Explainable Classification of Dermoscopy Images for the Detection of Melanoma: A Systematic Mapping of the Literature
Abstract
Recently, artificial intelligence models applied to the detection of melanoma have shown promising results. However, the adoption of these technologies is hampered by a lack of transparency in automatic decision-making. To address this problem, Explainable Artificial Intelligence (XAI) is emerging, which seeks to reduce gaps by providing mechanisms to understand why a system makes a specific decision. Therefore, this systematic mapping examines how XAI has evolved in the detection of melanoma skin cancer. As a result, sixteen scientific articles that strictly applied explainability methods to melanoma classification models were identified. Finally, the incidence of melanoma in Colombia was determined.
Keywords
Explainable artificial intelligence (XAI), Melanoma, Classification, Dermatoscopic images
References
- S. M. Schwartz, “Epidemiology of Cancer,” Clinical Chemistry, vol. 70, no. 1, pp. 140-149, 2024. https://doi.org/10.1093/clinchem/hvad202
- A. V. Ospina Serrano et al., “Clinical Outcomes and Prognostic Factors of Patients with Early Malignant Melanoma in One Latin American Country: Results of the Epidemiological Registry of Malignant Melanoma in Colombia Study,” JCO Global Oncology, vol. 9, no. 9, e2200377, 2023. https://doi.org/10.1200/go.22.00377
- S. Waseh, J. B. Lee, “Advances in melanoma: epidemiology, diagnosis, and prognosis,” Frontiers in Medicine (Lausanne), vol. 10, 2023. https://doi.org/10.3389/fmed.2023.1268479
- S. A. Syed et al., “Registration based fully optimized melanoma detection using deep forest technique,” Biomed Signal Process Control, vol. 93, e106116, 2024. https://doi.org/10.1016/j.bspc.2024.106116
- Ministerio de Salud y Protección Social de Colombia, Vicesalud destacó acciones de Colombia frente al cáncer de piel, 2020. https://www.minsalud.gov.co/Paginas/Vicesalud-destaco-acciones-de-Colombia-frente-al-cancer-de-piel.aspx
- Instituto Nacional de Cancerología, Anuario estadístico 2020. Bogotá: INC, 2021.
- Instituto Nacional de Cancerología, Anuario estadístico 2021, Bogotá: INC, 2022.
- Instituto Nacional de Cancerología, Anuario estadístico 2022, Bogotá: INC, 2023.
- E. de Vries, C. Uribe, C. C. Beltrán Rodríguez, A. Caparros, E. Meza, F. Gil, “Descriptive Epidemiology of Melanoma Diagnosed between 2010 and 2014 in a Colombian Cancer Registry and a Call for Improving Available Data on Melanoma in Latin America,” Cancers (Basel), vol. 15, no. 24, e5848, 2023. https://doi.org/10.3390/cancers15245848
- A. Ramírez, J. Chalela, J. Ramírez, “¿Cuántos dermatólogos hay en Colombia? Análisis de los datos de la Asociación Colombiana de Dermatología y Cirugía Dermatológica,” Revista de la Asociación Colombiana de Gerontología y Geriatría, vol. 20, no. 1, pp. 21-26, 2012.
- P. Ocampo, D. Restrepo, D. Cuéllar, Estimación de oferta de médicos especialistas en Colombia 1950-2030: Anexo Metodológico. Bogotá: Ministerio de Salud y Protección Social, 2018.
- P. Simón-Díaz et al., “Aplicaciones y uso del dermatoscopio en la dermatología general. Una revisión,” Dermatología Cosmética, Médica y Quirúrgica, vol. 14, no. 4, pp. 299-317, 2016.
- C. Ring, N. Cox, J. Lee, “Dermatoscopy,” Clinics in Dermatology, vol. 39, no. 4, pp. 635-642, 2021. https://doi.org/10.1016/j.clindermatol.2021.03.009
- International Skin Imaging Collaboration (ISIC), Overview of the ISIC Collaboration, 2023. https://www.isic-archive.com/mission
- M. A. Kassem, K. M. Hosny, R. Damaševičius, M. M. Eltoukhy, “Machine learning and deep learning methods for skin lesion classification and diagnosis: a systematic review,” Diagnostics, vol. 11, no. 8, e1390, 2021. https://doi.org/10.3390/diagnostics11081390
- J. P. Jeyakumar, A. Jude, A. G. Priya, J. Hemanth, “A Survey on Computer-Aided Intelligent Methods to Identify and Classify Skin Cancer,” Informatics, vol. 9, no. 4, e99, 2022. https://doi.org/10.3390/informatics9040099
- F. Stieler, F. Rabe, B. Bauer, “Towards domain-specific explainable AI: model interpretation of a skin image classifier using a human approach,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021, pp. 1802-1809. https://doi.org/10.1109/CVPRW53098.2021.00199
- C. Barata, M. E. Celebi, J. S. Marques, “Explainable skin lesion diagnosis using taxonomies”, Pattern Recognition, vol. 110, e107413, 2021. https://doi.org/10.1016/j.patcog.2020.107413
- F. Pahde, M. Dreyer, W. Samek, S. Lapuschkin, “Reveal to revise: An explainable ai life cycle for iterative bias correction of deep models,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, Canada, 2023, pp. 596-606. https://doi.org/10.1007/978-3-031-43895-0_56
- W. Samek, K.-R. Müller, “Towards Explainable Artificial Intelligence,” in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer International Publishing, 2019, pp. 5-22. https://doi.org/10.1007/978-3-030-28954-6_1
- T. Chowdhury, A. R. S. Bajwa, T. Chakraborti, J. Rittscher, U. Pal, “Exploring the correlation between deep learned and clinical features in melanoma detection,” in Medical Image Understanding and Analysis: 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, 2021, pp. 3-17. https://doi.org/10.1007/978-3-030-80432-9_1
- C. Metta, R. Guidotti, Y. Yin, P. Gallinari, S. Rinzivillo, “Exemplars and counterexemplars explanations for image classifiers, targeting skin lesion labeling,” in IEEE Symposium on Computers and Communications (ISCC), Paris, France, 2021, pp. 1-7. https://doi.org/10.1109/ISCC53001.2021.9631485
- A. Ganatra, B. Panchal, D. Doshi, D. Bhatt, J. Desai, B. Talati, N. Soni, A. Shah, “Introduction to Explainable AI”, in Explainable AI in Health Informatics. Singapore: Springer Nature Singapore, pp. 1-31, 2024. https://doi.org/10.1007/978-981-97-3705-5_1
- T. Khater, S. Ansari, S. Mahmoud, A. Hussain, H. Tawfik, “Skin cancer classification using explainable artificial intelligence on pre-extracted image features,” Intelligent Systems with Applications, vol. 20, e200275, 2023. https://doi.org/10.1016/j.iswa.2023.200275
- K. Petersen, S. Vakkalanka, L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Information and Software Technology, vol. 64, pp. 1-18. 2015. https://doi.org/10.1016/j.infsof.2015.03.007
- K. Hauser et al., “Explainable artificial intelligence in skin cancer recognition: A systematic review,” European Journal of Cancer, vol. 167, pp. 54-69, 2022. https://doi.org/10.1016/j.ejca.2022.02.025
- G. Akilandasowmya, G. Nirmaladevi, S. U. Suganthi, A. Aishwariya, “Skin cancer diagnosis: Leveraging deep hidden features and ensemble classifiers for early detection and classification,” Biomed Signal Process Control, vol. 88, e105306, 2024. https://doi.org/10.1016/j.bspc.2023.105306
- S. Yousefi, S. Najjar-Ghabel, R. Danehchin, S. S. Band, C.-C. Hsu, A. Mosavi, “Automatic melanoma detection using discrete cosine transform features and metadata on dermoscopic images,” Journal of King Saud University-Computer and Information Sciences, vol. 36, no. 2, e101944, 2024. https://doi.org/10.1016/j.jksuci.2024.101944
- D. Moturi, R. K. Surapaneni, V. S. G. Avanigadda, “Developing an efficient method for melanoma detection using CNN techniques,” Journal of the Egyptian National Cancer Institute, vol. 36, no. 1, e6, 2024. https://doi.org/10.1186/s43046-024-00210-w
- P. Thapar, M. Rakhra, M. Alsaadi, A. Quraishi, A. Deka, J. V. N. Ramesh, “A hybrid Grasshopper optimization algorithm for skin lesion segmentation and melanoma classification using deep learning,” Healthcare Analytics, vol. 5, e100326, 2024. https://doi.org/10.1016/j.health.2024.100326
- X. Tang, F. R. Sheykhahmad, “Boosted dipper throated optimization algorithm-based Xception neural network for skin cancer diagnosis: An optimal approach,” Heliyon, vol. 10, no. 5, 2024. https://doi.org/10.1016/j.heliyon.2024.e26415
- E. Okur, M. Turkan, “Weighted Bag of Visual Words with enhanced deep features for melanoma detection”, Expert Systems With Applications, vol. 237, e121531, 2024. https://doi.org/10.1016/j.eswa.2023.121531
- M. E. Crawford et al., “Using artificial intelligence as a melanoma screening tool in self-referred patients,” Journal of Cutaneous Medicine and Surgery, vol. 28, no. 1, pp. 37-43, 2024. https://doi.org/10.1177/12034754231216967
- J. Helenason, C. Ekström, M. Falk, P. Papachristou, “Exploring the feasibility of an artificial intelligence based clinical decision support system for cutaneous melanoma detection in primary care--a mixed method study,” Scandinavian Journal of Primary Health Care, vol. 42, no. 1, pp. 51-60, 2024. https://doi.org/10.1080/02813432.2023.2283190
- A. Akbulut, S. Desouki, S. AbdelKhaliq, L. Khantomani, C. Catal, “Design and implementation of a deep learning-empowered m-Health application,” Multimedia Tools and Applications, vol. 83, no. 12, pp. 35995-36011, 2024. https://doi.org/10.1007/s11042-023-17041-x
- J. Hue, J. Ekanayake, J. Dehmeshki, J. Dhanda, “Morphometric differences between basal cell carcinomas & melanomas of the head & neck versus other sites and their influence on neural networks,” EJC Skin Cancer, vol. 2, e100024, 2024. https://doi.org/10.1016/j.ejcskn.2024.100024
- H. Patil, “Frontier machine learning techniques for melanoma skin cancer identification and categorization: A thorough review,” Oral Oncology Reports, vol. 9, e100217, 2024. https://doi.org/10.1016/j.oor.2024.100217
- M. Strzelecki Michałand Kociołek, M. Strkakowska, A. Kozłowski Michałand Grzybowski, P. M. Szczypiński, “Artificial Intelligence in the detection of skin cancer: state of the art,” Clinical Dermatology, vol. 42, no. 3, pp. 280-295, 2024. https://doi.org/10.1016/j.clindermatol.2023.12.022
- S. Roy, D. Pal, T. Meena, “Explainable artificial intelligence to increase transparency for revolutionizing healthcare ecosystem and the road ahead,” Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 13, no. 1, e4, 2023. https://doi.org/10.1007/s13721-023-00437-y
- J. López-Labraca, I. González-Díaz, F. Díaz-de-María, A. Fueyo-Casado, “An interpretable CNN-based CAD system for skin lesion diagnosis,” Artificial Intelligence in Medicine, vol. 132, e102370, 2022. https://doi.org/10.1016/j.artmed.2022.102370
- F. Nunnari, M. A. Kadir, D. Sonntag, “On the overlap between grad-cam saliency maps and explainable visual features in skin cancer images,” in International Cross-Domain Conference for Machine Learning and Knowledge Extraction, Cham, 2021, pp. 241-253. https://doi.org/10.1007/978-3-030-84060-0_16
- C. Barata, C. Santiago, “Improving the explainability of skin cancer diagnosis using CBIR”, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2021, pp. 550-559. https://doi.org/10.1007/978-3-030-87199-4_52
- D. Coppola, H. K. Lee, C. Guan, “Interpreting mechanisms of prediction for skin cancer diagnosis using multi-task learning”, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, USA, 2020, pp. 734-735. https://doi.org/10.1109/CVPRW50498.2020.00375
- H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J. F. Aldana-Montes, “Ensemble-based genetic algorithm explainer with automized image segmentation: A case study on melanoma detection dataset,” Computers in Biology and Medicine, vol. 155, e106613, 2023. https://doi.org/10.1016/j.compbiomed.2023.106613
- C. Metta et al., “Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning,” International Journal of Data Science and Analytics, vol. 23, pp. 1-13, 2023. https://doi.org/10.1007/s41060-023-00401-z
- T. Chanda et al., “Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma,” Nature Communications, vol. 15, no. 1, e524, 2024. https://doi.org/10.1038/s41467-023-43095-4
- J. Collenne et al., “Fusion between an Algorithm Based on the Characterization of Melanocytic Lesions’ Asymmetry with an Ensemble of Convolutional Neural Networks for Melanoma Detection,” Journal of Investigative Dermatology, vol. 144, no. 7, pp. 1600-1607, 2024. https://doi.org/10.1016/j.jid.2023.09.289
- C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206-215, 2019. https://doi.org/10.1038/s42256-019-0048-x