Elaboración de un material compuesto a partir de fibras de palma de aceite y una emulsión ecológica de poliestireno expandido post-consumo
Resumen
La sobreproducción de plásticos y la amplia disponibilidad de fibras naturales que se convierten en un foco de contaminación antes de terminar su vida útil, en un contexto de crisis ambiental, ha hecho que los investigadores estudien la manera de integrarlos en la producción de biocompuestos. Para este proyecto se planteó la elaboración de un material compósito que integrara poliestireno expandido post-consumo (EPS) y raquis de palma (OPEFB). Las fibras OPEFB se consiguieron a partir de palmicultoras de la región, procesándose mediante secado, molienda y tamizado con una granulometría (Mesh de 30,40, 50, 60 y 70). Para obtener el solvente del EPS se destiló por arrastre de vapor un volumen de aceite esencial de naranja (Citrus sinensis) y se cuantificó la cantidad de d-limoneno presente usando la técnica de cromatografía de gases acoplada a espectrometría de masas. Posteriormente, se disolvió el EPS y se alcanzó una solubilidad de 0,5 g/mL y con un volumen de 1 L se formuló una emulsión 1:2 agua/EPS-Citrus Sinensis que fue caracterizada usando la técnica de microscopía óptica y dos colorantes de distinta polaridad para observar su afinidad con ambas fases, permitiendo clasificarla como una macroemulsión de tipo W/O. Los aglomerados se elaboraron mediante un proceso de moldeo, prensado y calentamiento. Se mantuvieron constantes todos los parámetros anteriores y sólo varió el tamaño de la fibra. Los ensayos de resistencia a la compresión y dureza mostraron que, a menor tamaño de fibra, menor dureza, resistencia a compresión y rigidez, por lo que las probetas elaboradas con fibras de malla (Mesh) No. 40 mostraron mejor desempeño en los ensayos mecánicos.
Palabras clave
recycled EPS, EPS reciclado, OPEFB, plásticos reforzados con fibra, reciclaje químico
Citas
[1] L. Mohammed, M. N. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A review on natural fiber reinforced polymer composite and its applications,” International Journal of Polymer Science, vol. 2015, 2015. https://doi.org/10.1155/2015/243947.
[2] M. J. John, and S. Thomas, “Biofibres and biocomposites,” Carbohydrate polymers, vol. 71 (3), pp. 343-364, Feb. 2008. https://doi.org/10.1016/j.carbpol.2007.05.040.
[3] A. Alawar, A. M. Hamed, and K. Al-Kaabi, “Characterization of treated date palm tree fiber as composite reinforcement,” The Composites Part B: Engineering, vol. 40 (7), pp. 601-606, Oct. 2009. https://doi.org/10.1016/j.compositesb.2009.04.018.
[4] M. Shimao, “Biodegradation of plastics,” Current opinion in biotechnology, vol. 12 (3), pp. 242-247, Jun. 2001. https://doi.org/10.1016/S0958-1669(00)00206-8.
[5] V. Zitko, “Expanded polystyrene as a source of contaminants,” Marine Pollution Bulletin, vol. 26 (10), pp. 584-585, Oct. 1993. https://doi.org/10.1016/0025-326x(93)90412-d.
[6] P. S. Schmidt, M. H. Cioffi, H. C. Voorwald, and J. L. Silveira, “Flexural test on recycled polystyrene,” Procedia Engineering, vol. 10, pp. 930-935, Apr. 2011. https://doi.org/10.1016/j.proeng.2011.04.153.
[7] M. E. Tawfik, S. B. Eskander, and G Nawwar, “Hard wood‐composites made of rice straw and recycled polystyrene foam wastes,” Journal of Applied Polymer Science, vol. 134 (18), May. 2017. https://doi.org/10.1002/app.44770.
[8] M. T. García, G. Duque, I. Gracia, A. de Lucas, and J. F. Rodríguez, “Recycling extruded polystyrene by dissolution with suitable solvents,” Journal of material cycles and waste management, vol. 11 (1), pp. 2-5, Jan. 2009. https://doi.org/10.1007/s10163-008-0210-8.
[9] M. S. Sreekala, M. G. Kumaran, and S. Thomas, “Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties,” Journal of Applied Polymer Science, vol. 66 (5), pp. 821-835, Oct. 1997. https://doi.org/10.1002/(sici)1097-4628(19971031)66:5<821::aid-app2>3.3.co;2-l.
[10] S. Takase, and N. Shiraishi, “Studies on composites from wood and polypropylenes II,” Journal of Applied Polymer Science, vol. 37(3), pp. 645-659. Jan. 1989. https://doi.org/10.1002/app.1989.070370305.
[11] J. M. Felix, and P. Gatenholm, “The nature of adhesion in composites of modified cellulose fibers and polypropylene,” Journal of Applied Polymer Science, vol. 42 (3), pp. 609-620, Feb. 1991. https://doi.org/10.1002/app.1991.070420307.
[12] Mi. Yongli, X. Chen, and Q. Guo, "Bamboo fiber‐reinforced polypropylene composites: Crystallization and interfacial morphology," Journal of Applied Polymer Science, vol. 64 (7), pp.1267-1273, Dec. 1998. https://doi.org/10.1002/(sici)1097-4628(19970516)64:7<1267::aid-app4>3.3.co;2-b.
[13] H. D. Rozman, H. Ismail, R. M. Jaffri, A. A. Aminullah, Z. A. Mohd Ishak, “Mechanical properties of polyethylene-oil palm empty fruit bunch composites,” Polymer-Plastics Technology and Engineering, vol. 37 (4), pp. 495–507, Nov.1998. https://doi.org/10.1080/03602559808001376.
[14] K. Bledzki, S. Reihmane, and J. Gassan, “Thermoplastics Reinforced with Wood Fillers: A Literature Review,” Polymer-Plastics Technology and Engineering, vol. 37 (4), pp. 451-468, Aug. 1998. https://doi.org/10.1080/03602559808001373.
[15] H. D. Rozman, P. P. Lim, A. Abusamah, R. N. Kumar, H. Ismail, and Z. A. Mohd Ishak, “The Physical Properties of Oil Palm Empty Fruit Bunch (EFB) Composites Made from Various Thermoplastics,” International Journal of Polymeric Materials, vol. 44 (1-2), pp. 179-195, Aug. 1999. https://doi.org/10.1080/00914039908012144.
[16] P. V. Joseph, K. Joseph, and S. Thomas, “Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites,” Composites Science and Technology, vol. 59 (11), pp. 1625-1640, Aug. 1999. https://doi.org/10.1016/S0266-3538(99)00024-X.
[17] D. Nabi Saheb, and J. P. Jog. “Natural fiber polymer composites: a review,” Advances in Polymer Technology, vol.18 (4), pp. 351-363, Oct. 1999. https://doi.org/10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.3.co;2-o.
[18] C.A. Hill, and K. Abdul. “Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites,” Journal of Applied Polymer Science, vol. 78(9), pp.1685-1697, Nov. 2000. https://doi.org/10.1002/1097-4628(20001128)78:9<1685::AID-APP150>3.0.CO;2-U.
[19] H. D. Rozman, G. S. Tay, A. Abubakar, and R. N. Kumar, “Tensile properties of oil palm empty fruit bunch-polyurethane composites,” European Polymer Journal, vol. 37(9), pp. 1759-1765, Sep. 2001. https://doi.org/10.1016/S0014-3057(01)00063-5.
[20] F. Mata-Cabrera, “Utilización de composites de matriz polimérica en la fabricación de automóviles,” Revista Técnica Industrial, 2004. http://www.tecnicaindustrial.es/TIFrontal/a-1550-utilizacion-composites-matriz-polimerica-fabricacion-automoviles.aspx.
[21] S. N. Kale, and S. L. Deore. “Emulsion Micro Emulsion and Nano Emulsion: A Review,” Systematic Reviews in Pharmacy, vol. 8 (39), pp. 39-47, Oct. 2017. https://doi.org/10.5530/srp.2017.1.8.
[22] O. Torres, Reciclaje de la espuma de poliestireno mediante el uso de d-limoneno. Grade Thesis, Universidad Nacional de Ingeniería, Lima, 2004.
[23] T. M. Noguchi, Y. Miyashita, Inagaki, and H. Watanabe, “A new recycling system for expanded polystyrene using a natural solvent. Part 1. A new recycling technique,” Packaging Technology and Science, vol.11 (1), pp. 19-27, Feb. 1998. https://doi.org/10.1002/(sici)1099-1522(199802)11:1<19::aid-pts414>3.3.co;2-x.
[24] S. C. H. Mangalara, and S. Varughese. “Green Recycling Approach to Obtain Nano-and Microparticles from Expanded Polystyrene Waste,” ACS Sustainable Chemistry & Engineering, vol. 4 (11), pp. 6095-6100, Nov. 2016. https://doi.org/10.1021/acssuschemeng.6b01493.
[25] J. W. Kim, D. Lee, H. C. Shum, and D.A. Weitz, “Colloid surfactants for emulsion stabilization,” Advanced materials, vol. 20 (17), pp. 3239-3243, Sep. 2008. https://doi.org/10.1002/adma.200800484.
[26] C. A. López, Modelo de Estabilidad de Emulsiones Poliméricas. Doctoral Thesis, Universidad Nacional de Colombia, Bogotá D.C., 2012.
[27] E. E. Stashenko, Y. Combariza, and M. Puertas, Aceites Esenciales: Técnicas de extracción y análisis. Universidad Industrial de Santander, Bucaramanga, 1998.
[28] M. S. Sreekala, M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas, “Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance,” Applied Composite Materials, vol. 7 (5-6), pp. 295-329, Nov. 2000. https://doi.org/10.1023/A:1026534006291.
[29] S. Shinoj, R. Visvanathan, S. Panigrahi, and M. Kochubabu, “Oil palm fiber (OPF) and its composites: A review,” Industrial Crops and products, vol. 33 (1), pp. 7-22, Jan. 2011. https://doi.org/10.1016/j.indcrop.2010.09.009.
[30] M. Khalid, C. T. Ratnam, T. G. Chuah, S. Ali, and T. S. Choong, “Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose,” Materials & Design, vol. 29 (1), pp. 173-178, Jan. 2008. https://doi.org/10.1016/j.matdes.2006.11.002.
[31] N. W. A Razak, and A. Kalam, “Effect of OPEFB size on the mechanical properties and water absorption behaviour of OPEFB/PPnanoclay/PP hybrid composites,” Procedia Engineering, vol. 41, pp. 1593-1599, May. 2012. https://doi.org/10.1016/j.proeng.2012.07.355.
[32] L. Prabhu, V. Krishnaraj, S. Sathish, S. GokulKumar, and N. Karthi, “Study of mechanical and morphological properties of jute-tea leaf fiber reinforced hybrid composites: Effect of glass fiber hybridization,” in International conference on Materials and Manufacturing Methods, India, Oct. 2019. https://doi.org/10.1016/j.matpr.2019.09.132.
[33] N. Saba, M. Jawaid, and M. T. H. Sultan, “Thermal properties of oil palm biomass based composites,” Lignocellulosic Fibre and Biomass-Based Composite Materials, vol. 2017, pp. 95-122, Jun. 2017. https://doi.org/10.1016/B978-0-08-100959-8.00006-8.
[34] D. R. Askeland, and W. Wright, Ciencia e Ingeniería de los Materiales. México: International Thomson Editores, 1998.