Arquitectura reconfigurable basada en redes de difracción de Bragg para redes convergentes indoor ópticas

Contenido principal del artículo

Autores

Gustavo Adolfo Puerto-Leguizamón
Wilson Ricardo López-Sánchez
Carlos Arturo Suárez-Fajardo

Resumen

Este artículo presenta una propuesta para la implementación de reconfiguración dinámica de canales ópticos en futuras arquitecturas de red tipo indoor. La propuesta se basa en las características de sintonización y perfil de rechazo de Redes de Difracción de Bragg (FBG) para implementar estrategias de distribución de servicios de tipo Unicast, Broadcast y Multicast a usuarios en redes indoor tipo campus. La demostración experimental, que incluye dos diferentes implementaciones, muestra resultados con un 1% en promedio de degradación en la magnitud del vector de error (EVM) para los servicios inalámbricos y penalizaciones de potencia de hasta 2,2 dB de penalización para una tasa de error de bit (BER) de 1x10-12 para los servicios fijos.

Palabras clave:

Detalles del artículo

Licencia

Los autores deben firmar y enviar la Autorización de evaluación y publicación del artículo suministrada por la Revista, en la cual se consignan todos los aspectos involucrados a los Derechos de Autor.

Todos los artículos de la Revista Ingeniería Investigación y Desarrollo son difundidos bajo la licencia Creative Commons de Atribución (BY).

Declaración de privacidad

Los nombres y direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.

Referencias

[1] Abraha, S.T., Tran, N.C., Okonkwo, C.M., Chen, H.-S., Tangdiongga, E., Koonen, A. M. J. (2011). Service multicasting by all-optical routing of 1 Gb/s IR-UWB for in-building networks. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference.
DOI: http://dx.doi.org/10.1364/nfoec.2011.jwa068

[2] ETSI. (2016). Digital Video Broadcasting (DVB), Implementation guidelines for the use of Video and Audio Coding in Contribution and Primary Distribution Applications based on the MPEG-2 Transport Stream. ETSI TS 102 154, 2004 [Consulted 15 April 2016]. Available http://www.etsi.org/deliver/etsi_ts/102100_102199/102154/01.02.01_60/ts_102154v010201p.pdf

[3] Erdogan, T. (1997). Fiber grating spectra. J. Lightwave Technol. 15(8), pp. 1277-1294. DOI: 10.1109/50.618322.
DOI: http://dx.doi.org/10.1109/50.618322

[4] Hanatani, S. (2013). Overview of global FTTH market and state-of-the-art technologies. 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS).

[5] Harbaoui, M., Martini, B., Castoldi, P. (2013). Dynamic network resource allocation for inter-data centers communications. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference.

[6] Hill, K.O, Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15(8). pp. 1263-1276. DOI. 0733-8724(97)05932-X.
DOI: http://dx.doi.org/10.1109/50.618320

[7] Jiang, M., Zhihui, Yang., Athale, A. (2008). A Model-Based Approach to Implementing Real-Time Mobile Services. 32nd Annual IEEE International Computer Software and Applications.
DOI: http://dx.doi.org/10.1109/compsac.2008.125

[8] Koonen, A. M. J., Pizzinat, A., Tangdiongga, E., Guignard, P., Jung, H. D., Boom, H.P.A. (2009). In-building optical network architectures for converged services delivery. 14th European Conference on Networks and Optical Communications/4th Conference on Optical Cabling and Infrastructure (NOC/OC&I).

[9] Koonen, A. M. J., Tran, N.C., Tangdiongga, E. (2011). The merits of reconfigurability in WDM-TDM optical in-building networks. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference.
DOI: http://dx.doi.org/10.1364/nfoec.2011.jwa063

[10] Koonen, A. M. J., Van den Boom, H. P. A., Martinez, E. O., Guignard, P., Tangdiongga, E. (2011). Cost optimization of optical in-building networks. 37th European Conference and Exhibition on Optical Communication (ECOC).
DOI: http://dx.doi.org/10.1364/ECOC.2011.We.10.P1.114

[11] Nguyen-Cac, Tran., Hyun-Do, J., Okonkwo, C., Tangdiongga, E., Koonen, T. (2012). Dynamically Delivering Radio Signals by the Active Routing Optical Access Network. IEEE Photonics Technology Letters, 24(3). pp. 182-184. DOI. 10.1109/LPT.2011.2175910.
DOI: http://dx.doi.org/10.1109/LPT.2011.2175910.

[12] Olabarriaga, S. D., Glatard, T., de Boer, P.T. (2010). A Virtual Laboratory for Medical Image Analysis. IEEE Transactions on Information Technology in Biomedicine. 14(4). pp. 979-985. DOI:
http://dx.doi.org/10.1109/TITB.2010.2046742.

[13] Politi, C., Anagnostopoulos, V., Matrakidis, C., Stavdas, (2012). A. Routing in dynamic future flexi-grid optical networks. 16th International Conference on Optical Network Design and Modeling (ONDM). DOI: http://dx.doi.org/10.1109/ondm.2012.6210199

[14] Puerto, G., Mora, J., Ortega, B.; Capmany, J., Grassi, F. (2010). Fiber Bragg Grating-based architectures for reconfigurable services in in-building networks. Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS).
DOI: http://dx.doi.org/10.1364/CLEO_APPS.2010.ATuA3

[15] Yang, H., Shi, Y., Okonkwo, C.M., Tangdiongga, E., Koonen, A. M. J. (2010). Dynamic capacity allocation in radio-over-fiber links. IEEE Topical Meeting on Microwave Photonics (MWP).
DOI: http://dx.doi.org/10.1109/mwp.2010.5664150

[16] Zou, S., Okonkwo, C.M., Cao, Z., Tran, N.C., Tangdiongga, E., Koonen, A.M.J. (2012). Dynamic optical routing and simultaneous generation of millimeter-wave signals for in-building access network. Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference
DOI: http://dx.doi.org/10.1364/ofc.2012.oth3g.6

Descargas

La descarga de datos todavía no está disponible.