorem 2.2: If 𝜎1 , 𝜎2, … 𝜎𝑛 , are the measurements of a fuzzy FUDC lengths, then. 
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−
1+𝑙𝑜𝑔℘ 𝜛

𝑙𝑜𝑔℘ 𝜛
𝑙𝑜𝑔℘ ∑ ((ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))

1

1+𝑙𝑜𝑔℘ 𝜛𝜛

𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

1+𝑙𝑜𝑔℘ 𝜛 ℘
−ℏ𝑘(

𝑙𝑜𝑔℘ 𝜛

1+𝑙𝑜𝑔℘ 𝜛
)
) ≥ℏ

𝑘=1

−
1

𝑙𝑜𝑔℘ 𝜛
𝑙𝑜𝑔℘ ∑ ((ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜛

𝑙 𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

)ℏ
𝑘=1 , 

(17) 

Here, 𝜛 > 0,𝜛 ≠ 1. 

Proof. Holder's disparity is known to be caused by 

∑ 𝑎𝑘𝑏𝑘
ℏ
𝑘 ≥ (∑ (𝑏𝑘)

𝑡ℏ
𝑘 )

1

𝑡(∑ (𝑏𝑘)
𝑠ℏ

𝑘 )
1

𝑠, (18) 

Substituting 

𝑏𝑘 = (ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
−

1

𝑙𝑜𝑔℘ 𝜛𝜛

−𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

𝑙𝑜𝑔℘ 𝜛 , (19) 

𝑏𝑘 = (ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
1

𝑙𝑜𝑔℘ 𝜛𝜛

𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

𝑙𝑜𝑔℘ 𝜛 ℘−ℏ𝑘 ,
1

𝑡
= −

1

𝑙𝑜𝑔℘ 𝜛
,
1

𝑠
=

1+𝑙𝑜𝑔℘ 𝜛

𝑙𝑜𝑔℘ 𝜛
, (20) 

From relation (18),  

∑℘−ℏ𝑘

ℏ

𝑘=1

≥ [∑((ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
−

1
𝑙𝑜𝑔℘ 𝜛𝜛

−
𝑙𝑜𝑔℘(ℑ𝑡𝑘

+(1−ℑ𝑡𝑘
))

𝑙𝑜𝑔℘ 𝜛 )

−𝑙𝑜𝑔℘ 𝜛ℏ

𝑘=1

]

−
1

1+𝑙𝑜𝑔℘ 𝜛

, (21) 

[∑ ((ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
1

𝑙𝑜𝑔℘ 𝜛𝜛

𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

𝑙𝑜𝑔℘ 𝜛 ℘−Ι𝑘)

(
𝑙 𝑜𝑔℘ 𝜛

1+𝑙𝑜𝑔℘ 𝜛
)

ℏ
𝑘=1 ]

1+𝑙𝑜𝑔℘ 𝜛

𝑙𝑜𝑔℘ 𝜛

, (22) 

i.e., 

∑℘−ℏ𝑘

ℏ

𝑘=1

≥ [∑((ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜛 𝑙 𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

)))

ℏ

𝑘=1

]

−1
𝑙𝑜𝑔℘ 𝜛

 

[∑ ((ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
1

1+𝑙𝑜𝑔℘ 𝜛𝜛

𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

1+𝑙𝑜𝑔℘ 𝜛 ℘
−ℏ𝑘(

𝑙𝑜𝑔℘ 𝜛

1+𝑙𝑜𝑔℘𝜛
)
)ℏ

𝑘=1 ]

1+𝑙𝑜𝑔℘ 𝜛

𝑙𝑜𝑔℘ 𝜛

, 

(23) 

Or, 

0 ≥ −
1

𝑙𝑜𝑔℘ 𝜛
𝑙𝑜𝑔℘ ∑((ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜛 𝑙 𝑜𝑔℘(ℑ𝑡𝑘

+(1−ℑ𝑡𝑘
)))

ℏ

𝑘=1

 

+
1+𝑙𝑜𝑔℘ 𝜛

𝑙𝑜𝑔℘ 𝜛
𝑙𝑜𝑔℘ ∑ ((ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))

1

1+𝑙𝑜𝑔℘ 𝜛𝜛

𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

1+𝑙𝑜𝑔℘ 𝜛 ℘
−ℏ𝑘(

𝑙 𝑜𝑔℘ 𝜛

1+𝑙𝑜𝑔℘ 𝜛
)
)ℏ

𝑘=1 , 

(24) 
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The relationship between fuzzy entropy and fuzzy non-mean codeword length is 

shown in equation (17). 

Particular Cases: 

Case-I: Adding 𝜛 = ℘ ,(17) results in 

−2 𝑙𝑜𝑔℘ ∑ ((ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
1

2℘
𝑙𝑜𝑔℘(ℑ𝑡𝑘

+(1−ℑ𝑡𝑘
))

2 ℘
−ℏ𝑘(

1

2
)
)ℏ

𝑘=1 ≥ − 𝑙𝑜𝑔℘ ∑ ((ℑ𝑡𝑘
+ (1 −ℏ

𝑘=1

ℑ𝑡𝑘
))℘𝑙 𝑜𝑔℘(ℑ𝑡𝑘

+(1−ℑ𝑡𝑘
))), 

(25) 

−2 𝑙𝑜𝑔℘ ∑ ((ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))℘−ℏ𝑘(
1

2
)
)ℏ

𝑘=1 ≥ −𝑙𝑜𝑔℘ ∑ ((ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))2)ℏ
𝑘=1 ,  (26) 

This inequality shows the relationship between (Campbell, 1965) and (Renyi, 1961). 

(ii) Relationship between Fuzzy Mean and Possible Fuzzy Entropy 

The following weighted mean is first defined: 

ℵ𝜈(𝜔) =
1

𝜈−1
𝑙𝑜𝑔℘ [

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))𝜈℘−ℏ𝑘(1−𝜈)ℏ
𝑘=1

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))𝜈ℏ
𝑘=1

] ; 𝜈 > 1, (27) 

We noticed, 

𝑙𝑚𝜈→1ℵ
𝜈(𝜔) =

[
 
 
 
 
 
 
∑

𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ𝑘+(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))

−∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

)) 𝑙𝑜𝑔℘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

ℏ
𝑘=1

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

]
 
 
 
 
 
 

, (28) 

=
∑ 𝜔𝑘(ℑ𝑡𝑘

+(1−ℑ𝑡𝑘
))ℏ𝑘

ℏ
𝑘=1

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

 , (29) 

It is by (Guiasu, & Picard, 1971). 

Fuzzy Universal Data Compression (FUDC) is a method that combines fuzzy set 

theory with universal data compression techniques to optimize the lengths of codewords. 

This approach leverages the principles of fuzzy entropy to account for the uncertainty and 

variability in the data, ultimately improving compression efficiency. FUDC involves 

assigning codeword lengths based on fuzzy probabilities, which are derived from the 

membership functions of fuzzy sets. This method enhances traditional data compression 

techniques by incorporating fuzziness, leading to more adaptable and robust compression. 

In below theorem, define new inequalities based on FUDC length. 

Theorem 2.3: If 𝜎1 , 𝜎2, … 𝜎𝑛, are the lengths of a FUDC lengths, then 



DWIVEDI, A., SARASWAT, R. N. SOME APPLICATIONS OF FUZZY MEASURES WITH 

CODING THEORY 

 

REVISTA INQUIETUD EMPRESARIAL 2025, 25(1).1–12 

HTTPS://DOI.ORG/10.19053/UPTC.01211048.17913 9 

 

ℵ𝜈(𝜔) ≥ 𝑧𝜈(𝑡, 𝜔) − 𝑙𝑜𝑔℘ ∑ ℘−ℏ𝑘ℏ
𝑘=1  , (30) 

Here, 

𝑧𝜈(𝑡, 𝜔) =
1

1−𝜈
𝑙𝑜𝑔℘(∑ 𝜔𝑘(ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈ℏ

𝑘=1 ) , (31) 

The weighted fuzzy mean is defined above, and ℵ𝜈(𝜔) is a potential indicator of 

weighted fuzzy entropy. 

Proof: We utilize the possible weighted divergence provided by to demonstrate the 

previously mentioned theorem. 

𝛦𝜈(𝑡, 𝑠; 𝜔) =
1

𝜈−1
[𝑡𝑎𝑛−1(∑ 𝜔𝑘(ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈ℏ

𝑘=1 (ℑ𝑠𝑘
+ (1 − ℑ𝑠𝑘

))1−𝜈) −
𝜋

4
] , 𝜈 > 1 , (32) 

It should be noticed that fuzzy measure (27) reduces to, when weights are ignored. 

Ε𝜈(𝑡, 𝜈) =
1

𝜈−1
[𝑡𝑎𝑛−1(∑ (ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈ℏ

𝑘=1 (ℑ𝑠𝑘
+ (1 − ℑ𝑠𝑘

))1−𝜈) −
𝜋

4
], (33) 

This represents the fuzzy Kapur (1994) measure. 

Now, Ε𝜈(𝑡, 𝑠; 𝜔) ≥ 0. 

⇒ [𝑡𝑎𝑛−1(∑ (ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈ℏ
𝑘=1 (ℑ𝑠𝑘

+ (1 − ℑ𝑠𝑘
))1−𝜈)] ≥

𝜋

4
 , (34) 

Adding (ℑ𝑠𝑘
+ (1 − ℑ𝑠𝑘

)) =
℘−ℏ𝑘

∑ ℘−ℏ𝑘ℏ
𝑘=1

, in (33), (35) 

𝑡𝑎𝑛−1 (∑ 𝜔𝑘(ℑ𝑡𝑘 + (1 − ℑ𝑡𝑘))
𝜈ℏ

𝑘=1 (
℘−ℏ𝑘

∑ ℘−ℏ𝑘ℏ
𝑘=1

)
1−𝜈

) ≥
𝜋

4
, (36) 

⇒ ∑ 𝜔𝑘(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘))

𝜈℘−ℏ𝑘(1−𝜈) ≥ℏ
𝑘=1 (∑ ℘−ℏ𝑘ℏ

𝑘=1 )
1−𝜈

, (37) 

− 𝑙𝑜𝑔℘(∑ 𝜔𝑘(ℑ𝑡𝑘 + (1 − ℑ𝑡𝑘))
𝜈ℏ

𝑘=1 ℘−ℏ𝑘(1−𝜈)) ≤ (𝜈 − 1) 𝑙𝑜𝑔℘(∑ ℘−ℏ𝑘ℏ
𝑘=1 ), (38) 

Adding 𝑙𝑜𝑔℘(∑ 𝜔𝑘(ℑ𝑡𝑘 + (1 − ℑ𝑡𝑘))
𝜈ℏ

𝑘=1 ), in (37) (39) 

ℵ𝜈(𝜔) = 𝑧𝜈(𝑡, 𝜔) − 𝑙𝑜𝑔℘(∑ ℘−ℏ𝑘ℏ
𝑘=1 ), (40) 

This establishes the theorem. 
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Theorem 2.4: If 𝜎1 , 𝜎2, … 𝜎𝑛 ,are the lengths of a FUDC lengths, then 

𝑧𝜈(𝑡, 𝜔) ≥ ℵ(𝜔), (41) 

Here, 

𝑧𝜈(𝑡, 𝜔) = ∑ 𝜔𝑘(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈ℏ
𝑘=1 [1 − 𝑙𝑜𝑔℘(ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈]; 𝜈 > 1, (42) 

Is weighted fuzzy entropy and ℵ(𝜔) is fuzzy weighted function. 

Proof: (Gurdial & Pessoa, 1977) theorem is used to demonstrate the mentioned 

theorem. 

𝜈

𝜈−1
𝑙𝑜𝑔℘ [∑ (ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))ℏ

𝑘=1 (
𝜔𝑘

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

)

1

𝜈
℘−ℏ𝑘

𝜈−1

𝜈 ] ≥

1

1−𝜈
𝑙𝑜𝑔℘ (

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))𝜈ℏ
𝑘=1

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

), 

(43) 

Here, 

ℵ𝜈(𝜔) =
𝜈

1−𝜈
𝑙𝑜𝑔℘ (∑ (ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))ℏ

𝑘=1 (
𝜔𝑘

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

)

1

𝜈
℘−ℏ𝑘

𝜈−1

𝜈 ), (44) 

is parametric weighted fuzzy code word length. 

With equation (38), 

∑ 𝜔𝑘(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈ℏ
𝑘=1 ≤ ∑ 𝜔𝑘(ℑ𝑡𝑘

+ (1 −ℏ
𝑘=1

ℑ𝑡𝑘
)) [∑ (ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
)) (

𝜔𝑘

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

)

1
𝜈
℘−ℏ𝑘

𝜈−1
𝜈ℏ

𝑘=1 ]

𝜈

, 
(45) 

Substituting, 

∑ 𝑎𝑘 = −𝜔𝑘

𝜈

1−𝜈(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
𝜈2

1−𝜈ℏ
𝑘=1 (𝑙𝑜𝑔℘( ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈)

𝜈

1−𝜈℘−ℏ𝑘, (46) 

∑ 𝑏𝑘 = −𝜔𝑘

𝜈

1−𝜈(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))
𝜈2

1−𝜈ℏ
𝑘=1 (𝑙𝑜𝑔℘(ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈)

𝜈

1−𝜈, We get (47) 

(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

)) = 1 − 𝜈, (ℑ𝑠𝑘
+ (1 − ℑ𝑠𝑘

)) =
𝜈−1

𝜈
, (48) 

and by (Kraft, 1949) equality, ∑ ℘−ℏ𝑘ℏ
𝑘=1 = 1 

0 ≥
1

1−𝜈
𝑙𝑜𝑔℘[− ∑ (𝜔𝑘)𝜈(ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈2

(𝑙𝑜𝑔℘( ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈)
𝜈
℘−ℏ𝑘(1−𝜈)ℏ

𝑘=1 ] +
𝜈

𝜈−1
𝑙𝑜𝑔℘[−∑ 𝜔𝑘(ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈(𝑙𝑜𝑔℘(ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈)ℏ

𝑘=1 ], 
(49) 
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−∑ 𝜔𝑘(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈(𝑙𝑜𝑔℘(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈)ℏ
𝑘=1  ≤ [−∑ (𝜔𝑘)𝜈(ℑ𝑡𝑘

+ (1 −ℏ
𝑘=1

ℑ𝑡𝑘
))𝜈2

(𝑙𝑜𝑔℘(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈)
𝜈
℘−ℏ𝑘(1−𝜈)]

1

𝜈 , 
(50) 

with (18) and (45), we get  𝑧𝜈(𝑡, 𝜔) ≥ ℵ(𝜔) 

Where, 

ℵ(𝜔) = (∑ 𝜔𝑘(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))ℏ
𝑘=1 ) [∑ (ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))ℏ

𝑘=1 (
𝜔𝑘

∑ 𝜔𝑘(ℑ𝑡𝑘
+(1−ℑ𝑡𝑘

))ℏ
𝑘=1

)

1

𝜈
℘−ℏ𝑘

𝜈−1

𝜈 ], (51) 

−[(∑ (𝜔𝑘)𝜈(ℑ𝑡𝑘
+ (1 − ℑ𝑡𝑘

))𝜈2ℏ
𝑘=1 )(𝑙𝑜𝑔℘( ℑ𝑡𝑘

+ (1 − ℑ𝑡𝑘
))𝜈)

𝜈
℘−ℏ𝑘(1−𝜈)]

1

𝜈, (52) 

Neither its monotonic increasing function nor any weighted fuzzy mean codeword 

length correspond to that. 

3 CONCLUSION 

This approach has the advantage of potentially establishing several new fuzzy entropy 

measurements using fuzzy coding theorems. In this paper we introduced a fuzzy entropy 

and corresponding code word length.  It is shown that many new fuzzy coding theorems 

can be developed by considering both the existing and new fuzzy entropy measures. The 

work can further be extended for other fuzzy entropy measures. 
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