Statistical Modeling and Optimization of the Cyanidation Process of Gold Mineral

Main Article Content

Autores

Jairo Antonio Ruiz-Córdoba, M.Sc. https://orcid.org/0000-0003-1086-1317
Carlos Alberto Lopez-Cañas, M.Sc. https://orcid.org/0000-0003-1086-1317
María Eugenia Carmona-Arango https://orcid.org/0000-0003-1969-3647
William Hernán Bolívar-García https://orcid.org/0000-0001-6261-1323

Abstract

In this paper, we have sought to identify the conditions and optimal operating variables for the processing of a gold ore, in such a way to achieve high efficiency in the recovery of the precious metal. Initially a characterization of the mineral under study was carried out with the performance of different laboratory tests. Likewise, a grinding test was made. In the same way, a sample of ore was classified using a series of Tyler sieves. Next, the material was subjected to gravimetric concentration on a Wilfley concentrator table. The fines, product of the concentration, with a 100 % granulometry through 170 Tyler meshes, were subjected to conventional flotation tests. In this way, to optimize the recovery of gold from the gold ore under study, an experimental design of 2k factorial analysis with central point, three variables and the response surface method was applied to determine the optimal parameters to achieve an efficient recovery during cyanidation. The results obtained show that the mineral has a high degree of cyanide leachability, obtaining a gold recovery of 89.35 %. The research demonstrated that the statistical experimental design is a valuable tool for the efficient processing of the minerals, since it allows finding the optimal parameters of the cyanidation process such as the leaching time, the granulometry of the mineral and the concentration of NaCN. The results obtained with the application of the statistical design in the cyanidation tests allowed determining the optimal operating conditions for a maximum gold recovery.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.

References

[1] J. Santamaría, R. Torres, M. Parra, and C. Ortiz. “Comparación de cianuro y tiourea como agentes lixiviantes de un mineral aurífero colombiano,” Revista Facultad de Ingeniería, vol. 22 (34), pp. 97-103, Jun. 2013. https://doi.org/10.19053/01211129.2222.

[2] N. Iglesias, F. Carranza, and I. Palencia, “La biolixiviación como pretratamiento de menas auríferas refractarias en matriz de sulfuros,” Revista de Metalurgia, vol. 34 (1), pp. 29-38, Feb. 1998. https://doi.org/10.3989/revmetalm.1998.v34.i1.656.

[3] J. Yánez, I. García, J. Pedraza, and D. Laverde “Caracterización de los minerales auríferos de la zona minera de San Pedro Frío (Bolívar-Colombia), para la selección de los procesos de extracción,” Dyna, vol. 72 (145), pp. 22-35, 2005.

[4] B. Xu, Y. Yang, T. Jiang, Q. Li, X. Zhang, and D. Wang, “Improved thiosulfate leaching of a refractory gold concentrate calcine with additives,” Hydrometallurgy, vol. 152, pp. 214-222, Feb. 2015. https://doi.org/10.1016/j.hydromet.2014.12.016.

[5] Y. Guo, X. Guo, H. Wu, S. Li, G. Wang, X. Liu, G. Qiu, and D. Wang, “A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate,” Hydrometallurgy, vol. 171, pp. 213-221, Aug. 2017. https://doi.org/10.1016/j.hydromet.2017.05.023.

[6] M. Muravyov, and A. Bulaev, “Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation,” Minerals Engineering, vol. 45, pp. 108-114, May. 2013. https://doi.org/10.1016/j.mineng.2013.02.007.

[7] I. Alp, O. Celep, D. Paktung, and Y. Thibault, “Influence of potassium hydroxide pretreatment on the extraction of gold and silver from a refractory ore,” Hydrometallurgy, vol. 146, pp. 64-71, May. 2014. https://doi.org/10.1016/j.hydromet.2014.03.007.

[8] E. A. Oraby, and J. J. Eksteen, “Gold leaching in cyanide-starved copper solutions in the presence of glycine,” Hydrometallurgy, vol. 156, pp. 81-88, Jul. 2015. https://doi.org/10.1016/j.hydromet.2015.05.012.

[9] J. Tremolada, Caracterización, influencia y tratamiento de arcillas en procesos de cianuración en pilas, Master Thesis, Universidad de Oviedo, España, 2011, pp. 19-23.

[10] E. Salinas, I. Rivera, F. Carrillo, F. Patiño, J. Hernández, and L. Hernández, “Mejora del proceso de cianuración de oro y plata, mediante la preoxidación de minerales sulfurosos con ozono,” Journal of the Mexican Chemical Society, vol. 48 (4), pp. 315-320.

[11] M. Tanco, and L. Ilzarbe, “Aplicación del Diseño de Experimentos (DOE) para la mejora de procesos,” Memorias, vol. 6, pp. 85-94, 2008.

[12] J. Chavarriaga, and J. Giraldo. Estudio estadístico de la lixiviación con cianuro como proceso alternativo a la amalgamación y valoración del ambiente laboral de una muestra de entables y compras de oro del municipio de Remedios Antioquia, Grade Thesis, Universidad de Antioquia, Colombia, 2014, pp. 33-49.

[13] M. Figueredo, “Lixiviación por cianuración de minerales preciosos de un yacimiento en la zona oriental de Cuba,” Infomin, vol. 6 (2), pp. 3-12, 2014.

[14] P. Navarro, and C. Vargas, “Efecto de las propiedades físicas del carbón activado en la adsorción de oro desde medio cianuro,” Revista de Metalurgia, vol. 46 (3), 227-239, Jun. 2010. https://doi.org/10.3989/revmetalm.0929.

[15] A. Azañero, V. Aramburú, J. Quiñones, L. Puente, M. Cabrera, V. Falconí, J. Quispe, O. F. Cardoza, K. Jaimes, and A. Medina., “Tratamiento hidrometalúrgico del oro diseminado en pirita y arsenopirita del relave de flotación,” Revista del Instituto de Investigaciones FIGMMG, vol. 13 (25), pp. 7-12, 2010.

[16] E. Barzola, B. Barzola, D. Lovera, and V. Arias, “Efecto de la moliendabilidad en la cinética de la cianuración de un preconcentrado de Au-Cu,” Revista del Instituto de Investigaciones FIGMMG, vol. 14 (27), pp. 47-52, 2011.

[17] R. Khosravi, A. Azizi, R. Ghaedrahmati, V. Kumar, and S. Agarwal, “Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell-Optimization, kinetics and equilibrium studies,” Journal of Industrial and Engineering Chemistry, vol. 54, pp. 464-471, Oct. 2017. https://doi.org/10.1016/j.jiec.2017.06.036.

[18] I. Korolev, P. Altınkaya, P. Halli, P.-M. Hannula, K. Yliniemi, and M. Lundström, “Electrochemical recovery of minor concentrations of gold from cyanide-free cupric chloride leaching solutions,” Journal of Cleaner Production, vol. 186, pp. 840-850, Jun. 2018. https://doi.org/10.1016/j.jclepro.2018.03.177.

[19] A. Teague, J. S. J. Van Deventer, and C. Swaminathan, “A conceptual model for gold flotation,” Minerals Engineering, vol. 12 (9), pp. 1001-1019, Sep. 1999. https://doi.org/10.1016/s0892-6875(99)00087-4.

[20] J. Zhang, S. Shen, Y. Cheng, H. Lan, X. Hu, and F. Wang, “Dual lixiviant leaching process for extraction and recovery of gold from ores at room temperature,” Hydrometallurgy, vol. 144-145, pp. 114-123, Apr. 2014. https://doi.org/10.1016/j.hydromet.2014.02.001.

Downloads

Download data is not yet available.