Skip to main navigation menu Skip to main content Skip to site footer

Polymeric Ablative Composite Materials and their Application in the Manufacture of Aerospace Propulsion Components

Supporting Agencies
Fuerza Aérea Colombiana

Abstract

The development of thermal protection systems and high-temperature composite materials for the manufacture of low-weight propulsion components represents a major challenge for the aerospace industry, especially in the field of rocketry. The rocket combustion chamber and nozzles must be designed to withstand operating temperatures above 1600-2000 ° C in a severe ablative environment. This research focuses on obtaining a characterization of ablative composite materials based on a polyester resin matrix (30%) reinforced with particulate materials (fillers) (67%) and short glass fibers (3%), highlighting that the fillers correspond to industrial waste or by-products such as steel slag, aluminum slag, foundry slag and ceramic waste. The composites were physically and mechanically characterized and subjected to an ablative direct flame test (~1600-2000 °C, 120 seconds), reporting thermal insulation levels between 72.6-92.9%, with maximum temperatures on the opposite side of the flame between 141.6-548.8 ° C, and post-ablative weight losses of between 8.5-13.2%. Based on the obtained results, the optimal composites were selected and their application was validated in the manufacture of rocket-type nozzle propulsion components, which were subjected to a real static combustion test, using a solid propellant Candy KNSu type (65 % KNO3-35% Sucrose). The results proved the possibility of obtaining ablative composites and thermal protection systems from available materials and high contents of industrial by-products. These applications are considered important to develop the Colombian aerospace field in the construction of sounding rockets for scientific, technological, and military purposes.

Keywords

ablative materials, composite materials, propulsion components, rocket engine, rocket nozzle, thermal protection systems

PDF (Español) XML (Español)

References

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.