Skip to main navigation menu Skip to main content Skip to site footer

Polymeric Ablative Composite Materials and their Application in the Manufacture of Aerospace Propulsion Components

Abstract

The development of thermal protection systems and high-temperature composite materials for the manufacture of low-weight propulsion components represents a major challenge for the aerospace industry, especially in the field of rocketry. The rocket combustion chamber and nozzles must be designed to withstand operating temperatures above 1600-2000 ° C in a severe ablative environment. This research focuses on obtaining a characterization of ablative composite materials based on a polyester resin matrix (30%) reinforced with particulate materials (fillers) (67%) and short glass fibers (3%), highlighting that the fillers correspond to industrial waste or by-products such as steel slag, aluminum slag, foundry slag and ceramic waste. The composites were physically and mechanically characterized and subjected to an ablative direct flame test (~1600-2000 °C, 120 seconds), reporting thermal insulation levels between 72.6-92.9%, with maximum temperatures on the opposite side of the flame between 141.6-548.8 ° C, and post-ablative weight losses of between 8.5-13.2%. Based on the obtained results, the optimal composites were selected and their application was validated in the manufacture of rocket-type nozzle propulsion components, which were subjected to a real static combustion test, using a solid propellant Candy KNSu type (65 % KNO3-35% Sucrose). The results proved the possibility of obtaining ablative composites and thermal protection systems from available materials and high contents of industrial by-products. These applications are considered important to develop the Colombian aerospace field in the construction of sounding rockets for scientific, technological, and military purposes.

Keywords

ablative materials, composite materials, propulsion components, rocket engine, rocket nozzle, thermal protection systems

PDF (Español) XML (Español)

References

  1. S. Tang and C. Hu, “Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review,” Journal of Materials Science & Technology, vol. 33 (2), pp. 117-130, Feb. 2017. https://doi.org/10.1016/j.jmst.2016.08.004 DOI: https://doi.org/10.1016/j.jmst.2016.08.004
  2. L. Mohan Kumar, K. M. Usha, E. N. Anandapadmanabhan, and P. Chakravarthy, “Effect of fibre orientation on the properties and functional performance of ablative materials for solid rocket motors,” Transactions of the Indian Institute of Metals, vol. 70, pp. 2407-2413, 2017. https://doi.org/10.1007/s12666-017-1102-1 DOI: https://doi.org/10.1007/s12666-017-1102-1
  3. M. Natali, J. M. Kenny, and L. Torre, “Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices : A review,” Progress in Materials Science, vol. 84, pp. 192-275, 2016. https://doi.org/10.1016/j.pmatsci.2016.08.003 DOI: https://doi.org/10.1016/j.pmatsci.2016.08.003
  4. P. J. Astola, M. A. Rodríguez, F. J. Botana, and L. González-Rovira, “Caracterización de elementos de protección térmica de materiales compuestos mediante análisis térmicos,” Revista de la Asociación Española de Matereriales Compuestos, vol. 2 (4), pp. 34-41, 2017.
  5. G. Pulci, L. Paglia, V. Genova, C. Bartuli, T. Valente, and F. Marra, “Low density ablative materials modified by nanoparticles addition: Manufacturing and characterization,” Composites Part A: Applied Science and Manufacturing, vol. 109, pp. 330-337, 2018. https://doi.org/10.1016/j.compositesa.2018.03.025 DOI: https://doi.org/10.1016/j.compositesa.2018.03.025
  6. E. S. Rodríguez, “Desarrollo de materiales compuestos avanzados basados en fibras de carbono para la industria aeroespacial,” Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales de Buenos Aires, vol. 64, pp. 87-92, 2012.
  7. G. P. Suton, and O. Biblarz, Rocket Propulsion Elements, 8th Edi. New Jersey: John Wiley & Sons, 2010.
  8. M. L. Aranzazu Rios, V. P. Muñoz Cárdenas, M. J. Giraldo, Cárdenas, G. H. Gaviria, and F. A. González Rojas, “Modelos cinéticos de degradación térmica de polímeros: una revision,” Revista Ingenierías Universidad de Medellín, vol. 12 (23), pp. 113-130, 2013. https://doi.org/10.22395/rium.v12n23a9 DOI: https://doi.org/10.22395/rium.v12n23a9
  9. A. Harpale, S. Sawant, R. Kumar, D. Levin, and H. B. Chew, “Ablative thermal protection systems: Pyrolysis modeling by scale-bridging molecular dynamics,” Carbon, vol. 130, pp. 315-324, Apr. 2018. https://doi.org/10.1016/j.carbon.2017.12.099 DOI: https://doi.org/10.1016/j.carbon.2017.12.099
  10. A. Krzyzak, W. Kucharczyk, J. Gaska, and R. Szczepaniak, “Ablative test of composites with epoxy resin and expanded perlite,” Composite Structructures, vol. 202, pp. 978-987, 2018. https://doi.org/10.1016/j.compstruct.2018.05.018 DOI: https://doi.org/10.1016/j.compstruct.2018.05.018
  11. L. Asaro, L. B. Manfredi, S. Pellice, R. Procaccini, and E. S. Rodriguez, “Innovative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles,” Polymer Degradation and Stability, vol. 144, pp. 7-16, 2017. https://doi.org/10.1016/j.polymdegradstab.2017.07.023 DOI: https://doi.org/10.1016/j.polymdegradstab.2017.07.023
  12. D. Quiñonez, Y. Lizcano, C. Vaquez, J. Maldonado, and J. Portocarrero, “Construcción y evaluación de una tobera a escala menor basada en material compuesto para cohetes de órbita baja,” Revista Inge@UAN, vol. 2 (4), pp. 13-21, 2012.
  13. W. Kucharczyk, D. Dusiński, W. Żurowski, and R. Gumiński, “Effect of composition on ablative properties of epoxy composites modified with expanded perlite,” Composite Structures, vol. 183, pp. 654-662, 2018. https://doi.org/10.1016/j.compstruct.2017.08.047 DOI: https://doi.org/10.1016/j.compstruct.2017.08.047
  14. A. Turchi, D. Bianchi, F. Nasuti, and M. Onofri, “A numerical approach for the study of the gas–surface interaction in carbon–phenolic solid rocket nozzles,” Aerospace Science and Technology, vol. 27 (1), pp. 25-31, Jun. 2013. https://doi.org/10.1016/j.ast.2012.06.003 DOI: https://doi.org/10.1016/j.ast.2012.06.003
  15. L. Torre, J. M. Kenny, G. Boghetich, and A. Maffezzoli, “Degradation Behaviour of a Composite Material for Thermal Protection Systems. Part III Char Characterization,” Journal of Materials Science, vol. 35, pp. 4563-4566, 2000. https://doi.org/10.1023/A:1004828923152 DOI: https://doi.org/10.1023/A:1004828923152
  16. V. Ramanjaneyulu, V. Balakrishna Murthy, R. Chandra Mohan, and C. Naga Raju, “Analysis of Composite Rocket Motor Case using Finite Element Method,” Materials Today Proceedins, vol. 5 (2), pp. 4920-4929, Jan. 2018. https://doi.org/10.1016/j.matpr.2017.12.069 DOI: https://doi.org/10.1016/j.matpr.2017.12.069
  17. J. Maldonado Villa, J. Portocarrero Hermann, C. Rodríguez Adaime, J. J. Valbuena Cocunubo, and M. E. Acuña Lizarazo, “Evaluación del comportamiento térmico de materiales compuestos de matriz polimérica en prototipos de toberas para cohetes de órbita baja,” Revista Científica General José María Córdova, vol. 12 (13), pp. 275-290, 2014. https://doi.org/10.21830/19006586.163 DOI: https://doi.org/10.21830/19006586.163
  18. X. He, Y. Shi, C. Kang, and T. Yu, “Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles,” Chinese Journal of Aeronautics, vol. 30 (2), pp. 836-845, Apr. 2017. https://doi.org/10.1016/j.cja.2016.07.004 DOI: https://doi.org/10.1016/j.cja.2016.07.004
  19. R. Nakka, Richard Nakka’s Experimental Rocketry, 1997. http://www.nakka-rocketry.net/
  20. R. Nakka, “Solid propellant rocket motor desing and testing,” Mechanical Engineering Thesis, University of Manitoba, Manitoba, Canada, 1984.

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.