Development and testing of a novel steel formwork for casting concrete slabs with different sizes

Main Article Content

Autores

Julián Carrillo http://orcid.org/0000-0002-8274-5414
Felipe A. Riveros
Luis E. Llano

Abstract

This paper describes and discusses the results of designing and implementing a steel formwork for casting and testing concrete slab specimens with different sizes. The formwork saves space, materials and costs due to the different configurations it may adopt, which allow, for instance, casting slabs with different sizes. The formwork avoids purchasing a greater number of formworks of particular dimensions, which increases costs and the space needed for storage. The formwork performance was assessed through the analysis of numerical results (strain and stress) obtained from simulations using finite element software. Performance was also verified during construction and testing of concrete slab specimens, reinforced with welded-wire meshes or steel fibers. The novel steel formwork herein presented and discussed is currently a patent pending in the Colombian Office of Industry and Commerce.

Keywords:

Article Details

Licence

The journal authorizes the total or partial reproduction of the published article, as long as the source, including the name of the Journal, author(s), year, volume, issue, and pages are cited.

The ideas and assertions expressed by the authors are their solely responsibility and do not represent the views and opinions of the Journal or its editors.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors  keep copyright, however, once the work in the Journal has been published, the authors must always allude to it.

The Journal allows and invites authors to publish their work in repositories or on their website after the presentation of the number in which the work is published with the aim of generating greater dissemination of the work.

References

M. Ruíz, B. Blachowsky, and B. Spencer, “Use of wireless sensors for assessing modal parameters,” in XVIII National Conference of Structural Engineering, Mexican Society of Structural Engineering - SMIE, Acapulco, Guerrero-Mexico, 2012.

K. Hossain, S. Gurbani, and M. Anwar, “Performance evaluation of engineered Newark concrete forming tubes for construction,” Technical Report, Ryerson University, 2013, 51 pp.

ASTM, “Standard practice for making and curing concrete test specimens in the laboratory, ASTM C-192,” American Society for Testing Materials, 2016, 8 pp.

ASTM, “Standard specification for molds for forming concrete tests cylinders vertically, ASTM C-470,” American Society for Testing Materials, 2015, 5 pp.

ICONTEC, “Test method for energy absorption capacity of fiber reinforced concrete: NTC 5721,” Instituto Colombiano de Normas Técnicas, 2009.

EFNARC, “Testing sprayed concrete - Part 5: Determination of energy absorption capacity of fiber reinforced slab specimens: EN-14488-5,” European Federation for specialist construction chemicals and concrete systems, 2000.

ICONTEC, “Elaboración y curado de especímenes de concreto en obra: NTC 550,” Instituto Colombiano de Normas Técnicas, 2000.

ASTM, “Standard specification for carbon structural steel: ASTM A-36,” American Society for Testing Materials, 2014, 4 pp.

J. Carrillo, F. Riveros, and L. Llano, “Molde configurable para elementos de sección transversal cuadrada,” (en proceso de patente, Superintendencia de Industria y Comercio de Colombia, SIC), 2017.

ACI Committee 318, “Building code requirements for structural concrete and commentary (ACI 318-14),” American Concrete Institute, Farmington Hills, MI, 2014.

J. Carrillo, and D. Silva, “Flexural tests of concrete slabs-on-ground reinforced with steel fibers,” Revista Ingeniería, Investigación y Tecnología, vol. 17 (3), pp. 317-330, Jul. 2016. DOI: http://doi.org/10.1016/j.riit.2016.07.003.

J. Carrillo, F. Riveros, and L. Llano, “Dispositivo para sujeción de múltiples transductores de desplazamiento en ensayos de losas de concreto,” Revista Ingeniería Mecánica: Tecnología y Desarrollo, vol. 6 (2), pp. 113-319, 2015.

J. Carrillo, D. Silva, and M. Sánchez, “Performance of concrete slabs-on-ground reinforced with welded-wire mesh or steel fibers,” Revista Ingeniería, Investigación y Tecnología, vol. 17 (4), pp. 499-510, 2016. DOI: http://doi.org/10.1016/j.riit.2016.11.009.

Downloads

Download data is not yet available.