Skip to main navigation menu Skip to main content Skip to site footer

Multiparametric Sensor to Measure Water Quality Parameters Using Internet of Things

Abstract

This study introduces an innovative water quality monitoring system capable of simultaneously measuring six essential parameters (total dissolved solids, oxidation-reduction potential, dissolved oxygen, temperature, pH, and electrical conductivity) by incorporating the Internet of Things technology. Therefore, it is an advanced tool for water resource management. Unlike conventional multiparameter sensors, which are often limited in their storage capacity and number of parameters, our device automatically stores data in Firebase, thus ensuring secure, accessible, and scalable real-time information management. Additionally, in situations of connectivity loss, the system includes an SD card to store data in an Excel file and ensure continuous logging without interruptions. This design not only eliminates the need for sample transportation and handling but also enables precise monitoring from any location. By measuring six distinct parameters, the system provides a comprehensive and customizable view of water quality, adapts to various needs and environments like industry, agriculture, or natural resource conservation. This versatility and technological robustness, supported by Firebase, make our system a key solution for efficient and real-time water monitoring.

Keywords

sensors, water treatment, Internet of Things

XML PDF

References

  1. T. Maguvu, C. Bezuidenhout, R. Kritzinger, K. Thsolo, M. Plaatjie, “Combining physicochemical properties and microbine data to evaluate the water quality of South African drinking water production,” Plos One, vol. 15, no. 8, pp. 1-21, 2020. https://doi.org/10.1371/journal.pone.0237335
  2. CONAGUA. Normas Oficiales Mexicanas-Secretaría de Medio Ambiente y Recursos Naturales, pp. 1-65, 1997.
  3. M. García, “Virus en aguas de consumo,” Higiene y sanidad ambiental, vol. 6, pp. 173-189, 2006.
  4. H. Jindal, S. Saxena, S. Kasana, “A sustainable multiparametric sensors network topology for river water quality monitoring,” Wireless Networks, vol. 24, no. 8, pp. 3241-3265, 2017. https://doi.org/10.1007/s11276-017-1532-z
  5. X. Wang, L. Sun, Y. Shi, “Research on a miniature water quality sensor chip and system with a temperature compensation function,” Journal of Sensors, vol. 88, pp. 1-16, 2020. https://doi.org/10.1155/2020/8897916
  6. AlphaOmega. Alpha Omega Electronics, 2021. https://www.alphaomega-electronics.com/es/sensores-y-sondas/2279-ap-5000-sondas-portatil-multiparametro-para-agua-dulce-salada.html
  7. K. Saravanan, E. Anusuya, R. Kumar, L. Son, “Real-time water quality monitoring using Internet of the Things in SCADA,” Environment Monitor Assessment, vol. 190, no. 556, 2018. https://doi.org/10.1007/s10661-018-6914-x
  8. I. Yaroshenko, D. Kirsanov, M. Marjanovic, P. Lieberzeit, O. Korostynska, A. Mason, I. Frau, A. Legin, “Real-time water quality monitoring with chemical sensors,” Sensors, vol. 20, pp. 1-23, 2020. https://doi.org/10.3390/s20123432
  9. W. Hong, N. Shamsuddin, E. Abas, R. Apong, Z. Masri, H. Suhaimi, S. Godeke, M. Aqmal, “Water quality monitoring with Arduino based sensors,” Environments, vol. 8, no. 6, pp. 1-15, 2021. https://doi.org/10.3990/environments8010006
  10. L. Castillo-Nieto, I. Rosas-Hernández, R. Martínez-Montejano, M. Robles-Martínez, E. Pérez, G. González-Badillo, “Instrumentation and automation of a multiparametric sensor in water quality by using LabVIEW,” Revista Internacional de Investigación en Innovación Tecnológica, vol. 10, no. 56, pp. 45-61, 2022.
  11. I. Fonseca-Campos, L. Reyes-Ramírez, L. Guzmán-Vargas, J. Fonseca-Ruiz, J. Mendoza-Pérez, P. Rodríguez-Espinoza, “Multiparametric system for measuring physicochemical variables associated to water quality based on the Arduino platform,” IEEE Access, vol. 10, pp. 69700-69713, 2022. https://doi.org/10.1109/ACCESS.2022.3187422
  12. L. Manjakkal, S. Mitra, Y. Petillot, J. Shutler, M. Scott, M. Willander, R. Dahiya, “Connected sensors, innovative sensor development, and intelligent data analysis for online water quality monitoring,” IEEE Internet of the Things, vol. 8, no. 18, pp. 13805-13824, 2021. https://doi.org/10.1109/JIOT.2021.3081772
  13. U. Ahmed, R. Mumtaz, H. Anwar, S. Mumtaz, A. Qamar, “Water quality monitoring: from conventional to emerging technologies,” Water Science Technology, vol. 20, pp. 28-45, 2020. https://doi.org/10.2166/ws.2019.144
  14. P. Damor, K. Sharma, “IoT based water monitoring system: a review,” International Journal of Advanced Research, vol. 4, pp. 1-6, 2017.
  15. M. Banna, S. Imran, A. Francisque, H. Najjaran, R. Sadiq, M. Rodríguez, M. Hoorfar, “Online drinking water quality monitoring: review on available and emerging technologies,” Critical Reviews in Environmental Science and Technology, vol. 44, pp. 1370-1421, 2014. https://doi.org/10.1080/10643389.2013.781936
  16. S. Abba, J. Namkusong, J. Lee, M. Crespo, “Design and performance evaluation of a low-cost autonomous sensor interface for a smart IoT-based irrigation monitoring and control system,” Sensors, vol. 19, e173643, 2019. https://doi.org/10.3390/s19173643
  17. F. Jan, N. Min-Allah, D. Dustegor, “IoT based smart water quality monitoring: recent techniques, trends and challenges for domestic applications,” Water, vol. 13, pp. 1-37, 2021. https://doi.org/10.3390/w13131729
  18. M. Shahanas, P. Bagavathi, “Framework for a smart water management system in the context of smart city initiative in India,” Proceedings of the Procedia Computer Science, vol. 92, pp. 583-588, 2016. https://doi.org/10.1016/j.procs.2016.07.337
  19. D. Pérez-Jorge, M. Martínez-Murciano, “Gammification with Scratch or AppInventor in Higher Education: A Systematic Review,” Future Internet, vol. 14, no. 12, 2022. https://doi.org/10.3390/fi14120374
  20. I. Sudiarthe, I. Indrayana, W. Suasnawa, S. Asri, P. Wijaya, “Data structure comparison between MySQL relational database and Firebase database NoSQL on mobile based tourist tracking application,” Journal of Physics: Conference Series, 2020. https://doi.org/10.1088/1742-6596/1569/3/032092

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.