Polymeric Ablative Composite Materials and their Application in the Manufacture of Aerospace Propulsion Components

Main Article Content


Rafael Robayo-Salazar, Ph. D. https://orcid.org/0000-0003-1687-2885
Julián Portocarrero-Hermann
Ubaldo Díaz-Padrón
Oscar Patiño-Castrillón


The development of thermal protection systems and high-temperature composite materials for the manufacture of low-weight propulsion components represents a major challenge for the aerospace industry, especially in the field of rocketry. The rocket combustion chamber and nozzles must be designed to withstand operating temperatures above 1600-2000 ° C in a severe ablative environment. This research focuses on obtaining a characterization of ablative composite materials based on a polyester resin matrix (30%) reinforced with particulate materials (fillers) (67%) and short glass fibers (3%), highlighting that the fillers correspond to industrial waste or by-products such as steel slag, aluminum slag, foundry slag and ceramic waste. The composites were physically and mechanically characterized and subjected to an ablative direct flame test (~1600-2000 °C, 120 seconds), reporting thermal insulation levels between 72.6-92.9%, with maximum temperatures on the opposite side of the flame between 141.6-548.8 ° C, and post-ablative weight losses of between 8.5-13.2%. Based on the obtained results, the optimal composites were selected and their application was validated in the manufacture of rocket-type nozzle propulsion components, which were subjected to a real static combustion test, using a solid propellant Candy KNSu type (65 % KNO3-35% Sucrose). The results proved the possibility of obtaining ablative composites and thermal protection systems from available materials and high contents of industrial by-products. These applications are considered important to develop the Colombian aerospace field in the construction of sounding rockets for scientific, technological, and military purposes.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


[1] S. Tang and C. Hu, “Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review,” Journal of Materials Science & Technology, vol. 33 (2), pp. 117-130, Feb. 2017. https://doi.org/10.1016/j.jmst.2016.08.004

[2] L. Mohan Kumar, K. M. Usha, E. N. Anandapadmanabhan, and P. Chakravarthy, “Effect of fibre orientation on the properties and functional performance of ablative materials for solid rocket motors,” Transactions of the Indian Institute of Metals, vol. 70, pp. 2407-2413, 2017. https://doi.org/10.1007/s12666-017-1102-1

[3] M. Natali, J. M. Kenny, and L. Torre, “Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices : A review,” Progress in Materials Science, vol. 84, pp. 192-275, 2016. https://doi.org/10.1016/j.pmatsci.2016.08.003

[4] P. J. Astola, M. A. Rodríguez, F. J. Botana, and L. González-Rovira, “Caracterización de elementos de protección térmica de materiales compuestos mediante análisis térmicos,” Revista de la Asociación Española de Matereriales Compuestos, vol. 2 (4), pp. 34-41, 2017.

[5] G. Pulci, L. Paglia, V. Genova, C. Bartuli, T. Valente, and F. Marra, “Low density ablative materials modified by nanoparticles addition: Manufacturing and characterization,” Composites Part A: Applied Science and Manufacturing, vol. 109, pp. 330-337, 2018. https://doi.org/10.1016/j.compositesa.2018.03.025

[6] E. S. Rodríguez, “Desarrollo de materiales compuestos avanzados basados en fibras de carbono para la industria aeroespacial,” Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales de Buenos Aires, vol. 64, pp. 87-92, 2012.

[7] G. P. Suton, and O. Biblarz, Rocket Propulsion Elements, 8th Edi. New Jersey: John Wiley & Sons, 2010.

[8] M. L. Aranzazu Rios, V. P. Muñoz Cárdenas, M. J. Giraldo, Cárdenas, G. H. Gaviria, and F. A. González Rojas, “Modelos cinéticos de degradación térmica de polímeros: una revision,” Revista Ingenierías Universidad de Medellín, vol. 12 (23), pp. 113-130, 2013. https://doi.org/10.22395/rium.v12n23a9

[9] A. Harpale, S. Sawant, R. Kumar, D. Levin, and H. B. Chew, “Ablative thermal protection systems: Pyrolysis modeling by scale-bridging molecular dynamics,” Carbon, vol. 130, pp. 315-324, Apr. 2018. https://doi.org/10.1016/j.carbon.2017.12.099

[10] A. Krzyzak, W. Kucharczyk, J. Gaska, and R. Szczepaniak, “Ablative test of composites with epoxy resin and expanded perlite,” Composite Structructures, vol. 202, pp. 978-987, 2018. https://doi.org/10.1016/j.compstruct.2018.05.018

[11] L. Asaro, L. B. Manfredi, S. Pellice, R. Procaccini, and E. S. Rodriguez, “Innovative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles,” Polymer Degradation and Stability, vol. 144, pp. 7-16, 2017. https://doi.org/10.1016/j.polymdegradstab.2017.07.023

[12] D. Quiñonez, Y. Lizcano, C. Vaquez, J. Maldonado, and J. Portocarrero, “Construcción y evaluación de una tobera a escala menor basada en material compuesto para cohetes de órbita baja,” Revista Inge@UAN, vol. 2 (4), pp. 13-21, 2012.

[13] W. Kucharczyk, D. Dusiński, W. Żurowski, and R. Gumiński, “Effect of composition on ablative properties of epoxy composites modified with expanded perlite,” Composite Structures, vol. 183, pp. 654-662, 2018. https://doi.org/10.1016/j.compstruct.2017.08.047

[14] A. Turchi, D. Bianchi, F. Nasuti, and M. Onofri, “A numerical approach for the study of the gas–surface interaction in carbon–phenolic solid rocket nozzles,” Aerospace Science and Technology, vol. 27 (1), pp. 25-31, Jun. 2013. https://doi.org/10.1016/j.ast.2012.06.003

[15] L. Torre, J. M. Kenny, G. Boghetich, and A. Maffezzoli, “Degradation Behaviour of a Composite Material for Thermal Protection Systems. Part III Char Characterization,” Journal of Materials Science, vol. 35, pp. 4563-4566, 2000. https://doi.org/10.1023/A:1004828923152

[16] V. Ramanjaneyulu, V. Balakrishna Murthy, R. Chandra Mohan, and C. Naga Raju, “Analysis of Composite Rocket Motor Case using Finite Element Method,” Materials Today Proceedins, vol. 5 (2), pp. 4920-4929, Jan. 2018. https://doi.org/10.1016/j.matpr.2017.12.069

[17] J. Maldonado Villa, J. Portocarrero Hermann, C. Rodríguez Adaime, J. J. Valbuena Cocunubo, and M. E. Acuña Lizarazo, “Evaluación del comportamiento térmico de materiales compuestos de matriz polimérica en prototipos de toberas para cohetes de órbita baja,” Revista Científica General José María Córdova, vol. 12 (13), pp. 275-290, 2014. https://doi.org/10.21830/19006586.163

[18] X. He, Y. Shi, C. Kang, and T. Yu, “Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles,” Chinese Journal of Aeronautics, vol. 30 (2), pp. 836-845, Apr. 2017. https://doi.org/10.1016/j.cja.2016.07.004

[19] R. Nakka, Richard Nakka’s Experimental Rocketry, 1997. http://www.nakka-rocketry.net/

[20] R. Nakka, “Solid propellant rocket motor desing and testing,” Mechanical Engineering Thesis, University of Manitoba, Manitoba, Canada, 1984.


Download data is not yet available.