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Resumen

El uso de sensores hiperespectrales ha tomado 
relevancia en la agricultura, debido a su potencial 
en el manejo fitosanitario de cultivos. Sin embar-
go, estos sensores son sensibles al registro de 
ruido espectral, lo cual dificulta su aplicación real. 
Por lo anterior, este trabajo se centró en el análisis 
del ruido espectral presente en un banco de 180 
imágenes hiperespectrales de hojas de mango 
adquiridas en laboratorio, y la implementación 
de una técnica de reducción de ruido basada en 
la transformada discreta de wavelet. El análisis de 
ruido consistió en la identificación de las bandas 
de mayor ruido, mientras que el desempeño de 
la técnica fue medido con las métricas PSNR y 
SNR. Como resultado, se determinó que el ruido 
espectral estuvo presente en los extremos del 
espectro (417-421nm y 969-994nm), mientras 
que el método Neigh-Shrink alcanzó un SNR del 
orden de 1011 con respecto al orden de 102 del 
espectro original.

Palabras clave: HSI, reducción de ruido espectral, 
transformada wavelet, análisis hiperespectral.

Abstract

The use of hyperspectral sensors has gained 
relevance in agriculture due to its potential 
in the phytosanitary management of crops. 
However, these sensors are sensitive to spectral 
noise, which makes their real application difficult. 
Therefore, this work focused on the analysis of 
the spectral noise present in a bank of 180 hy-
perspectral images of mango leaves acquired 
in the laboratory, and the implementation of a 
denoising technique based on the discrete wave-
let transform. The noise analysis consisted in the 
identification of the highest noisy bands, while 
the performance of the technique was based 
on the PSNR and SNR metrics. As a result, it was 
determined that the spectral noise was present 
at the ends of the spectrum (417-421nm and 
969-994nm) and that the Neigh-Shrink method 
achieved a SNR of the order of 1011 with respect 
to the order of 102 of the original spectrum.

Keywords: HSI, spectral denoising, wavelet 
transform, hyperspectral analysis.
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1. 	 Introduction

The use of non-invasive and non-destructive 
optical systems in crop inspection and control, 
helps producers to improve integral agricultural 
management practices and control phytosani-
tary risks, by providing information that allows 
a correct diagnosis of problems with potential 
damage to agricultural production. Within 
these optical systems, hyperspectral sensors 
have allowed the detection of phytosanitary 
problems at early stages and the elimination of 
the incidence of the human factor in its detec-
tion. Hyperspectral images (HSI) provided by 
these sensors, have been used in recent years 
for the development of: non-invasive and non-
destructive fruit inspection methods (dos Santos 
Netoa et al., 2017; Munera et al., 2017; Pinto et al., 
2019); the establishment of spectral vegetation 
indices to estimate internal damage in harvested 
fruits (Vélez-Rivera et al., 2014); and the early 
detection of crop diseases (Zarco-Tejada et al., 
2018; Navrozidis et al., 2018).

However, as in any sensors and measuring 
instruments, the captured data are subject to 
anomalies that can alter the information con-
tained in them and, therefore, skew the results 
obtained. Techniques such as MNF or PCA, have 
been applied in numerous studies, which is why 
these techniques are presented as necessary 
steps in all hyperspectral analysis. For example, 
Bjorgan & Randeberg (2015), developed an MNF 
technique applied to pushbroom hyperspectral 
images for spectral denoising during real-time 
image acquisition. The authors of this work affirm 
that the results obtained with this technique, 
are comparable to those obtained after acquir-
ing the image in its entirety. Moreover, Liao et 
al. (2013), proposed a two-phase model that 
combines a kernel PCA (KPCA) and a model for 
eliminating total noise variation that evidenced 
remarkable characteristics and promising results 
as far as denoising is concerned.

In recent years, techniques based on deep learn-
ing networks (Yuan et al., 2019), and bilinear fac-
torization (Chen et al., 2020), have been applied to 
HSI for noise detection. Yuan et al. (2019), present-

ed a technique based on a deep convolutional 
neural network that combines space and spec-
trum through an end-to-end mapping between 
clean and noisy HSIs. The results reported with 
this technique are outstanding when compared 
with traditional methods, although its validation 
was carried out partly with simulated data. Fan et 
al. (2019), proposed a method based on bilinear 
low-range matrix factorization (BLRMF), where 
the binuclear quasi-standard is used to restrict 
low-range characteristics, which are supposed 
to contain the noisy signals in HSI. Based on the 
area covered by Fan et al. (2019), Chen et al. (2020) 
proposed a technique based on bilinear factoriza-
tion regularized by total variation and conducted 
numerical experiments with 5 different types of 
mixed noise scenarios and 1 with real data.

The state of the art reports a wide variety of 
techniques and approaches to solving the 
problem of noise detection and removal in 
HIS. However, to the best of our knowledge, an 
approach purely based on the discrete wavelet 
transform has not been explored in sufficient 
detail. For this reason and considering the im-
portance of this problem in HSI, this paper pres-
ents the study, comparison and implementation 
of three algorithms (Hard Thresholding, Soft 
Thresholding and Neigh-Shrink), based on the 
discrete wavelet transform. These algorithms 
were tested with a bank of 180 hyperspectral 
images acquired from mango samples (leaves) 
that were subjected to phytopathological stud-
ies for the detection of anthracnose in mango. 
As a result, it was found that the techniques ex-
posed present a good performance in terms of 
spectral denoising. The Neigh-Shrink technique 
obtained the best performance.

The remainder of this article has the following 
structure. Section 2 details the materials used 
as input for the development of this work and 
the methods of denoising in the HSIs studied. In 
section 3, the results obtained in each test are 
presented and discussed in terms of the spatial 
and spectral components since the images are 
susceptible to the presence of noise in both 
components. Finally, section 4 outlines the main 
conclusions.
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2. 	 Methods

2.1 	 Samples and image capture system

For the development of the study, mango leaves 
(Mangifera Indica L. ) of the Tommy Atkins and 
Keitt varieties were used from a producing farm 
located in Anapoima, Colombia (4°35’21.4” N 
74°31’07.6” W). From this crop, 45 mature leaves 
were pre-selected per variety from the middle 
third of trees with an average life of 4 years. 
From these groups of leaves, 15 of them were 
selected per variety, for a total of 30 leaves used 
in the study.

The vision system used for capturing hyper-
spectral images corresponds to a Hyspex VNIR-

1600 pushbroom sensor (Hyspex by Neo, Norsk 
Elektro Optikk,Norway), with spectral resolution 
of 3.629383 nm, 1600 spatial pixels and range 
of 400-1000 nm, obtaining 160 spectral bands 
per scan. The images were taken in a controlled 
environment. The hyperspectral sensor was 
placed on the leaf at a distance of 30cm, which 
was illuminated with a halogen light source VNIR 
of 150W at 45 ° on the plane where the sample 
to be photographed is located.

Each leaf was placed on a black background, 
with a calibration panel and a label located 
at the top of the scene to identify the sample 
photographed. Figure 1 presents an RGB image 
extracted from the hyperspectral image showing 
the disposition of the sample.

Figure 1. Hyperspectral image in RGB of a mango sample with identification label and calibration panel on top.

Each group composed of 5 samples was pho-
tographed daily from 24 to 29 November 2019. 
Therefore, 6 hyperspectral images were obtained 
per sample for each variety of mango, resulting 
in a bank of 180 images to be processed (90 per 
variety). Finally, each image had a dimension of 
1600x3800x160 (width, height, spectra) encoded 
in 2 bytes per pixel.

2.2 	 Denoising methods

The problem of additive denoising in im-
ages (standard, monochromatic, hyperspectral, 
among others), can be addressed with the as-
sumption that an X image can be decomposed 
into:

    (1),

Where S represents the matrix with the image 
signal and Σ represents the noise in the image. 
Both matrices kept the same dimension. In the 
case of a monochromatic image matrix, S and Σ 
would have dimensions (I1, I2), while in the case of 
RGB images there would be matrices with dimen-
sions (I1, I2, 3). This behavior can be extrapolated 
to larger images (as in the case of hyperspectral 
images), where images would have dimensions 
(I1, I2, I3), being I1 and I2 the spatial dimensions and 
I3 the spectral dimension.

However, within dimension I3, which in this study 
corresponds to the spectral dimension and has a 
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value of 160, there are bands that usually contain 
a high signal-to-noise ratio (SNR) and others that, 
on the contrary, have a low SNR and are highly 
noisy, hence, they are discarded from the dataset 
to be analyzed. These highly noisy bands are 
known as junk bands (Heylen et al., 2011), and 
lead directly to the total loss of the information 
contained in them, which means a loss of the 
captured data. With this intrinsic noise problem, 
there is a risk that the proposed spectral study be 
biased since it does not have all the data initially 
captured. Therefore, a method that allows the 
detection and reduction of noise in images is a 
necessary step in hyperspectral analysis.

In this context, this paper implements a denois-
ing technique based on the discrete wavelet 
transform, an approach commonly used in the 
analysis of signals and computer vision, but 
scarcely applied to hyperspectral analysis.

Identification of noisy bands

As the spatial and spectral resolution of hyper-
spectral images (HSI), decreases and the num-
ber of bands that such an image can contain 
increases, the correlation between adjacent 
bands increases too (Zelinski & Goyal, 2014). This 
correlation applies not only to the signal itself 
but also to the noise of the image, which can 
be highly correlated between adjacent bands 
(Farzam & Baheshti, 2011). In HSI, this spectral 
correlation is usually much stronger than the 
spatial correlation in standard images. The rea-
son is that the same pixel represents the same 
object along different bands, while an adjacent 
pixel at the spatial level can represent another 
object that is not necessarily correlated to the 
analyzed pixel. For example, Figure 1 shows a 
leaf where an adjacent pixel in the spatial com-
ponent can correspond to the background of 
the scene, while a pixel on the leaf is composed 
of the different spectral bands that comprise the 
hyperspectral image.

To measure the spectral correlation between 
two bands, at the numerical level, the linear 

correlation coefficient or Pearson’s coefficient 
was defined as:

   (2),

Where i and j are two different bands of the 
hyperspectral image. To define the appropriate 
correlation level in a neighborhood surrounding 
a band i, the number B of adjacent bands was 
defined, in which the Pearson coefficient con-
tains the information provided by the B bands 
adjacent to band i. If the correlation coefficient is 
less than a threshold t, the band is said to have no 
correlation with the surrounding bands and will 
therefore be a highly noisy band (or junk band). 
For calculating Pearson coefficient, Karami et al. 
(2014), suggest that the t-value should be 0.9, 
while the value of B is set in 7.

Discrete wavelet transform in 2D

The discrete wavelet transform outputs are two 
sets of data: one set gives information about 
the low frequencies (L), while the second one 
about the high frequencies (H) of the signal. 
Generally, the vast majority of the information 
that describes the signal is immersed in the low 
frequency L data.

The algorithm of the 2D discrete wavelet 
transform separates the image into rows and 
columns. In the first step, the transform is ap-
plied to all rows (horizontal transform), thus 
obtaining 2 initial sets, L and H. Each of these 
sets is half its original size. Subsequently, the 
procedure is repeated in the columns of the two 
images resulting from the previous step. From 
these images, a set L and H is also obtained, that 
is, there will be 4 sets: LL, LH, HL, HH. Each of 
them will be a quarter of the size of the original 
image. This process is repeated until the desired 
resolution is obtained. The resulting matrix has 
the form shown in Figure 2. 
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Figure 2. Structure of the data resulting from the 2D discrete wavelet transform.

Each level of transformation has bands of coef-
ficients with high frequency components in the 
set H. These coefficients are usually filtered with 
different techniques, since they usually preserve 
a greater part of the noise components of the 
signal (Chen et al., 2005). In this study, three filter-
ing methods of high frequency coefficients (Hard 
Thresholding, Soft Thresholding and Neigh-
Shrink) were analyzed, with the aim to obtain the 
best reconstruction of the hyperspectral cube 
without the spectral and spatial noise captured 
in the collecting phase of hyperspectral images 
on mango samples.

Method of filtering for high frequency coefficients

There are several methodologies to perform the 
filtering of high frequency coefficients. However, 

three main methods are usually used as the basis 
for denoising: Hard Thresholding, Soft threshold-
ing and Neigh Shrink algorithm. 

Hard Thresholding filtering method. The Hard 
Thresholding method has a working principle 
similar to that of the binary thresholding func-
tion: any value below a certain threshold will 
be taken as the zero value, while the others will 
be kept unchanged. Mathematically, the Hard 
Thresholding operator is defined as:

  (3),

Where λ is the chosen threshold value and w is 
the value of the matrix of high frequency coef-
ficients. The function of Hard Thresholding is 
illustrated in Figure 3(a).
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Figure 3. Graph of the filtering function.

Soft Thresholding filtering method. This method 
works similarly to Hard Thresholding with the 
difference that greater values than the threshold 
are recalculated by subtracting the threshold 
value. On the other hand, values below the 
threshold are equal to zero, as proposed by the 
Hard Thresholding method. Mathematically, the 
Soft Thresholding operator is defined as:

  (4),

Where λ is the chosen threshold value, sgn is the 
sign function, and w is the value of the matrix of 
high frequency coefficients. Figure 3(b) shows 
the graphical behavior of the Soft Thresholding 
function.

Neigh-Shrink filtering method. The Neigh-Shrink 
method aims to estimate a value of high fre-
quency coefficients without noise, defined as:

   (5),

Where  is the estimated value of the coeffi-
cient without noise, wij is the initial value of the 
coefficient and βij is an estimation coefficient 
defined as:

   (6),

Where the + sign indicates that the value of β will 
only be taken into account if it is positive, and it 
will be equal to zero if it is negative. The term λ 
is the value of the threshold,   is the sum of 
squares of the values contained in a window 
defined around the wij value. This window must 
be of size I×I, where I is an odd number and the 
value wij to be used must be placed in its center. 
This operation can be observed in Figure 4. 
Mathematically,  is defined as:

  (7).
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Figure 4. Window Bij from which the values for  are taken.

Selecting the threshold value. The common ele-
ment of the three methods described above is 
the threshold value λ. The Universal Threshold 
has been defined as: 

  (8),

Where  is the value of the noise in the signal 
and N is the size of the signal. Finally, when there 
is no a priori notion of the value of , since there 
are no conditions of controlled experimentation, 
an estimated value  can be defined as:

  (9),

Where ws refers to the values belonging to the 
sub-band HH, HL or LH to be treated. By de-
fining the thresholding value, it is possible to 
implement and analyze the denoising methods 
discussed in this work.

3. 	 Results and discussion

Laboratory hyperspectral images, acquired under 
controlled conditions, present low noise levels 
in the captured scene (Figure 1). To magnify the 

presence of noisy bands and facilitate denoising 
through the wavelet transform, a gaussian noise 
addition stage was executed, with levels of σ=10, 
20, 30, 40 and 50 and taking into account that the 
maximum grey scale of the image per spectral 
band is 255. With the above conditions, the aim 
is to adequately compare the performance of the 
techniques presented in section 2.2, and define the 
best denoising scheme for hyperspectral images.

Each of the methods was tested with different it-
erations of decomposition (1, 2, 3 and 4 iterations) 
using the discrete wavelet transform. The selec-
tion of these values corresponds to previous tests 
indicating that more than 4 iterations produced 
no significant improvement in the denoising of 
the image. Figure 2 illustrates the decomposition 
performed by the transform at each iteration.

As a criterion for measuring the quality of the 
filtering, Peak Signal-to-Noise Ratio (PSNR) was 
used for denoising in the spatial component. This 
metric is commonly used in this field since it rep-
resents the relationship between the maximum 
power of the image and the noise that affects it. 
Regarding the spectral denoising component, 
SNR was used as a metric, since no signals without 
noise (or with a low level of noise), are required to 
quantify it, in contrast to the spatial component.
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Finally, the three denoising methods based on 
the discrete wavelet transform (Hard Threshold-
ing, Soft Thresholding and Neigh-Shrink) were 
tested in the bank of 180 hyperspectral images. 
This means that each algorithm processed 
28,800 monochromatic images resulting from 
the decomposition of each hyperspectral image 
into the 160 spectral bands.

3.1 	 Denoising in the spatial component

With Hard Thresholding, it was found that when 
the noise is low, with σ = 10, the best result is 
obtained with 1 iteration of the transform (Table 
1). Although the result is numerically better than 
in the cases of 2, 3 and 4 iterations, the improve-
ment with respect to the worst case (4 iterations) 
is barely 2.5% (Table 1).

Table 1. PSNR for different levels of decomposition and noise using Hard Thresholding.

п PSNR (dB)
1 iteration

PSNR (dB)
2 iterations

PSNR (dB)
3 iterations

PSNR (dB)
4 iterations

10 30.65 30.34 30.02 29.90

20 26.40 27.18 26.90 26.74

30 23.71 25.39 25.33 25.14

40 21.57 24.06 24.24 24.01

50 19.82 23.00 23.44 23.24

When the noise level increases with σ ≥ 20, a 
single iteration with the transform is no longer 
enough to obtain good results. This trend be-
comes apparent in Figure 5, where the PSNR 
values decay as the noise in the image increases. 

PSNR values are more pronounced when the 
method performs 1 iteration (blue line); while 
for 2, 3 and 4 iterations the results are relatively 
better and quite similar to each other, since they 
manage to maintain better levels of PSNR.

Figure 5. PSNR levels with the Hard Thresholding method.
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In the case of the Soft Thresholding method, 
the results showed similarity to those from Hard 
Thresholding: 1 iteration yields better results 
only when the noise level is low, however, when 
the noise level increases, it is also necessary to 
increase the number of iterations in order to 
obtain good results (Table 2). In this case, similar 
trends are also obtained for 2, 3 and 4 iterations, 

although the difference between the lines that 
describe their results (Figure 6) do not converge 
in the same way as in Figure 5. As an advantage 
over Hard Thresholding, this behavior allows dif-
ferentiating the appropriate number of iterations 
for the transform and the method for different 
noise levels. 

Table 2. PSNR for different levels of decomposition and noise using Soft Thresholding.

п PSNR (dB)
1 iteration

PSNR (dB)
2 iterations

PSNR (dB)
3 iterations

PSNR (dB)
4 iterations

10  29.87 28.52 27.64 27.29
20 26.37 26.21 25.23 24.71
30 23.71 24.84 23.96 23.33
40 21.57 23.81 23.23 22.49
50 19.82 22.92 22.65 21.89

Figure 6. PSNR levels with the Soft Thresholding method.

Finally, the trend observed in Figures 5 and 6 
with the two previous filters changed with the 
Neigh-Shrink method. The data obtained for 
this technique are shown in Table 3 and Figure 
7. With 1 iteration, the PSNR decreases rapidly 
as the noise level increases, which indicates low 
robustness against external noise. But with 2 
and 3 iterations this method proved to have 
better performance with low noises (σ =10) and 

a remarkable performance in the presence of 
noise levels σ ≥ 20, since the PSNR level does not 
decrease drastically as in the case of 1 iteration. 
Additionally, with this technique PSNR levels de-
cline with 4 iterations, thus demonstrating that 
no more than 3 iterations are needed to obtain 
the best results, in terms of detection and reduc-
tion of noise in a hyperspectral image.
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Table 3. PSNR for different levels of decomposition and noise using Neigh-Shrink.

п PSNR (dB)
1 iteration

PSNR (dB)
2 iterations

PSNR (dB)
3 iterations

PSNR (dB)
4 iterations

10  31.96 32.84 32.43 31.24
20 26.88 28.73 28.94 28.13
30 23.82 26.47 26.98 26.73
40 21.60 24.88 25.79 25.67
50 19.83 23.58 24.82 24.83

Figure 7. PSNR levels with Neigh-Shrink using different iterations.

An overview of the results indicates that a greater 
the number of decompositions (such as those 
shown in Figure 3), produces better results and 
higher PSNR values. However, a more detailed 
analysis of the data contained in Tables 1, 2 and 3 
indicates that the best results for each filter were 
obtained with 2 and 3 iterations. The only case that 
differs from this behavior is with the Neigh-Shrink 
filter for σ=50, however, the improvement of the 
PSNR obtained with 4 iterations represents only 
0.3% compared with 3 iterations. Consequently, it 
is inferred that improvement in the noise filtering 
quality with the discrete wavelet transform is not 
directly proportional to the number of iterations. 
A very high number of iterations could even force 
the algorithm to perform unnecessary filtering 

and there would be a significant waste of informa-
tion, which is relevant in the case of hyperspectral 
images as it is directly related to the reflectance 
level of the sensed objects.

Based on the above and on the performance 
comparison of the filters (Tables 1, 2 and 3), 
it was observed that the highest PSNR levels 
were obtained with the Neigh-Shrink method, 
followed by Hard Thresholding and Soft Thresh-
olding. Moreover, considering that the presence 
of noise in hyperspectral images acquired under 
laboratory conditions is low but significant, the 
configuration of the Neigh-Shrink method with 
σ=10 showed promising results as it resembles 
the noise originally contained in this type of im-
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ages. Finally, the Neigh-Shrink method should 
be configured to work with 3 iterations for noise 
treatment in hyperspectral images.

3.2 	 Denoising in the spectral component

To identify the presence of noise in a spectral 
signature, it is necessary to take into account the 
high correlation between adjacent wavelengths 

However, after the identification of noisy bands, 
it was found that this threshold was not able 
to detect bands that could contain noise. An 
explanation for this phenomenon, lies in the 
foregoing fact of the high correlation between 
bands that hinders the sensor from capturing 
the reflectance changes between one band and 
another, even though the sensor is designed to 
do so. Another possible explanation is the pres-
ence of spectral noise that induces distortion 
of two or more adjacent spectral bands in their 
real reflectance level. For this reason, it is neces-
sary to find the appropriate level of correlation 

between bands, to detect which of them may 
be subjected to a noise that must be eliminated.

Due to the consequences that the presence of 
noise in the spectrum can cause, the level of 
correlation between neighboring bands was 
gradually increased to 0.99. It was found that 
until this value (0.99) it is possible to detect bands 
that were classified as noisy. In particular, the 
wavelengths found were: 417.56, 421.19, 969.22, 
980.11, 983.74, 987.37, 991.00, 994.63, which are 
particularly located at the ends of the spectrum 
(Figure 9a). This finding is explained by the noise 

(bands). Figure 8 shows the correlation of the 
160 bands of an acquired hyperspectral image. 
It is worth noting that the main diagonal, which 
is colored in yellow and ideally should be a line, 
is represented with greater thickness than that 
of a line, which allows assuming the correlation 
level that between adjacent bands is greater than 
0.95. This value was used as the initial parameter 
for the identification of noisy bands in the hyper-
spectral images acquired for this study.

Figure 8. Correlation matrix for the 160 bands of a hyperspectral image.



612
Rev.Investig.Desarro.Innov. Vol. 11, No. 3, julio-diciembre de 2021, 601-616. ISSN: 2027-8306

Reducción de ruido espectral en imágenes hiperespectrales mediante la transformada wavelet discreta

induced by the sensor when capturing the spec-
tral data. According to Hyspex, the manufacturer 
of this sensor, the efficiency curve in the capture 
of spectral data is affected at the ends, that cor-
respond to the moments of start and ending 
of capture of the sensor. Additionally, electrical 
factors, such as voltage fluctuations affecting 
both the sensor and the computer equipment 
or lighting source, can induce alterations (noise) 
in the recorded data.

Although the ends of any special signature are 
generally eliminated in spectrum analyses, each 
spectrum, each band and each datum, counts 
when exploratory scientific studies are per-
formed, e.g. spectral characterization of diseases 
in plant material. Therefore, the correction of 
these alterations (noise) is achieved using the dis-
crete wavelet transform, which allows considering 

the entire spectrum in each hyperspectral image. 
Figure 9 shows a comparison of an uncorrected 
spectral signature (Figure 9a) with respect to the 
corrections made by the 3 methods studied (Fig-
ures 9b, c, d). In the original signature, the ends 
present alterations (or noise), which correspond 
to the noisy bands found, whereas the signatures 
filtered by each of the methods manage to reduce 
the amplitude of these alterations, thus achiev-
ing a better quality in the spectral signatures 
obtained. Although there are some remaining 
peaks, they are small compared with those in the 
original image and may correspond to specific 
spectral characteristics of the leaf, so aggressive 
denoising could eliminate these alterations that 
can be valuable in hyperspectral studies. These 
findings validate the selection of the number of 
iterations of the applied transform.

Figure 9. Spectral signature of a pixel in the hyperspectral image of a leaf (a) before and 
after (b) Hard Thersholding, (c) Soft Thersholding and (d) Neigh-Shrink filters.

At the quantitative level, when the SNR of each 
band was calculated, the results obtained (Figure 
10) were conclusive and validate the above find-
ings. The SNR of the original bands reaches 74.04 
at its highest point (Figure 10a) and is located in 
the middle zone of the spectrum (bands with less 
noise), while at the ends it decreases consider-
ably, which is plausible since these areas showed 
greater presence of noise in the spectral signature. 
Besides, when the three denoising filters are ap-

plied, the SNR increases considerably in all cases 
(Figures 10b, c, d), thus reaching the scale of 1011. 
With these filtering methods, it is also observed 
that the intermediate bands have a lower SNR 
with respect to the ends. This is consistent with 
the fact that these areas of the spectrum will un-
dergo more corrections by the filters since they 
have a higher level of noise, which causes them 
to have a higher SNR after filtering.
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Figure 10. SNR of the hyperspectral image acquired through the different spectral bands: (a) original 
image, (b) Hard Thresholding, (c) Soft Thresholding, and (d) Neigh-Shrink methods.

While the SNR value may seem high at the ends, 
it is necessary to consider that this value is in-
versely proportional to the estimated σ of noise 
in each band. In Figure 11, it is evidenced that the 
noise along the bands decreased considerably: it 
goes from noise at a scale of 10−2 in the original 
image, to a scale of 10−11 in the cases of filtering 
with Hard and Soft Thresholding, and 10−5 in the 
Neigh-Shrink method.

Finally, it is worth noting the effect of filtering 
directly on the shape of the graphs of σ through 
the bands (Figure 11). On the one hand, since the 

Hard and Soft Thresholding methods perform 
thresholding, this causes the presence of several 
peaks in their respective graphs, which affects 
their results. On the other hand, the Neigh-Shrink 
method does not perform thresholding directly, 
hence it achieves a much smoother filtering 
effect and allows denoising to be closer to the 
reality of the noise found in the captured hy-
perspectral images. In addition, Figure 11 shows 
that the bands of the ends are more altered by 
the filters when reducing noise, since they have 
a much lower estimated σ than the bands of the 
central area of the spectrum captured.

Figure 11. Estimated σ value of noise for the different band: (a) original hyperspectral image, 
(b) Hard Thresholding, (c) Soft Thresholding and (d) Neigh-Shrink methods.
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4. 	 Conclusions

The three methods studied for the detection 
and reduction of noise based on the discrete 
wavelet transform (Hard Thresholding, Soft 
Thresholding and Neigh-Shrink), achieved a 
reduction of the noise present in the spectral 
axis when applied in the spatial dimension of 
each band of the hyperspectral image. It was 
found that the ideal configuration of iterations 
for this transform in hyperspectral images is 
between 2 and 3 iterations. Performing more 
iterations can induce over-tuning in the algo-
rithm, in addition to adding unnecessary extra 
computational load.

The Neigh-Shrink method performs better than 
the Hard Thresholding and Soft Thresholding 
algorithms, as it is more consistent and robust in 
noise filtering compared with its counterparts. In 
the spectral axis, the Neigh-Shrink algorithm also 
has the advantage of the smoothing performed 
on the data, which makes it less aggressive in the 
filtering process.
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