Construction of a Video Transmission Scenario in Software-Defined Networks for QoE Estimation

Authors

DOI:

https://doi.org/10.19053/01211129.v31.n61.2022.14807

Keywords:

IQA-FR, MOS, QoE, SDN, Video streaming

Abstract

The services supported by data networks have become widespread, so the architectures of the new data networks are service-oriented. They are endowed with intelligence, flexibility, and programmability. The preceding is with the aim of providing acceptability by users. Thus, this paper presents the construction of a video transmission scenario over a software-defined network (SDN, Software-Defined Networking) using free software and modifying its behavior with background traffic, on which the Quality of Experience (QoE) is estimated. Subjective and objective metrics were used for the QoE estimation. For the first one, the Mean Opinion Score (MOS) was used, while the second one was studied with the Full Reference Image Quality Assessment (FR-IQA). Finally, a correlation between the two types of metrics was proposed.

Downloads

Download data is not yet available.

Author Biographies

Vicko Quizza-Hernández, Universidad del Quindío

Roles: Conceptualization, formal analysis, writing-review and editing.

Juan-Camilo Arango-Colorado, Universidad del Quindío

Roles: Conceptualization, formal analysis, writing-review and editing.

Wilmar-Yesid Campo-Muñoz, Universidad del Quindío

Roles: Supervision, methodology, investigation, writing-review and editing.

References

J. Nightingale, P. Salva-Garcia, J. M. A. Calero, Q. Wang, “5G-QoE: QoE modeling for ultra-HD video streaming in 5G networks,” IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 621–634, 2018. https://doi.org/10.1109/TBC.2018.2816786

O. Sami Oubbati, M. Atiquzzaman, T. Ahamed Ahanger, A. Ibrahim, “Softwarization of UAV networks: A survey of applications and future trends,” IEEE Access, vol. 8, pp. 98073–98125, 2020. https://doi.org/10.1109/ACCESS.2020.2994494

R. Souza, K. Dias, S. Fernandes, “NFV Data Centers: A Systematic Review,” IEEE Access, vol. 8, pp. 51713–51735, 2020. https://doi.org/10.1109/ACCESS.2020.2973568

L. Skorin-Kapov, M. Varela, T. Hoßfeld, K.-T. Chen, “A Survey of Emerging Concepts and Challenges for QoE Management of Multimedia Services,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 14, no. 2s, pp. 1–29, Apr. 2018. https://doi.org/10.1145/3176648

ITU, “P.10: Vocabulary for performance, quality of service and quality of experience,” 2017.

O. B. Maia, H. C. Yehia, L. De Errico, “A concise review of the quality of experience assessment for video streaming,” Computer Communications, vol. 57, pp. 1–12, Feb. 2015. https://doi.org/10.1016/j.comcom.2014.11.005

R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, R. Boutaba, “Network function virtualization: State-of-the-art and research challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, Jan. 2016. https://doi.org/10.1109/COMST.2015.2477041

K. Sun, H. Zhang, Y. Gao, D. Wu, “Delay-aware fountain codes for video streaming with optimal sampling strategy,” Journal of Communications and Networks, vol. 21, no. 4, pp. 339–352, Aug. 2019. https://doi.org/10.1109/JCN.2019.000024

L. M. Castaneda Herrera, A. Duque Torres, W. Y. Campo Munoz, “An Approach Based on Knowledge-Defined Networking for Identifying Video Streaming Flows in 5G Networks,” IEEE Latin America Transactions, vol. 19, no. 10, pp. 1737–1744, 2021. https://doi.org/10.1109/TLA.2021.9477274

A. Hammershoj, A. Nowak, J. K. B. Hansen, C. Stefanovic, “Next-Generation OTT Distribution Architecture Supporting Multicast-Assisted ABR (mABR) and HTTP/3 over QUIC,” in SMPTE 2020 Annual Technical Conference and Exhibition, pp. 31–39, 2022. https://doi.org/10.5594/M001928

N. C. Robinson, Research Methodology a step-by-step guide for beginners. Ranjit Kumar, 2021.

M. Erel, E. Teoman, Y. Özçevik, G. Seçinti, B. Canberk, “Scalability analysis and flow admission control in mininet-based SDN environment,” in IEEE Conference on Network Function Virtualization and Software Defined Network, pp. 18–19, 2016. https://doi.org/10.1109/NFV-SDN.2015.7387396

Big Buck Bunny Movie, http://www.bigbuckbunny.org

M. Peuster, H. Karl, S. V. Rossem, “MeDICINE: Rapid Prototyping of Production-Ready Network Services in Multi-PoP Environments,” in IEEE Conference on Network Function Virtualization and Software Defined Networks, pp. 148-153, 2016. https://doi.org/10.1109/NFV-SDN.2016.7919490

Garland, Docker Image | Docker Hub, 2022. https://hub.docker.com/r/garland/dockerfile-ubuntu-gnome/.

S. Avallone, S. Guadagno, D. Emma, A. Pescape, G. Ventre, "D-ITG distributed Internet traffic generator," in First International Conference on the Quantitative Evaluation of Systems, 2004, pp. 316-317. https://doi.org/10.1109/QEST.2004.1348045

D. van Staden, F. N. Mahomed, S. Govender, L. Lengisi, B. Singh, O. Aboobaker, “Comparing the validity of an online Ishihara colour vision test to the traditional Ishihara handbook in a South African university population,” African Vision and Eye Health, vol. 77, no. 1, e370, Feb. 2018. https://doi.org/10.4102/aveh.v77i1.370

TU-T, P.910: Subjective video quality assessment methods for multimedia applications, 1999. https://www.itu.int/rec/T-REC-P.910-200804-I/en

D. Narsaiah, R. S. Reddy, A. Kokkula, P. A. Kumar, A. Karthik, "A Novel Full Reference-Image Quality Assessment (FR-IQA) for Adaptive Visual Perception Improvement," in 6th International Conference on Inventive Computation Technologies, 2021, pp. 726-730, https://doi.org/10.1109/ICICT50816.2021.9358610

FFMPEG, Ffmpeg.org, 2022. https://ffmpeg.org/documentation.html

W. Robitza, ffmpeg_quality_metrics., 2022. https://vqeg.github.io/software-tools/quality%20analysis/ffmpeg-quality-metrics/

Q. Huynh-Thu, M. Ghanbari, “The accuracy of PSNR in predicting video quality for different video scenes and frame rates,” Telecommunication Systems, vol. 49, pp. 35-48, 2012. https://doi.org/10.1007/s11235-010-9351-x

Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity". IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004. https://doi.org/10.1109/TIP.2003.819861

F. Zhang, A. Katsenou, C. Bampis, L. Krasula, Z. Li, D. Bull, "Enhancing VMAF through New Feature Integration and Model Combination," in Picture Coding Symposium (PCS), 2021, pp. 1-5, https://doi.org/10.1109/PCS50896.2021.9477458

A. Leixi, Full Reference Video Quality Evaluation Method (PSNR, SSIM) and Conversion Model with MOS, 2013. https://blog.csdn.net/leixiaohua1020/article/details/11694369

Downloads

Published

2022-09-28

How to Cite

Quizza-Hernández, V., Arango-Colorado, J.-C., & Campo-Muñoz, W.-Y. (2022). Construction of a Video Transmission Scenario in Software-Defined Networks for QoE Estimation. Revista Facultad De Ingeniería, 31(61), e14807. https://doi.org/10.19053/01211129.v31.n61.2022.14807