Sinterización en fase líquida super solidus y de estado sólido de polvos SLM de acero 4340 formados por fabricación de filamentos fundidos
Resumen
Polvo de acero 4340 fue procesado mediante manufactura aditiva utilizando la técnica FFF (Fused Filament Fabrication). Se desarrolló un filamento compuesto para imprimir muestras y estudiar el efecto de la temperatura de la cama y de la boquilla de impresión en sus propiedades físicas y microestructurales. Las muestras impresas fueron despolimerizadas y sinterizadas en estado sólido (Solid State - SS) a 1300 °C y sinterización en fase líquida super solidus (Supersolidus Liquid Phase Sintering -SLPS) a 1420 °C. Por metalografía y microscopía electrónica de barrido (SEM) se identificó la microestructura y las fases presentes. La dureza de las muestras sinterizadas se midió con el método Vickers. El proceso SLPS contribuye a una mejor densificación y contracción volumétrica; sin embargo, promueve distorsión geométrica de las muestras en comparación con las muestras SS. La microestructura de las muestras sinterizadas consiste en ferrita situada en el límite de grano austenítico original y bainita. El mecanismo de sinterización influyó significativamente en la dureza de las muestras. Finalmente, se diseñó, imprimió, despolimerizó y sinterizó una pieza con el objetivo de estudiar el ángulo máximo de inclinación, los mínimos agujeros verticales y horizontales, y el mínimo espesor de capa vertical, que se pueden obtener a lo largo de todo el proceso.
Palabras clave
acero 4340, caracterización, despolimerizado, fabricación de filamentos fundidos, manufactura aditiva, sinterización
Biografía del autor/a
Andres-Fernando Gil-Plazas
Roles: Conceptualización, Investigación, Metodología, Escritura - Borrador original, Escritura – Revisión y Edición.
Julián-David Rubiano-Buitrago
Roles: Conceptualización, Investigación, Metodología, Escritura - Borrador original, Escritura – Revisión y Edición.
Luis-Alejandro Boyacá-Mendivelso
Roles: Conceptualización, Visualización.
Liz-Karen Herrera-Quintero
Roles: Conceptualización, Supervisión.
Citas
- H. E. Quinlan, T. Hasan, J. Jaddou, A. J. Hart, “Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges,” Journal of Industrial Ecology, vol. 21, pp. S15–S20, 2017. https://doi.org/10.1111/jiec.12609 DOI: https://doi.org/10.1111/jiec.12609
- C. R. Deckard, United States Patent, no. 19, p. 14, 1997
- G. H. Loh, E. Pei, J. Gonzalez-Gutierrez, M. Monzón, “An overview of material extrusion troubleshooting,” Applied Sciences (Switzerland), vol. 10, no. 14, e4776, 2020. https://doi.org/10.3390/app10144776 DOI: https://doi.org/10.3390/app10144776
- M. K. Agarwala, R. Van Weeren, A. Bandyopadhyay, A. Safari, S. C. Danforth, W. R. Priedeman, “Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals,” in Proceedings ofthe Solid Freeform Fabrication Symposium, pp. 451–458, 1996. https://doi.org/10.1109/isaf.1996.598197 DOI: https://doi.org/10.1109/ISAF.1996.598197
- J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, e840, 2018. https://doi.org/10.3390/ma11050840 DOI: https://doi.org/10.3390/ma11050840
- A. Levy, A. Miriyev, A. Elliott, S. S. Babu, N. Frage, “Additive manufacturing of complex-shaped graded TiC/steel composites,” Materials and Design, vol. 118, pp. 198–203, 2017. https://doi.org/10.1016/j.matdes.2017.01.024 DOI: https://doi.org/10.1016/j.matdes.2017.01.024
- P. Singh, V. K. Balla, S. V. Atre, R. M. German, K. H. Kate, “Factors affecting properties of Ti-6Al-4V alloy additive manufactured by metal fused filament fabrication,” Powder Technology, vol. 386, pp. 9–19, 2021. https://doi.org/10.1016/j.powtec.2021.03.026 DOI: https://doi.org/10.1016/j.powtec.2021.03.026
- Y. Zhang, L. Poli, E. Garratt, S. Foster, A. Roch, “Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices,” 3D Printing and Additive Manufacturing, vol. 7, no. 6, pp. 279–287, 2020. https://doi.org/10.1089/3dp.2020.0136 DOI: https://doi.org/10.1089/3dp.2020.0136
- M. Vaezi, P. Drescher, H. Seitz, “Beamless Metal Additive Manufacturing,” Materials, vol. 13, no. 4, e922, 2020. https://doi.org/10.3390/ma13040922 DOI: https://doi.org/10.3390/ma13040922
- M. Galati, P. Minetola, “Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts,” Materials, vol. 12, no. 24, e4122, 2019. https://doi.org/10.3390/ma12244122 DOI: https://doi.org/10.3390/ma12244122
- C. Kukla, S. Cano, D. Kaylani, S. Schuschnigg, C. Holzer, J. Gonzalez-Gutierrez, “Debinding behaviour of feedstock for material extrusion additive manufacturing of zirconia,” Powder Metallurgy, vol. 62, no. 3, pp. 196–204, 2019. https://doi.org/10.1080/00325899.2019.1616139 DOI: https://doi.org/10.1080/00325899.2019.1616139
- S. Cano, J. Gonzalez-Gutierrez, J. Sapkota, M. Spoerk, F. Arbeiter, S. Schuschnigg, “Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation,” Additive Manufacturing, vol. 26, pp. 117–128, 2019. https://doi.org/10.1016/j.addma.2019.01.001 DOI: https://doi.org/10.1016/j.addma.2019.01.001
- W. Lengauer, I. Duretek, M. Fürst, V. Schwarz, J. Gonzalez-Gutierrez, S. Schuschnigg, “Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components,” International Journal of Refractory Metals and Hard Materials, vol. 82, pp. 141–149, 2019. https://doi.org/10.1016/j.ijrmhm.2019.04.011 DOI: https://doi.org/10.1016/j.ijrmhm.2019.04.011
- C. Kukla, J. Gonzalez-gutierrez, S. Cano, S. Hampel, “Fused Filament Fabrication (FFF) of PIM Feedstocks,” in VI Congreso Nacional y I Iberoamericano de Pulvimetalurgia, 2017.
- J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Materials Letters, vol. 248, pp. 165–168, 2019. https://doi.org/10.1016/j.matlet.2019.04.024 DOI: https://doi.org/10.1016/j.matlet.2019.04.024
- J. Gonzalez-Gutierrez, D. Godec, C. Kukla, T. Schlauf, C. Burkhardt, C. Holzer, “Shaping , Debinding and Sintering of Steel Components Via Fused Filament Fabrication,” in 16th International Scientific Conference on Production Engineering , 2017.
- J. Abel, U. Scheithauer, T. Janics, S. Hampel, S. Cano, A. Müller-Köhn, “Fused filament fabrication (FFF) of metal-ceramic components,” Journal of Visualized Experiments, vol. 2019, no. 143, pp. 1–13, 2019. https://doi.org/10.3791/57693 DOI: https://doi.org/10.3791/57693
- R. K. Enneti, S. J. Park, R. M. German, S. V. Atre, “Review: Thermal debinding process in particulate materials processing,” Materials and Manufacturing Processes, vol. 27, no. 2, pp. 103–118, 2012. https://doi.org/10.1080/10426914.2011.560233 DOI: https://doi.org/10.1080/10426914.2011.560233
- R. M. German, P. Suri, S. J. Park, “Review: Liquid phase sintering,” Journal of Materials Science, vol. 44, no. 1, pp. 1–39, 2009. DOI: https://doi.org/10.1007/s10853-008-3008-0
- R. M. German, “Computer model for the sintering densification of injected molded M2 tool Steel,” in International Journal of Powder Metallurgy, pp. 57–67, 1999.
- R. M. German, “Densification of prealloyed tool steel powders: sintering model,” in International Journal of Powder Metallurgy, pp. 49–61, 1986.
- A. Chniouel, Etude de l’élaboration de l’acier inoxydable 316L par fusion laser sélective sur lit de poudre : influence des paramètres du procédé, des caractéristiques de la poudre, et des traitements thermiques sur la microstructure et les propriétés mécaniques, p. 145, 2019.
- E. Jelis, M. Clemente, S. Kerwien, N. M. Ravindra, M. R. Hespos, “Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering,” Jom, vol. 67, no. 3, pp. 582–589, 2015. https://doi.org/10.1007/s11837-014-1273-8 DOI: https://doi.org/10.1007/s11837-014-1273-8
- R. K. Enneti, V. P. Onbattuvelli, S. V. Atre, “Powder binder formulation and compound manufacture in metal injection molding (MIM),” in Handbook of Metal Injection Molding, pp. 64–92, 2012. https://doi.org/10.1533/9780857096234.1.64 DOI: https://doi.org/10.1533/9780857096234.1.64
- M. Spoerk, C. Holzer, J. Gonzalez-Gutierrez, “Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage,” Journal of Applied Polymer Science, vol. 137, no. 12, e48545, 2020. https://doi.org/10.1002/app.48545 DOI: https://doi.org/10.1002/app.48545
- M. Spoerk, J. Gonzalez-Gutierrez, J. Sapkota, S. Schuschnigg, C. Holzer, “Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication,” Plastics, Rubber and Composites, vol. 47, no. 1, pp. 17–24, 2018. https://doi.org/10.1080/14658011.2017.1399531 DOI: https://doi.org/10.1080/14658011.2017.1399531
- N. S. Myers, D. F. Heaney, “Metal injection molding (MIM) of high-speed tool steels,” in Handbook of Metal Injection Molding, pp. 516–525, 2012. https://doi.org/10.1533/9780857096234.4.516 DOI: https://doi.org/10.1533/9780857096234.4.516
- H. K. D. H. Bhadeshia, Bainite in Steels Theory and Practice, 2019. DOI: https://doi.org/10.1201/9781315096674
- Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Additive Manufacturing, vol. 30, e100861, 2019. https://doi.org/10.1016/j.addma.2019.100861 DOI: https://doi.org/10.1016/j.addma.2019.100861
- K. Rane, S. Cataldo, P. Parenti, L. Sbaglia, V. Mussi, M. Annon, “Rapid production of hollow SS316 profiles by extrusion based additive manufacturing,” AIP Conference Proceedings, vol. 1960, e140014, 2018. https://doi.org/10.1063/1.5035006 DOI: https://doi.org/10.1063/1.5035006