Predicción de estados de hipotensión empleando modelos ocultos de Markov
Abstract
Se estudia la utilización de modelos ocultos de Markov para predecir estados de hipotensión en pacientes internados en unidades de cuidados intensivos. El procedimiento de predicción desarrollado cuenta con dos modelos de Markov, uno entrenado con datos fisiológicos de pacientes que en un determinado intervalo de tiempo desarrollan estados de hipotensión, y otro entrenado con datos de pacientes en los cuales no se registra dicho cuadro. Ante datos de un nuevo paciente y empleando un marco bayesiano, el sistema estima qué modelo explica mejor las nuevas observaciones, y se establece una asociación del paciente a la clase del modelo seleccionado. Experimentos preliminares empleando el modelo propuesto sobre datos estándar muestran resultados promisorios.Downloads

Downloads
Published
-
Abstract365
-
PDF (Español)234
How to Cite
Issue
Section
License
All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.
Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.
The authors who publish in this Journal accept the following conditions:
a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.
b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.
c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.
d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.
e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.